async_executor/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
//! Async executors.
//!
//! This crate provides two reference executors that trade performance for
//! functionality. They should be considered reference executors that are "good
//! enough" for most use cases. For more specialized use cases, consider writing
//! your own executor on top of [`async-task`].
//!
//! [`async-task`]: https://crates.io/crates/async-task
//!
//! # Examples
//!
//! ```
//! use async_executor::Executor;
//! use futures_lite::future;
//!
//! // Create a new executor.
//! let ex = Executor::new();
//!
//! // Spawn a task.
//! let task = ex.spawn(async {
//! println!("Hello world");
//! });
//!
//! // Run the executor until the task completes.
//! future::block_on(ex.run(task));
//! ```
#![warn(
missing_docs,
missing_debug_implementations,
rust_2018_idioms,
clippy::undocumented_unsafe_blocks
)]
#![doc(
html_favicon_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]
#![doc(
html_logo_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]
#![cfg_attr(docsrs, feature(doc_cfg, doc_auto_cfg))]
use std::fmt;
use std::marker::PhantomData;
use std::panic::{RefUnwindSafe, UnwindSafe};
use std::rc::Rc;
use std::sync::atomic::{AtomicBool, AtomicPtr, Ordering};
use std::sync::{Arc, Mutex, RwLock, TryLockError};
use std::task::{Poll, Waker};
use async_task::{Builder, Runnable};
use concurrent_queue::ConcurrentQueue;
use futures_lite::{future, prelude::*};
use slab::Slab;
#[cfg(feature = "static")]
mod static_executors;
#[doc(no_inline)]
pub use async_task::{FallibleTask, Task};
#[cfg(feature = "static")]
#[cfg_attr(docsrs, doc(cfg(any(feature = "static"))))]
pub use static_executors::*;
/// An async executor.
///
/// # Examples
///
/// A multi-threaded executor:
///
/// ```
/// use async_channel::unbounded;
/// use async_executor::Executor;
/// use easy_parallel::Parallel;
/// use futures_lite::future;
///
/// let ex = Executor::new();
/// let (signal, shutdown) = unbounded::<()>();
///
/// Parallel::new()
/// // Run four executor threads.
/// .each(0..4, |_| future::block_on(ex.run(shutdown.recv())))
/// // Run the main future on the current thread.
/// .finish(|| future::block_on(async {
/// println!("Hello world!");
/// drop(signal);
/// }));
/// ```
pub struct Executor<'a> {
/// The executor state.
state: AtomicPtr<State>,
/// Makes the `'a` lifetime invariant.
_marker: PhantomData<std::cell::UnsafeCell<&'a ()>>,
}
// SAFETY: Executor stores no thread local state that can be accessed via other thread.
unsafe impl Send for Executor<'_> {}
// SAFETY: Executor internally synchronizes all of it's operations internally.
unsafe impl Sync for Executor<'_> {}
impl UnwindSafe for Executor<'_> {}
impl RefUnwindSafe for Executor<'_> {}
impl fmt::Debug for Executor<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
debug_executor(self, "Executor", f)
}
}
impl<'a> Executor<'a> {
/// Creates a new executor.
///
/// # Examples
///
/// ```
/// use async_executor::Executor;
///
/// let ex = Executor::new();
/// ```
pub const fn new() -> Executor<'a> {
Executor {
state: AtomicPtr::new(std::ptr::null_mut()),
_marker: PhantomData,
}
}
/// Returns `true` if there are no unfinished tasks.
///
/// # Examples
///
/// ```
/// use async_executor::Executor;
///
/// let ex = Executor::new();
/// assert!(ex.is_empty());
///
/// let task = ex.spawn(async {
/// println!("Hello world");
/// });
/// assert!(!ex.is_empty());
///
/// assert!(ex.try_tick());
/// assert!(ex.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.state().active.lock().unwrap().is_empty()
}
/// Spawns a task onto the executor.
///
/// # Examples
///
/// ```
/// use async_executor::Executor;
///
/// let ex = Executor::new();
///
/// let task = ex.spawn(async {
/// println!("Hello world");
/// });
/// ```
pub fn spawn<T: Send + 'a>(&self, future: impl Future<Output = T> + Send + 'a) -> Task<T> {
let mut active = self.state().active.lock().unwrap();
// SAFETY: `T` and the future are `Send`.
unsafe { self.spawn_inner(future, &mut active) }
}
/// Spawns many tasks onto the executor.
///
/// As opposed to the [`spawn`] method, this locks the executor's inner task lock once and
/// spawns all of the tasks in one go. With large amounts of tasks this can improve
/// contention.
///
/// For very large numbers of tasks the lock is occasionally dropped and re-acquired to
/// prevent runner thread starvation. It is assumed that the iterator provided does not
/// block; blocking iterators can lock up the internal mutex and therefore the entire
/// executor.
///
/// ## Example
///
/// ```
/// use async_executor::Executor;
/// use futures_lite::{stream, prelude::*};
/// use std::future::ready;
///
/// # futures_lite::future::block_on(async {
/// let mut ex = Executor::new();
///
/// let futures = [
/// ready(1),
/// ready(2),
/// ready(3)
/// ];
///
/// // Spawn all of the futures onto the executor at once.
/// let mut tasks = vec![];
/// ex.spawn_many(futures, &mut tasks);
///
/// // Await all of them.
/// let results = ex.run(async move {
/// stream::iter(tasks).then(|x| x).collect::<Vec<_>>().await
/// }).await;
/// assert_eq!(results, [1, 2, 3]);
/// # });
/// ```
///
/// [`spawn`]: Executor::spawn
pub fn spawn_many<T: Send + 'a, F: Future<Output = T> + Send + 'a>(
&self,
futures: impl IntoIterator<Item = F>,
handles: &mut impl Extend<Task<F::Output>>,
) {
let mut active = Some(self.state().active.lock().unwrap());
// Convert the futures into tasks.
let tasks = futures.into_iter().enumerate().map(move |(i, future)| {
// SAFETY: `T` and the future are `Send`.
let task = unsafe { self.spawn_inner(future, active.as_mut().unwrap()) };
// Yield the lock every once in a while to ease contention.
if i.wrapping_sub(1) % 500 == 0 {
drop(active.take());
active = Some(self.state().active.lock().unwrap());
}
task
});
// Push the tasks to the user's collection.
handles.extend(tasks);
}
/// Spawn a future while holding the inner lock.
///
/// # Safety
///
/// If this is an `Executor`, `F` and `T` must be `Send`.
unsafe fn spawn_inner<T: 'a>(
&self,
future: impl Future<Output = T> + 'a,
active: &mut Slab<Waker>,
) -> Task<T> {
// Remove the task from the set of active tasks when the future finishes.
let entry = active.vacant_entry();
let index = entry.key();
let state = self.state_as_arc();
let future = async move {
let _guard = CallOnDrop(move || drop(state.active.lock().unwrap().try_remove(index)));
future.await
};
// Create the task and register it in the set of active tasks.
//
// SAFETY:
//
// If `future` is not `Send`, this must be a `LocalExecutor` as per this
// function's unsafe precondition. Since `LocalExecutor` is `!Sync`,
// `try_tick`, `tick` and `run` can only be called from the origin
// thread of the `LocalExecutor`. Similarly, `spawn` can only be called
// from the origin thread, ensuring that `future` and the executor share
// the same origin thread. The `Runnable` can be scheduled from other
// threads, but because of the above `Runnable` can only be called or
// dropped on the origin thread.
//
// `future` is not `'static`, but we make sure that the `Runnable` does
// not outlive `'a`. When the executor is dropped, the `active` field is
// drained and all of the `Waker`s are woken. Then, the queue inside of
// the `Executor` is drained of all of its runnables. This ensures that
// runnables are dropped and this precondition is satisfied.
//
// `self.schedule()` is `Send`, `Sync` and `'static`, as checked below.
// Therefore we do not need to worry about what is done with the
// `Waker`.
let (runnable, task) = Builder::new()
.propagate_panic(true)
.spawn_unchecked(|()| future, self.schedule());
entry.insert(runnable.waker());
runnable.schedule();
task
}
/// Attempts to run a task if at least one is scheduled.
///
/// Running a scheduled task means simply polling its future once.
///
/// # Examples
///
/// ```
/// use async_executor::Executor;
///
/// let ex = Executor::new();
/// assert!(!ex.try_tick()); // no tasks to run
///
/// let task = ex.spawn(async {
/// println!("Hello world");
/// });
/// assert!(ex.try_tick()); // a task was found
/// ```
pub fn try_tick(&self) -> bool {
self.state().try_tick()
}
/// Runs a single task.
///
/// Running a task means simply polling its future once.
///
/// If no tasks are scheduled when this method is called, it will wait until one is scheduled.
///
/// # Examples
///
/// ```
/// use async_executor::Executor;
/// use futures_lite::future;
///
/// let ex = Executor::new();
///
/// let task = ex.spawn(async {
/// println!("Hello world");
/// });
/// future::block_on(ex.tick()); // runs the task
/// ```
pub async fn tick(&self) {
self.state().tick().await;
}
/// Runs the executor until the given future completes.
///
/// # Examples
///
/// ```
/// use async_executor::Executor;
/// use futures_lite::future;
///
/// let ex = Executor::new();
///
/// let task = ex.spawn(async { 1 + 2 });
/// let res = future::block_on(ex.run(async { task.await * 2 }));
///
/// assert_eq!(res, 6);
/// ```
pub async fn run<T>(&self, future: impl Future<Output = T>) -> T {
self.state().run(future).await
}
/// Returns a function that schedules a runnable task when it gets woken up.
fn schedule(&self) -> impl Fn(Runnable) + Send + Sync + 'static {
let state = self.state_as_arc();
// TODO: If possible, push into the current local queue and notify the ticker.
move |runnable| {
state.queue.push(runnable).unwrap();
state.notify();
}
}
/// Returns a pointer to the inner state.
#[inline]
fn state_ptr(&self) -> *const State {
#[cold]
fn alloc_state(atomic_ptr: &AtomicPtr<State>) -> *mut State {
let state = Arc::new(State::new());
// TODO: Switch this to use cast_mut once the MSRV can be bumped past 1.65
let ptr = Arc::into_raw(state) as *mut State;
if let Err(actual) = atomic_ptr.compare_exchange(
std::ptr::null_mut(),
ptr,
Ordering::AcqRel,
Ordering::Acquire,
) {
// SAFETY: This was just created from Arc::into_raw.
drop(unsafe { Arc::from_raw(ptr) });
actual
} else {
ptr
}
}
let mut ptr = self.state.load(Ordering::Acquire);
if ptr.is_null() {
ptr = alloc_state(&self.state);
}
ptr
}
/// Returns a reference to the inner state.
#[inline]
fn state(&self) -> &State {
// SAFETY: So long as an Executor lives, it's state pointer will always be valid
// when accessed through state_ptr.
unsafe { &*self.state_ptr() }
}
// Clones the inner state Arc
#[inline]
fn state_as_arc(&self) -> Arc<State> {
// SAFETY: So long as an Executor lives, it's state pointer will always be a valid
// Arc when accessed through state_ptr.
let arc = unsafe { Arc::from_raw(self.state_ptr()) };
let clone = arc.clone();
std::mem::forget(arc);
clone
}
}
impl Drop for Executor<'_> {
fn drop(&mut self) {
let ptr = *self.state.get_mut();
if ptr.is_null() {
return;
}
// SAFETY: As ptr is not null, it was allocated via Arc::new and converted
// via Arc::into_raw in state_ptr.
let state = unsafe { Arc::from_raw(ptr) };
let mut active = state.active.lock().unwrap_or_else(|e| e.into_inner());
for w in active.drain() {
w.wake();
}
drop(active);
while state.queue.pop().is_ok() {}
}
}
impl<'a> Default for Executor<'a> {
fn default() -> Executor<'a> {
Executor::new()
}
}
/// A thread-local executor.
///
/// The executor can only be run on the thread that created it.
///
/// # Examples
///
/// ```
/// use async_executor::LocalExecutor;
/// use futures_lite::future;
///
/// let local_ex = LocalExecutor::new();
///
/// future::block_on(local_ex.run(async {
/// println!("Hello world!");
/// }));
/// ```
pub struct LocalExecutor<'a> {
/// The inner executor.
inner: Executor<'a>,
/// Makes the type `!Send` and `!Sync`.
_marker: PhantomData<Rc<()>>,
}
impl UnwindSafe for LocalExecutor<'_> {}
impl RefUnwindSafe for LocalExecutor<'_> {}
impl fmt::Debug for LocalExecutor<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
debug_executor(&self.inner, "LocalExecutor", f)
}
}
impl<'a> LocalExecutor<'a> {
/// Creates a single-threaded executor.
///
/// # Examples
///
/// ```
/// use async_executor::LocalExecutor;
///
/// let local_ex = LocalExecutor::new();
/// ```
pub const fn new() -> LocalExecutor<'a> {
LocalExecutor {
inner: Executor::new(),
_marker: PhantomData,
}
}
/// Returns `true` if there are no unfinished tasks.
///
/// # Examples
///
/// ```
/// use async_executor::LocalExecutor;
///
/// let local_ex = LocalExecutor::new();
/// assert!(local_ex.is_empty());
///
/// let task = local_ex.spawn(async {
/// println!("Hello world");
/// });
/// assert!(!local_ex.is_empty());
///
/// assert!(local_ex.try_tick());
/// assert!(local_ex.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.inner().is_empty()
}
/// Spawns a task onto the executor.
///
/// # Examples
///
/// ```
/// use async_executor::LocalExecutor;
///
/// let local_ex = LocalExecutor::new();
///
/// let task = local_ex.spawn(async {
/// println!("Hello world");
/// });
/// ```
pub fn spawn<T: 'a>(&self, future: impl Future<Output = T> + 'a) -> Task<T> {
let mut active = self.inner().state().active.lock().unwrap();
// SAFETY: This executor is not thread safe, so the future and its result
// cannot be sent to another thread.
unsafe { self.inner().spawn_inner(future, &mut active) }
}
/// Spawns many tasks onto the executor.
///
/// As opposed to the [`spawn`] method, this locks the executor's inner task lock once and
/// spawns all of the tasks in one go. With large amounts of tasks this can improve
/// contention.
///
/// It is assumed that the iterator provided does not block; blocking iterators can lock up
/// the internal mutex and therefore the entire executor. Unlike [`Executor::spawn`], the
/// mutex is not released, as there are no other threads that can poll this executor.
///
/// ## Example
///
/// ```
/// use async_executor::LocalExecutor;
/// use futures_lite::{stream, prelude::*};
/// use std::future::ready;
///
/// # futures_lite::future::block_on(async {
/// let mut ex = LocalExecutor::new();
///
/// let futures = [
/// ready(1),
/// ready(2),
/// ready(3)
/// ];
///
/// // Spawn all of the futures onto the executor at once.
/// let mut tasks = vec![];
/// ex.spawn_many(futures, &mut tasks);
///
/// // Await all of them.
/// let results = ex.run(async move {
/// stream::iter(tasks).then(|x| x).collect::<Vec<_>>().await
/// }).await;
/// assert_eq!(results, [1, 2, 3]);
/// # });
/// ```
///
/// [`spawn`]: LocalExecutor::spawn
/// [`Executor::spawn_many`]: Executor::spawn_many
pub fn spawn_many<T: 'a, F: Future<Output = T> + 'a>(
&self,
futures: impl IntoIterator<Item = F>,
handles: &mut impl Extend<Task<F::Output>>,
) {
let mut active = self.inner().state().active.lock().unwrap();
// Convert all of the futures to tasks.
let tasks = futures.into_iter().map(|future| {
// SAFETY: This executor is not thread safe, so the future and its result
// cannot be sent to another thread.
unsafe { self.inner().spawn_inner(future, &mut active) }
// As only one thread can spawn or poll tasks at a time, there is no need
// to release lock contention here.
});
// Push them to the user's collection.
handles.extend(tasks);
}
/// Attempts to run a task if at least one is scheduled.
///
/// Running a scheduled task means simply polling its future once.
///
/// # Examples
///
/// ```
/// use async_executor::LocalExecutor;
///
/// let ex = LocalExecutor::new();
/// assert!(!ex.try_tick()); // no tasks to run
///
/// let task = ex.spawn(async {
/// println!("Hello world");
/// });
/// assert!(ex.try_tick()); // a task was found
/// ```
pub fn try_tick(&self) -> bool {
self.inner().try_tick()
}
/// Runs a single task.
///
/// Running a task means simply polling its future once.
///
/// If no tasks are scheduled when this method is called, it will wait until one is scheduled.
///
/// # Examples
///
/// ```
/// use async_executor::LocalExecutor;
/// use futures_lite::future;
///
/// let ex = LocalExecutor::new();
///
/// let task = ex.spawn(async {
/// println!("Hello world");
/// });
/// future::block_on(ex.tick()); // runs the task
/// ```
pub async fn tick(&self) {
self.inner().tick().await
}
/// Runs the executor until the given future completes.
///
/// # Examples
///
/// ```
/// use async_executor::LocalExecutor;
/// use futures_lite::future;
///
/// let local_ex = LocalExecutor::new();
///
/// let task = local_ex.spawn(async { 1 + 2 });
/// let res = future::block_on(local_ex.run(async { task.await * 2 }));
///
/// assert_eq!(res, 6);
/// ```
pub async fn run<T>(&self, future: impl Future<Output = T>) -> T {
self.inner().run(future).await
}
/// Returns a reference to the inner executor.
fn inner(&self) -> &Executor<'a> {
&self.inner
}
}
impl<'a> Default for LocalExecutor<'a> {
fn default() -> LocalExecutor<'a> {
LocalExecutor::new()
}
}
/// The state of a executor.
struct State {
/// The global queue.
queue: ConcurrentQueue<Runnable>,
/// Local queues created by runners.
local_queues: RwLock<Vec<Arc<ConcurrentQueue<Runnable>>>>,
/// Set to `true` when a sleeping ticker is notified or no tickers are sleeping.
notified: AtomicBool,
/// A list of sleeping tickers.
sleepers: Mutex<Sleepers>,
/// Currently active tasks.
active: Mutex<Slab<Waker>>,
}
impl State {
/// Creates state for a new executor.
const fn new() -> State {
State {
queue: ConcurrentQueue::unbounded(),
local_queues: RwLock::new(Vec::new()),
notified: AtomicBool::new(true),
sleepers: Mutex::new(Sleepers {
count: 0,
wakers: Vec::new(),
free_ids: Vec::new(),
}),
active: Mutex::new(Slab::new()),
}
}
/// Notifies a sleeping ticker.
#[inline]
fn notify(&self) {
if self
.notified
.compare_exchange(false, true, Ordering::AcqRel, Ordering::Acquire)
.is_ok()
{
let waker = self.sleepers.lock().unwrap().notify();
if let Some(w) = waker {
w.wake();
}
}
}
pub(crate) fn try_tick(&self) -> bool {
match self.queue.pop() {
Err(_) => false,
Ok(runnable) => {
// Notify another ticker now to pick up where this ticker left off, just in case
// running the task takes a long time.
self.notify();
// Run the task.
runnable.run();
true
}
}
}
pub(crate) async fn tick(&self) {
let runnable = Ticker::new(self).runnable().await;
runnable.run();
}
pub async fn run<T>(&self, future: impl Future<Output = T>) -> T {
let mut runner = Runner::new(self);
let mut rng = fastrand::Rng::new();
// A future that runs tasks forever.
let run_forever = async {
loop {
for _ in 0..200 {
let runnable = runner.runnable(&mut rng).await;
runnable.run();
}
future::yield_now().await;
}
};
// Run `future` and `run_forever` concurrently until `future` completes.
future.or(run_forever).await
}
}
/// A list of sleeping tickers.
struct Sleepers {
/// Number of sleeping tickers (both notified and unnotified).
count: usize,
/// IDs and wakers of sleeping unnotified tickers.
///
/// A sleeping ticker is notified when its waker is missing from this list.
wakers: Vec<(usize, Waker)>,
/// Reclaimed IDs.
free_ids: Vec<usize>,
}
impl Sleepers {
/// Inserts a new sleeping ticker.
fn insert(&mut self, waker: &Waker) -> usize {
let id = match self.free_ids.pop() {
Some(id) => id,
None => self.count + 1,
};
self.count += 1;
self.wakers.push((id, waker.clone()));
id
}
/// Re-inserts a sleeping ticker's waker if it was notified.
///
/// Returns `true` if the ticker was notified.
fn update(&mut self, id: usize, waker: &Waker) -> bool {
for item in &mut self.wakers {
if item.0 == id {
item.1.clone_from(waker);
return false;
}
}
self.wakers.push((id, waker.clone()));
true
}
/// Removes a previously inserted sleeping ticker.
///
/// Returns `true` if the ticker was notified.
fn remove(&mut self, id: usize) -> bool {
self.count -= 1;
self.free_ids.push(id);
for i in (0..self.wakers.len()).rev() {
if self.wakers[i].0 == id {
self.wakers.remove(i);
return false;
}
}
true
}
/// Returns `true` if a sleeping ticker is notified or no tickers are sleeping.
fn is_notified(&self) -> bool {
self.count == 0 || self.count > self.wakers.len()
}
/// Returns notification waker for a sleeping ticker.
///
/// If a ticker was notified already or there are no tickers, `None` will be returned.
fn notify(&mut self) -> Option<Waker> {
if self.wakers.len() == self.count {
self.wakers.pop().map(|item| item.1)
} else {
None
}
}
}
/// Runs task one by one.
struct Ticker<'a> {
/// The executor state.
state: &'a State,
/// Set to a non-zero sleeper ID when in sleeping state.
///
/// States a ticker can be in:
/// 1) Woken.
/// 2a) Sleeping and unnotified.
/// 2b) Sleeping and notified.
sleeping: usize,
}
impl Ticker<'_> {
/// Creates a ticker.
fn new(state: &State) -> Ticker<'_> {
Ticker { state, sleeping: 0 }
}
/// Moves the ticker into sleeping and unnotified state.
///
/// Returns `false` if the ticker was already sleeping and unnotified.
fn sleep(&mut self, waker: &Waker) -> bool {
let mut sleepers = self.state.sleepers.lock().unwrap();
match self.sleeping {
// Move to sleeping state.
0 => {
self.sleeping = sleepers.insert(waker);
}
// Already sleeping, check if notified.
id => {
if !sleepers.update(id, waker) {
return false;
}
}
}
self.state
.notified
.store(sleepers.is_notified(), Ordering::Release);
true
}
/// Moves the ticker into woken state.
fn wake(&mut self) {
if self.sleeping != 0 {
let mut sleepers = self.state.sleepers.lock().unwrap();
sleepers.remove(self.sleeping);
self.state
.notified
.store(sleepers.is_notified(), Ordering::Release);
}
self.sleeping = 0;
}
/// Waits for the next runnable task to run.
async fn runnable(&mut self) -> Runnable {
self.runnable_with(|| self.state.queue.pop().ok()).await
}
/// Waits for the next runnable task to run, given a function that searches for a task.
async fn runnable_with(&mut self, mut search: impl FnMut() -> Option<Runnable>) -> Runnable {
future::poll_fn(|cx| {
loop {
match search() {
None => {
// Move to sleeping and unnotified state.
if !self.sleep(cx.waker()) {
// If already sleeping and unnotified, return.
return Poll::Pending;
}
}
Some(r) => {
// Wake up.
self.wake();
// Notify another ticker now to pick up where this ticker left off, just in
// case running the task takes a long time.
self.state.notify();
return Poll::Ready(r);
}
}
}
})
.await
}
}
impl Drop for Ticker<'_> {
fn drop(&mut self) {
// If this ticker is in sleeping state, it must be removed from the sleepers list.
if self.sleeping != 0 {
let mut sleepers = self.state.sleepers.lock().unwrap();
let notified = sleepers.remove(self.sleeping);
self.state
.notified
.store(sleepers.is_notified(), Ordering::Release);
// If this ticker was notified, then notify another ticker.
if notified {
drop(sleepers);
self.state.notify();
}
}
}
}
/// A worker in a work-stealing executor.
///
/// This is just a ticker that also has an associated local queue for improved cache locality.
struct Runner<'a> {
/// The executor state.
state: &'a State,
/// Inner ticker.
ticker: Ticker<'a>,
/// The local queue.
local: Arc<ConcurrentQueue<Runnable>>,
/// Bumped every time a runnable task is found.
ticks: usize,
}
impl Runner<'_> {
/// Creates a runner and registers it in the executor state.
fn new(state: &State) -> Runner<'_> {
let runner = Runner {
state,
ticker: Ticker::new(state),
local: Arc::new(ConcurrentQueue::bounded(512)),
ticks: 0,
};
state
.local_queues
.write()
.unwrap()
.push(runner.local.clone());
runner
}
/// Waits for the next runnable task to run.
async fn runnable(&mut self, rng: &mut fastrand::Rng) -> Runnable {
let runnable = self
.ticker
.runnable_with(|| {
// Try the local queue.
if let Ok(r) = self.local.pop() {
return Some(r);
}
// Try stealing from the global queue.
if let Ok(r) = self.state.queue.pop() {
steal(&self.state.queue, &self.local);
return Some(r);
}
// Try stealing from other runners.
let local_queues = self.state.local_queues.read().unwrap();
// Pick a random starting point in the iterator list and rotate the list.
let n = local_queues.len();
let start = rng.usize(..n);
let iter = local_queues
.iter()
.chain(local_queues.iter())
.skip(start)
.take(n);
// Remove this runner's local queue.
let iter = iter.filter(|local| !Arc::ptr_eq(local, &self.local));
// Try stealing from each local queue in the list.
for local in iter {
steal(local, &self.local);
if let Ok(r) = self.local.pop() {
return Some(r);
}
}
None
})
.await;
// Bump the tick counter.
self.ticks = self.ticks.wrapping_add(1);
if self.ticks % 64 == 0 {
// Steal tasks from the global queue to ensure fair task scheduling.
steal(&self.state.queue, &self.local);
}
runnable
}
}
impl Drop for Runner<'_> {
fn drop(&mut self) {
// Remove the local queue.
self.state
.local_queues
.write()
.unwrap()
.retain(|local| !Arc::ptr_eq(local, &self.local));
// Re-schedule remaining tasks in the local queue.
while let Ok(r) = self.local.pop() {
r.schedule();
}
}
}
/// Steals some items from one queue into another.
fn steal<T>(src: &ConcurrentQueue<T>, dest: &ConcurrentQueue<T>) {
// Half of `src`'s length rounded up.
let mut count = (src.len() + 1) / 2;
if count > 0 {
// Don't steal more than fits into the queue.
if let Some(cap) = dest.capacity() {
count = count.min(cap - dest.len());
}
// Steal tasks.
for _ in 0..count {
if let Ok(t) = src.pop() {
assert!(dest.push(t).is_ok());
} else {
break;
}
}
}
}
/// Debug implementation for `Executor` and `LocalExecutor`.
fn debug_executor(executor: &Executor<'_>, name: &str, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// Get a reference to the state.
let ptr = executor.state.load(Ordering::Acquire);
if ptr.is_null() {
// The executor has not been initialized.
struct Uninitialized;
impl fmt::Debug for Uninitialized {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("<uninitialized>")
}
}
return f.debug_tuple(name).field(&Uninitialized).finish();
}
// SAFETY: If the state pointer is not null, it must have been
// allocated properly by Arc::new and converted via Arc::into_raw
// in state_ptr.
let state = unsafe { &*ptr };
debug_state(state, name, f)
}
/// Debug implementation for `Executor` and `LocalExecutor`.
fn debug_state(state: &State, name: &str, f: &mut fmt::Formatter<'_>) -> fmt::Result {
/// Debug wrapper for the number of active tasks.
struct ActiveTasks<'a>(&'a Mutex<Slab<Waker>>);
impl fmt::Debug for ActiveTasks<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.0.try_lock() {
Ok(lock) => fmt::Debug::fmt(&lock.len(), f),
Err(TryLockError::WouldBlock) => f.write_str("<locked>"),
Err(TryLockError::Poisoned(_)) => f.write_str("<poisoned>"),
}
}
}
/// Debug wrapper for the local runners.
struct LocalRunners<'a>(&'a RwLock<Vec<Arc<ConcurrentQueue<Runnable>>>>);
impl fmt::Debug for LocalRunners<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.0.try_read() {
Ok(lock) => f
.debug_list()
.entries(lock.iter().map(|queue| queue.len()))
.finish(),
Err(TryLockError::WouldBlock) => f.write_str("<locked>"),
Err(TryLockError::Poisoned(_)) => f.write_str("<poisoned>"),
}
}
}
/// Debug wrapper for the sleepers.
struct SleepCount<'a>(&'a Mutex<Sleepers>);
impl fmt::Debug for SleepCount<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.0.try_lock() {
Ok(lock) => fmt::Debug::fmt(&lock.count, f),
Err(TryLockError::WouldBlock) => f.write_str("<locked>"),
Err(TryLockError::Poisoned(_)) => f.write_str("<poisoned>"),
}
}
}
f.debug_struct(name)
.field("active", &ActiveTasks(&state.active))
.field("global_tasks", &state.queue.len())
.field("local_runners", &LocalRunners(&state.local_queues))
.field("sleepers", &SleepCount(&state.sleepers))
.finish()
}
/// Runs a closure when dropped.
struct CallOnDrop<F: FnMut()>(F);
impl<F: FnMut()> Drop for CallOnDrop<F> {
fn drop(&mut self) {
(self.0)();
}
}
fn _ensure_send_and_sync() {
use futures_lite::future::pending;
fn is_send<T: Send>(_: T) {}
fn is_sync<T: Sync>(_: T) {}
fn is_static<T: 'static>(_: T) {}
is_send::<Executor<'_>>(Executor::new());
is_sync::<Executor<'_>>(Executor::new());
let ex = Executor::new();
is_send(ex.run(pending::<()>()));
is_sync(ex.run(pending::<()>()));
is_send(ex.tick());
is_sync(ex.tick());
is_send(ex.schedule());
is_sync(ex.schedule());
is_static(ex.schedule());
/// ```compile_fail
/// use async_executor::LocalExecutor;
/// use futures_lite::future::pending;
///
/// fn is_send<T: Send>(_: T) {}
/// fn is_sync<T: Sync>(_: T) {}
///
/// is_send::<LocalExecutor<'_>>(LocalExecutor::new());
/// is_sync::<LocalExecutor<'_>>(LocalExecutor::new());
///
/// let ex = LocalExecutor::new();
/// is_send(ex.run(pending::<()>()));
/// is_sync(ex.run(pending::<()>()));
/// is_send(ex.tick());
/// is_sync(ex.tick());
/// ```
fn _negative_test() {}
}