async_executor/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
//! Async executors.
//!
//! This crate provides two reference executors that trade performance for
//! functionality. They should be considered reference executors that are "good
//! enough" for most use cases. For more specialized use cases, consider writing
//! your own executor on top of [`async-task`].
//!
//! [`async-task`]: https://crates.io/crates/async-task
//!
//! # Examples
//!
//! ```
//! use async_executor::Executor;
//! use futures_lite::future;
//!
//! // Create a new executor.
//! let ex = Executor::new();
//!
//! // Spawn a task.
//! let task = ex.spawn(async {
//!     println!("Hello world");
//! });
//!
//! // Run the executor until the task completes.
//! future::block_on(ex.run(task));
//! ```

#![warn(
    missing_docs,
    missing_debug_implementations,
    rust_2018_idioms,
    clippy::undocumented_unsafe_blocks
)]
#![doc(
    html_favicon_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]
#![doc(
    html_logo_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]
#![cfg_attr(docsrs, feature(doc_cfg, doc_auto_cfg))]

use std::fmt;
use std::marker::PhantomData;
use std::panic::{RefUnwindSafe, UnwindSafe};
use std::rc::Rc;
use std::sync::atomic::{AtomicBool, AtomicPtr, Ordering};
use std::sync::{Arc, Mutex, RwLock, TryLockError};
use std::task::{Poll, Waker};

use async_task::{Builder, Runnable};
use concurrent_queue::ConcurrentQueue;
use futures_lite::{future, prelude::*};
use slab::Slab;

#[cfg(feature = "static")]
mod static_executors;

#[doc(no_inline)]
pub use async_task::{FallibleTask, Task};
#[cfg(feature = "static")]
#[cfg_attr(docsrs, doc(cfg(any(feature = "static"))))]
pub use static_executors::*;

/// An async executor.
///
/// # Examples
///
/// A multi-threaded executor:
///
/// ```
/// use async_channel::unbounded;
/// use async_executor::Executor;
/// use easy_parallel::Parallel;
/// use futures_lite::future;
///
/// let ex = Executor::new();
/// let (signal, shutdown) = unbounded::<()>();
///
/// Parallel::new()
///     // Run four executor threads.
///     .each(0..4, |_| future::block_on(ex.run(shutdown.recv())))
///     // Run the main future on the current thread.
///     .finish(|| future::block_on(async {
///         println!("Hello world!");
///         drop(signal);
///     }));
/// ```
pub struct Executor<'a> {
    /// The executor state.
    state: AtomicPtr<State>,

    /// Makes the `'a` lifetime invariant.
    _marker: PhantomData<std::cell::UnsafeCell<&'a ()>>,
}

// SAFETY: Executor stores no thread local state that can be accessed via other thread.
unsafe impl Send for Executor<'_> {}
// SAFETY: Executor internally synchronizes all of it's operations internally.
unsafe impl Sync for Executor<'_> {}

impl UnwindSafe for Executor<'_> {}
impl RefUnwindSafe for Executor<'_> {}

impl fmt::Debug for Executor<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        debug_executor(self, "Executor", f)
    }
}

impl<'a> Executor<'a> {
    /// Creates a new executor.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_executor::Executor;
    ///
    /// let ex = Executor::new();
    /// ```
    pub const fn new() -> Executor<'a> {
        Executor {
            state: AtomicPtr::new(std::ptr::null_mut()),
            _marker: PhantomData,
        }
    }

    /// Returns `true` if there are no unfinished tasks.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_executor::Executor;
    ///
    /// let ex = Executor::new();
    /// assert!(ex.is_empty());
    ///
    /// let task = ex.spawn(async {
    ///     println!("Hello world");
    /// });
    /// assert!(!ex.is_empty());
    ///
    /// assert!(ex.try_tick());
    /// assert!(ex.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.state().active.lock().unwrap().is_empty()
    }

    /// Spawns a task onto the executor.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_executor::Executor;
    ///
    /// let ex = Executor::new();
    ///
    /// let task = ex.spawn(async {
    ///     println!("Hello world");
    /// });
    /// ```
    pub fn spawn<T: Send + 'a>(&self, future: impl Future<Output = T> + Send + 'a) -> Task<T> {
        let mut active = self.state().active.lock().unwrap();

        // SAFETY: `T` and the future are `Send`.
        unsafe { self.spawn_inner(future, &mut active) }
    }

    /// Spawns many tasks onto the executor.
    ///
    /// As opposed to the [`spawn`] method, this locks the executor's inner task lock once and
    /// spawns all of the tasks in one go. With large amounts of tasks this can improve
    /// contention.
    ///
    /// For very large numbers of tasks the lock is occasionally dropped and re-acquired to
    /// prevent runner thread starvation. It is assumed that the iterator provided does not
    /// block; blocking iterators can lock up the internal mutex and therefore the entire
    /// executor.
    ///
    /// ## Example
    ///
    /// ```
    /// use async_executor::Executor;
    /// use futures_lite::{stream, prelude::*};
    /// use std::future::ready;
    ///
    /// # futures_lite::future::block_on(async {
    /// let mut ex = Executor::new();
    ///
    /// let futures = [
    ///     ready(1),
    ///     ready(2),
    ///     ready(3)
    /// ];
    ///
    /// // Spawn all of the futures onto the executor at once.
    /// let mut tasks = vec![];
    /// ex.spawn_many(futures, &mut tasks);
    ///
    /// // Await all of them.
    /// let results = ex.run(async move {
    ///     stream::iter(tasks).then(|x| x).collect::<Vec<_>>().await
    /// }).await;
    /// assert_eq!(results, [1, 2, 3]);
    /// # });
    /// ```
    ///
    /// [`spawn`]: Executor::spawn
    pub fn spawn_many<T: Send + 'a, F: Future<Output = T> + Send + 'a>(
        &self,
        futures: impl IntoIterator<Item = F>,
        handles: &mut impl Extend<Task<F::Output>>,
    ) {
        let mut active = Some(self.state().active.lock().unwrap());

        // Convert the futures into tasks.
        let tasks = futures.into_iter().enumerate().map(move |(i, future)| {
            // SAFETY: `T` and the future are `Send`.
            let task = unsafe { self.spawn_inner(future, active.as_mut().unwrap()) };

            // Yield the lock every once in a while to ease contention.
            if i.wrapping_sub(1) % 500 == 0 {
                drop(active.take());
                active = Some(self.state().active.lock().unwrap());
            }

            task
        });

        // Push the tasks to the user's collection.
        handles.extend(tasks);
    }

    /// Spawn a future while holding the inner lock.
    ///
    /// # Safety
    ///
    /// If this is an `Executor`, `F` and `T` must be `Send`.
    unsafe fn spawn_inner<T: 'a>(
        &self,
        future: impl Future<Output = T> + 'a,
        active: &mut Slab<Waker>,
    ) -> Task<T> {
        // Remove the task from the set of active tasks when the future finishes.
        let entry = active.vacant_entry();
        let index = entry.key();
        let state = self.state_as_arc();
        let future = async move {
            let _guard = CallOnDrop(move || drop(state.active.lock().unwrap().try_remove(index)));
            future.await
        };

        // Create the task and register it in the set of active tasks.
        //
        // SAFETY:
        //
        // If `future` is not `Send`, this must be a `LocalExecutor` as per this
        // function's unsafe precondition. Since `LocalExecutor` is `!Sync`,
        // `try_tick`, `tick` and `run` can only be called from the origin
        // thread of the `LocalExecutor`. Similarly, `spawn` can only  be called
        // from the origin thread, ensuring that `future` and the executor share
        // the same origin thread. The `Runnable` can be scheduled from other
        // threads, but because of the above `Runnable` can only be called or
        // dropped on the origin thread.
        //
        // `future` is not `'static`, but we make sure that the `Runnable` does
        // not outlive `'a`. When the executor is dropped, the `active` field is
        // drained and all of the `Waker`s are woken. Then, the queue inside of
        // the `Executor` is drained of all of its runnables. This ensures that
        // runnables are dropped and this precondition is satisfied.
        //
        // `self.schedule()` is `Send`, `Sync` and `'static`, as checked below.
        // Therefore we do not need to worry about what is done with the
        // `Waker`.
        let (runnable, task) = Builder::new()
            .propagate_panic(true)
            .spawn_unchecked(|()| future, self.schedule());
        entry.insert(runnable.waker());

        runnable.schedule();
        task
    }

    /// Attempts to run a task if at least one is scheduled.
    ///
    /// Running a scheduled task means simply polling its future once.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_executor::Executor;
    ///
    /// let ex = Executor::new();
    /// assert!(!ex.try_tick()); // no tasks to run
    ///
    /// let task = ex.spawn(async {
    ///     println!("Hello world");
    /// });
    /// assert!(ex.try_tick()); // a task was found
    /// ```
    pub fn try_tick(&self) -> bool {
        self.state().try_tick()
    }

    /// Runs a single task.
    ///
    /// Running a task means simply polling its future once.
    ///
    /// If no tasks are scheduled when this method is called, it will wait until one is scheduled.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_executor::Executor;
    /// use futures_lite::future;
    ///
    /// let ex = Executor::new();
    ///
    /// let task = ex.spawn(async {
    ///     println!("Hello world");
    /// });
    /// future::block_on(ex.tick()); // runs the task
    /// ```
    pub async fn tick(&self) {
        self.state().tick().await;
    }

    /// Runs the executor until the given future completes.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_executor::Executor;
    /// use futures_lite::future;
    ///
    /// let ex = Executor::new();
    ///
    /// let task = ex.spawn(async { 1 + 2 });
    /// let res = future::block_on(ex.run(async { task.await * 2 }));
    ///
    /// assert_eq!(res, 6);
    /// ```
    pub async fn run<T>(&self, future: impl Future<Output = T>) -> T {
        self.state().run(future).await
    }

    /// Returns a function that schedules a runnable task when it gets woken up.
    fn schedule(&self) -> impl Fn(Runnable) + Send + Sync + 'static {
        let state = self.state_as_arc();

        // TODO: If possible, push into the current local queue and notify the ticker.
        move |runnable| {
            state.queue.push(runnable).unwrap();
            state.notify();
        }
    }

    /// Returns a pointer to the inner state.
    #[inline]
    fn state_ptr(&self) -> *const State {
        #[cold]
        fn alloc_state(atomic_ptr: &AtomicPtr<State>) -> *mut State {
            let state = Arc::new(State::new());
            // TODO: Switch this to use cast_mut once the MSRV can be bumped past 1.65
            let ptr = Arc::into_raw(state) as *mut State;
            if let Err(actual) = atomic_ptr.compare_exchange(
                std::ptr::null_mut(),
                ptr,
                Ordering::AcqRel,
                Ordering::Acquire,
            ) {
                // SAFETY: This was just created from Arc::into_raw.
                drop(unsafe { Arc::from_raw(ptr) });
                actual
            } else {
                ptr
            }
        }

        let mut ptr = self.state.load(Ordering::Acquire);
        if ptr.is_null() {
            ptr = alloc_state(&self.state);
        }
        ptr
    }

    /// Returns a reference to the inner state.
    #[inline]
    fn state(&self) -> &State {
        // SAFETY: So long as an Executor lives, it's state pointer will always be valid
        // when accessed through state_ptr.
        unsafe { &*self.state_ptr() }
    }

    // Clones the inner state Arc
    #[inline]
    fn state_as_arc(&self) -> Arc<State> {
        // SAFETY: So long as an Executor lives, it's state pointer will always be a valid
        // Arc when accessed through state_ptr.
        let arc = unsafe { Arc::from_raw(self.state_ptr()) };
        let clone = arc.clone();
        std::mem::forget(arc);
        clone
    }
}

impl Drop for Executor<'_> {
    fn drop(&mut self) {
        let ptr = *self.state.get_mut();
        if ptr.is_null() {
            return;
        }

        // SAFETY: As ptr is not null, it was allocated via Arc::new and converted
        // via Arc::into_raw in state_ptr.
        let state = unsafe { Arc::from_raw(ptr) };

        let mut active = state.active.lock().unwrap_or_else(|e| e.into_inner());
        for w in active.drain() {
            w.wake();
        }
        drop(active);

        while state.queue.pop().is_ok() {}
    }
}

impl<'a> Default for Executor<'a> {
    fn default() -> Executor<'a> {
        Executor::new()
    }
}

/// A thread-local executor.
///
/// The executor can only be run on the thread that created it.
///
/// # Examples
///
/// ```
/// use async_executor::LocalExecutor;
/// use futures_lite::future;
///
/// let local_ex = LocalExecutor::new();
///
/// future::block_on(local_ex.run(async {
///     println!("Hello world!");
/// }));
/// ```
pub struct LocalExecutor<'a> {
    /// The inner executor.
    inner: Executor<'a>,

    /// Makes the type `!Send` and `!Sync`.
    _marker: PhantomData<Rc<()>>,
}

impl UnwindSafe for LocalExecutor<'_> {}
impl RefUnwindSafe for LocalExecutor<'_> {}

impl fmt::Debug for LocalExecutor<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        debug_executor(&self.inner, "LocalExecutor", f)
    }
}

impl<'a> LocalExecutor<'a> {
    /// Creates a single-threaded executor.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_executor::LocalExecutor;
    ///
    /// let local_ex = LocalExecutor::new();
    /// ```
    pub const fn new() -> LocalExecutor<'a> {
        LocalExecutor {
            inner: Executor::new(),
            _marker: PhantomData,
        }
    }

    /// Returns `true` if there are no unfinished tasks.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_executor::LocalExecutor;
    ///
    /// let local_ex = LocalExecutor::new();
    /// assert!(local_ex.is_empty());
    ///
    /// let task = local_ex.spawn(async {
    ///     println!("Hello world");
    /// });
    /// assert!(!local_ex.is_empty());
    ///
    /// assert!(local_ex.try_tick());
    /// assert!(local_ex.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.inner().is_empty()
    }

    /// Spawns a task onto the executor.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_executor::LocalExecutor;
    ///
    /// let local_ex = LocalExecutor::new();
    ///
    /// let task = local_ex.spawn(async {
    ///     println!("Hello world");
    /// });
    /// ```
    pub fn spawn<T: 'a>(&self, future: impl Future<Output = T> + 'a) -> Task<T> {
        let mut active = self.inner().state().active.lock().unwrap();

        // SAFETY: This executor is not thread safe, so the future and its result
        //         cannot be sent to another thread.
        unsafe { self.inner().spawn_inner(future, &mut active) }
    }

    /// Spawns many tasks onto the executor.
    ///
    /// As opposed to the [`spawn`] method, this locks the executor's inner task lock once and
    /// spawns all of the tasks in one go. With large amounts of tasks this can improve
    /// contention.
    ///
    /// It is assumed that the iterator provided does not block; blocking iterators can lock up
    /// the internal mutex and therefore the entire executor. Unlike [`Executor::spawn`], the
    /// mutex is not released, as there are no other threads that can poll this executor.
    ///
    /// ## Example
    ///
    /// ```
    /// use async_executor::LocalExecutor;
    /// use futures_lite::{stream, prelude::*};
    /// use std::future::ready;
    ///
    /// # futures_lite::future::block_on(async {
    /// let mut ex = LocalExecutor::new();
    ///
    /// let futures = [
    ///     ready(1),
    ///     ready(2),
    ///     ready(3)
    /// ];
    ///
    /// // Spawn all of the futures onto the executor at once.
    /// let mut tasks = vec![];
    /// ex.spawn_many(futures, &mut tasks);
    ///
    /// // Await all of them.
    /// let results = ex.run(async move {
    ///     stream::iter(tasks).then(|x| x).collect::<Vec<_>>().await
    /// }).await;
    /// assert_eq!(results, [1, 2, 3]);
    /// # });
    /// ```
    ///
    /// [`spawn`]: LocalExecutor::spawn
    /// [`Executor::spawn_many`]: Executor::spawn_many
    pub fn spawn_many<T: 'a, F: Future<Output = T> + 'a>(
        &self,
        futures: impl IntoIterator<Item = F>,
        handles: &mut impl Extend<Task<F::Output>>,
    ) {
        let mut active = self.inner().state().active.lock().unwrap();

        // Convert all of the futures to tasks.
        let tasks = futures.into_iter().map(|future| {
            // SAFETY: This executor is not thread safe, so the future and its result
            //         cannot be sent to another thread.
            unsafe { self.inner().spawn_inner(future, &mut active) }

            // As only one thread can spawn or poll tasks at a time, there is no need
            // to release lock contention here.
        });

        // Push them to the user's collection.
        handles.extend(tasks);
    }

    /// Attempts to run a task if at least one is scheduled.
    ///
    /// Running a scheduled task means simply polling its future once.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_executor::LocalExecutor;
    ///
    /// let ex = LocalExecutor::new();
    /// assert!(!ex.try_tick()); // no tasks to run
    ///
    /// let task = ex.spawn(async {
    ///     println!("Hello world");
    /// });
    /// assert!(ex.try_tick()); // a task was found
    /// ```
    pub fn try_tick(&self) -> bool {
        self.inner().try_tick()
    }

    /// Runs a single task.
    ///
    /// Running a task means simply polling its future once.
    ///
    /// If no tasks are scheduled when this method is called, it will wait until one is scheduled.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_executor::LocalExecutor;
    /// use futures_lite::future;
    ///
    /// let ex = LocalExecutor::new();
    ///
    /// let task = ex.spawn(async {
    ///     println!("Hello world");
    /// });
    /// future::block_on(ex.tick()); // runs the task
    /// ```
    pub async fn tick(&self) {
        self.inner().tick().await
    }

    /// Runs the executor until the given future completes.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_executor::LocalExecutor;
    /// use futures_lite::future;
    ///
    /// let local_ex = LocalExecutor::new();
    ///
    /// let task = local_ex.spawn(async { 1 + 2 });
    /// let res = future::block_on(local_ex.run(async { task.await * 2 }));
    ///
    /// assert_eq!(res, 6);
    /// ```
    pub async fn run<T>(&self, future: impl Future<Output = T>) -> T {
        self.inner().run(future).await
    }

    /// Returns a reference to the inner executor.
    fn inner(&self) -> &Executor<'a> {
        &self.inner
    }
}

impl<'a> Default for LocalExecutor<'a> {
    fn default() -> LocalExecutor<'a> {
        LocalExecutor::new()
    }
}

/// The state of a executor.
struct State {
    /// The global queue.
    queue: ConcurrentQueue<Runnable>,

    /// Local queues created by runners.
    local_queues: RwLock<Vec<Arc<ConcurrentQueue<Runnable>>>>,

    /// Set to `true` when a sleeping ticker is notified or no tickers are sleeping.
    notified: AtomicBool,

    /// A list of sleeping tickers.
    sleepers: Mutex<Sleepers>,

    /// Currently active tasks.
    active: Mutex<Slab<Waker>>,
}

impl State {
    /// Creates state for a new executor.
    const fn new() -> State {
        State {
            queue: ConcurrentQueue::unbounded(),
            local_queues: RwLock::new(Vec::new()),
            notified: AtomicBool::new(true),
            sleepers: Mutex::new(Sleepers {
                count: 0,
                wakers: Vec::new(),
                free_ids: Vec::new(),
            }),
            active: Mutex::new(Slab::new()),
        }
    }

    /// Notifies a sleeping ticker.
    #[inline]
    fn notify(&self) {
        if self
            .notified
            .compare_exchange(false, true, Ordering::AcqRel, Ordering::Acquire)
            .is_ok()
        {
            let waker = self.sleepers.lock().unwrap().notify();
            if let Some(w) = waker {
                w.wake();
            }
        }
    }

    pub(crate) fn try_tick(&self) -> bool {
        match self.queue.pop() {
            Err(_) => false,
            Ok(runnable) => {
                // Notify another ticker now to pick up where this ticker left off, just in case
                // running the task takes a long time.
                self.notify();

                // Run the task.
                runnable.run();
                true
            }
        }
    }

    pub(crate) async fn tick(&self) {
        let runnable = Ticker::new(self).runnable().await;
        runnable.run();
    }

    pub async fn run<T>(&self, future: impl Future<Output = T>) -> T {
        let mut runner = Runner::new(self);
        let mut rng = fastrand::Rng::new();

        // A future that runs tasks forever.
        let run_forever = async {
            loop {
                for _ in 0..200 {
                    let runnable = runner.runnable(&mut rng).await;
                    runnable.run();
                }
                future::yield_now().await;
            }
        };

        // Run `future` and `run_forever` concurrently until `future` completes.
        future.or(run_forever).await
    }
}

/// A list of sleeping tickers.
struct Sleepers {
    /// Number of sleeping tickers (both notified and unnotified).
    count: usize,

    /// IDs and wakers of sleeping unnotified tickers.
    ///
    /// A sleeping ticker is notified when its waker is missing from this list.
    wakers: Vec<(usize, Waker)>,

    /// Reclaimed IDs.
    free_ids: Vec<usize>,
}

impl Sleepers {
    /// Inserts a new sleeping ticker.
    fn insert(&mut self, waker: &Waker) -> usize {
        let id = match self.free_ids.pop() {
            Some(id) => id,
            None => self.count + 1,
        };
        self.count += 1;
        self.wakers.push((id, waker.clone()));
        id
    }

    /// Re-inserts a sleeping ticker's waker if it was notified.
    ///
    /// Returns `true` if the ticker was notified.
    fn update(&mut self, id: usize, waker: &Waker) -> bool {
        for item in &mut self.wakers {
            if item.0 == id {
                item.1.clone_from(waker);
                return false;
            }
        }

        self.wakers.push((id, waker.clone()));
        true
    }

    /// Removes a previously inserted sleeping ticker.
    ///
    /// Returns `true` if the ticker was notified.
    fn remove(&mut self, id: usize) -> bool {
        self.count -= 1;
        self.free_ids.push(id);

        for i in (0..self.wakers.len()).rev() {
            if self.wakers[i].0 == id {
                self.wakers.remove(i);
                return false;
            }
        }
        true
    }

    /// Returns `true` if a sleeping ticker is notified or no tickers are sleeping.
    fn is_notified(&self) -> bool {
        self.count == 0 || self.count > self.wakers.len()
    }

    /// Returns notification waker for a sleeping ticker.
    ///
    /// If a ticker was notified already or there are no tickers, `None` will be returned.
    fn notify(&mut self) -> Option<Waker> {
        if self.wakers.len() == self.count {
            self.wakers.pop().map(|item| item.1)
        } else {
            None
        }
    }
}

/// Runs task one by one.
struct Ticker<'a> {
    /// The executor state.
    state: &'a State,

    /// Set to a non-zero sleeper ID when in sleeping state.
    ///
    /// States a ticker can be in:
    /// 1) Woken.
    ///    2a) Sleeping and unnotified.
    ///    2b) Sleeping and notified.
    sleeping: usize,
}

impl Ticker<'_> {
    /// Creates a ticker.
    fn new(state: &State) -> Ticker<'_> {
        Ticker { state, sleeping: 0 }
    }

    /// Moves the ticker into sleeping and unnotified state.
    ///
    /// Returns `false` if the ticker was already sleeping and unnotified.
    fn sleep(&mut self, waker: &Waker) -> bool {
        let mut sleepers = self.state.sleepers.lock().unwrap();

        match self.sleeping {
            // Move to sleeping state.
            0 => {
                self.sleeping = sleepers.insert(waker);
            }

            // Already sleeping, check if notified.
            id => {
                if !sleepers.update(id, waker) {
                    return false;
                }
            }
        }

        self.state
            .notified
            .store(sleepers.is_notified(), Ordering::Release);

        true
    }

    /// Moves the ticker into woken state.
    fn wake(&mut self) {
        if self.sleeping != 0 {
            let mut sleepers = self.state.sleepers.lock().unwrap();
            sleepers.remove(self.sleeping);

            self.state
                .notified
                .store(sleepers.is_notified(), Ordering::Release);
        }
        self.sleeping = 0;
    }

    /// Waits for the next runnable task to run.
    async fn runnable(&mut self) -> Runnable {
        self.runnable_with(|| self.state.queue.pop().ok()).await
    }

    /// Waits for the next runnable task to run, given a function that searches for a task.
    async fn runnable_with(&mut self, mut search: impl FnMut() -> Option<Runnable>) -> Runnable {
        future::poll_fn(|cx| {
            loop {
                match search() {
                    None => {
                        // Move to sleeping and unnotified state.
                        if !self.sleep(cx.waker()) {
                            // If already sleeping and unnotified, return.
                            return Poll::Pending;
                        }
                    }
                    Some(r) => {
                        // Wake up.
                        self.wake();

                        // Notify another ticker now to pick up where this ticker left off, just in
                        // case running the task takes a long time.
                        self.state.notify();

                        return Poll::Ready(r);
                    }
                }
            }
        })
        .await
    }
}

impl Drop for Ticker<'_> {
    fn drop(&mut self) {
        // If this ticker is in sleeping state, it must be removed from the sleepers list.
        if self.sleeping != 0 {
            let mut sleepers = self.state.sleepers.lock().unwrap();
            let notified = sleepers.remove(self.sleeping);

            self.state
                .notified
                .store(sleepers.is_notified(), Ordering::Release);

            // If this ticker was notified, then notify another ticker.
            if notified {
                drop(sleepers);
                self.state.notify();
            }
        }
    }
}

/// A worker in a work-stealing executor.
///
/// This is just a ticker that also has an associated local queue for improved cache locality.
struct Runner<'a> {
    /// The executor state.
    state: &'a State,

    /// Inner ticker.
    ticker: Ticker<'a>,

    /// The local queue.
    local: Arc<ConcurrentQueue<Runnable>>,

    /// Bumped every time a runnable task is found.
    ticks: usize,
}

impl Runner<'_> {
    /// Creates a runner and registers it in the executor state.
    fn new(state: &State) -> Runner<'_> {
        let runner = Runner {
            state,
            ticker: Ticker::new(state),
            local: Arc::new(ConcurrentQueue::bounded(512)),
            ticks: 0,
        };
        state
            .local_queues
            .write()
            .unwrap()
            .push(runner.local.clone());
        runner
    }

    /// Waits for the next runnable task to run.
    async fn runnable(&mut self, rng: &mut fastrand::Rng) -> Runnable {
        let runnable = self
            .ticker
            .runnable_with(|| {
                // Try the local queue.
                if let Ok(r) = self.local.pop() {
                    return Some(r);
                }

                // Try stealing from the global queue.
                if let Ok(r) = self.state.queue.pop() {
                    steal(&self.state.queue, &self.local);
                    return Some(r);
                }

                // Try stealing from other runners.
                let local_queues = self.state.local_queues.read().unwrap();

                // Pick a random starting point in the iterator list and rotate the list.
                let n = local_queues.len();
                let start = rng.usize(..n);
                let iter = local_queues
                    .iter()
                    .chain(local_queues.iter())
                    .skip(start)
                    .take(n);

                // Remove this runner's local queue.
                let iter = iter.filter(|local| !Arc::ptr_eq(local, &self.local));

                // Try stealing from each local queue in the list.
                for local in iter {
                    steal(local, &self.local);
                    if let Ok(r) = self.local.pop() {
                        return Some(r);
                    }
                }

                None
            })
            .await;

        // Bump the tick counter.
        self.ticks = self.ticks.wrapping_add(1);

        if self.ticks % 64 == 0 {
            // Steal tasks from the global queue to ensure fair task scheduling.
            steal(&self.state.queue, &self.local);
        }

        runnable
    }
}

impl Drop for Runner<'_> {
    fn drop(&mut self) {
        // Remove the local queue.
        self.state
            .local_queues
            .write()
            .unwrap()
            .retain(|local| !Arc::ptr_eq(local, &self.local));

        // Re-schedule remaining tasks in the local queue.
        while let Ok(r) = self.local.pop() {
            r.schedule();
        }
    }
}

/// Steals some items from one queue into another.
fn steal<T>(src: &ConcurrentQueue<T>, dest: &ConcurrentQueue<T>) {
    // Half of `src`'s length rounded up.
    let mut count = (src.len() + 1) / 2;

    if count > 0 {
        // Don't steal more than fits into the queue.
        if let Some(cap) = dest.capacity() {
            count = count.min(cap - dest.len());
        }

        // Steal tasks.
        for _ in 0..count {
            if let Ok(t) = src.pop() {
                assert!(dest.push(t).is_ok());
            } else {
                break;
            }
        }
    }
}

/// Debug implementation for `Executor` and `LocalExecutor`.
fn debug_executor(executor: &Executor<'_>, name: &str, f: &mut fmt::Formatter<'_>) -> fmt::Result {
    // Get a reference to the state.
    let ptr = executor.state.load(Ordering::Acquire);
    if ptr.is_null() {
        // The executor has not been initialized.
        struct Uninitialized;

        impl fmt::Debug for Uninitialized {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                f.write_str("<uninitialized>")
            }
        }

        return f.debug_tuple(name).field(&Uninitialized).finish();
    }

    // SAFETY: If the state pointer is not null, it must have been
    // allocated properly by Arc::new and converted via Arc::into_raw
    // in state_ptr.
    let state = unsafe { &*ptr };

    debug_state(state, name, f)
}

/// Debug implementation for `Executor` and `LocalExecutor`.
fn debug_state(state: &State, name: &str, f: &mut fmt::Formatter<'_>) -> fmt::Result {
    /// Debug wrapper for the number of active tasks.
    struct ActiveTasks<'a>(&'a Mutex<Slab<Waker>>);

    impl fmt::Debug for ActiveTasks<'_> {
        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
            match self.0.try_lock() {
                Ok(lock) => fmt::Debug::fmt(&lock.len(), f),
                Err(TryLockError::WouldBlock) => f.write_str("<locked>"),
                Err(TryLockError::Poisoned(_)) => f.write_str("<poisoned>"),
            }
        }
    }

    /// Debug wrapper for the local runners.
    struct LocalRunners<'a>(&'a RwLock<Vec<Arc<ConcurrentQueue<Runnable>>>>);

    impl fmt::Debug for LocalRunners<'_> {
        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
            match self.0.try_read() {
                Ok(lock) => f
                    .debug_list()
                    .entries(lock.iter().map(|queue| queue.len()))
                    .finish(),
                Err(TryLockError::WouldBlock) => f.write_str("<locked>"),
                Err(TryLockError::Poisoned(_)) => f.write_str("<poisoned>"),
            }
        }
    }

    /// Debug wrapper for the sleepers.
    struct SleepCount<'a>(&'a Mutex<Sleepers>);

    impl fmt::Debug for SleepCount<'_> {
        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
            match self.0.try_lock() {
                Ok(lock) => fmt::Debug::fmt(&lock.count, f),
                Err(TryLockError::WouldBlock) => f.write_str("<locked>"),
                Err(TryLockError::Poisoned(_)) => f.write_str("<poisoned>"),
            }
        }
    }

    f.debug_struct(name)
        .field("active", &ActiveTasks(&state.active))
        .field("global_tasks", &state.queue.len())
        .field("local_runners", &LocalRunners(&state.local_queues))
        .field("sleepers", &SleepCount(&state.sleepers))
        .finish()
}

/// Runs a closure when dropped.
struct CallOnDrop<F: FnMut()>(F);

impl<F: FnMut()> Drop for CallOnDrop<F> {
    fn drop(&mut self) {
        (self.0)();
    }
}

fn _ensure_send_and_sync() {
    use futures_lite::future::pending;

    fn is_send<T: Send>(_: T) {}
    fn is_sync<T: Sync>(_: T) {}
    fn is_static<T: 'static>(_: T) {}

    is_send::<Executor<'_>>(Executor::new());
    is_sync::<Executor<'_>>(Executor::new());

    let ex = Executor::new();
    is_send(ex.run(pending::<()>()));
    is_sync(ex.run(pending::<()>()));
    is_send(ex.tick());
    is_sync(ex.tick());
    is_send(ex.schedule());
    is_sync(ex.schedule());
    is_static(ex.schedule());

    /// ```compile_fail
    /// use async_executor::LocalExecutor;
    /// use futures_lite::future::pending;
    ///
    /// fn is_send<T: Send>(_: T) {}
    /// fn is_sync<T: Sync>(_: T) {}
    ///
    /// is_send::<LocalExecutor<'_>>(LocalExecutor::new());
    /// is_sync::<LocalExecutor<'_>>(LocalExecutor::new());
    ///
    /// let ex = LocalExecutor::new();
    /// is_send(ex.run(pending::<()>()));
    /// is_sync(ex.run(pending::<()>()));
    /// is_send(ex.tick());
    /// is_sync(ex.tick());
    /// ```
    fn _negative_test() {}
}