async_task/runnable.rs
1use core::fmt;
2use core::future::Future;
3use core::marker::PhantomData;
4use core::mem;
5use core::ptr::NonNull;
6use core::sync::atomic::Ordering;
7use core::task::Waker;
8
9use alloc::boxed::Box;
10
11use crate::header::Header;
12use crate::raw::RawTask;
13use crate::state::*;
14use crate::Task;
15
16mod sealed {
17 use super::*;
18 pub trait Sealed<M> {}
19
20 impl<M, F> Sealed<M> for F where F: Fn(Runnable<M>) {}
21
22 impl<M, F> Sealed<M> for WithInfo<F> where F: Fn(Runnable<M>, ScheduleInfo) {}
23}
24
25/// A builder that creates a new task.
26#[derive(Debug)]
27pub struct Builder<M> {
28 /// The metadata associated with the task.
29 pub(crate) metadata: M,
30
31 /// Whether or not a panic that occurs in the task should be propagated.
32 #[cfg(feature = "std")]
33 pub(crate) propagate_panic: bool,
34}
35
36impl<M: Default> Default for Builder<M> {
37 fn default() -> Self {
38 Builder::new().metadata(M::default())
39 }
40}
41
42/// Extra scheduling information that can be passed to the scheduling function.
43///
44/// The data source of this struct is directly from the actual implementation
45/// of the crate itself, different from [`Runnable`]'s metadata, which is
46/// managed by the caller.
47///
48/// # Examples
49///
50/// ```
51/// use async_task::{Runnable, ScheduleInfo, WithInfo};
52/// use std::sync::{Arc, Mutex};
53///
54/// // The future inside the task.
55/// let future = async {
56/// println!("Hello, world!");
57/// };
58///
59/// // If the task gets woken up while running, it will be sent into this channel.
60/// let (s, r) = flume::unbounded();
61/// // Otherwise, it will be placed into this slot.
62/// let lifo_slot = Arc::new(Mutex::new(None));
63/// let schedule = move |runnable: Runnable, info: ScheduleInfo| {
64/// if info.woken_while_running {
65/// s.send(runnable).unwrap()
66/// } else {
67/// let last = lifo_slot.lock().unwrap().replace(runnable);
68/// if let Some(last) = last {
69/// s.send(last).unwrap()
70/// }
71/// }
72/// };
73///
74/// // Create the actual scheduler to be spawned with some future.
75/// let scheduler = WithInfo(schedule);
76/// // Create a task with the future and the scheduler.
77/// let (runnable, task) = async_task::spawn(future, scheduler);
78/// ```
79#[derive(Debug, Copy, Clone)]
80#[non_exhaustive]
81pub struct ScheduleInfo {
82 /// Indicates whether the task gets woken up while running.
83 ///
84 /// It is set to true usually because the task has yielded itself to the
85 /// scheduler.
86 pub woken_while_running: bool,
87}
88
89impl ScheduleInfo {
90 pub(crate) fn new(woken_while_running: bool) -> Self {
91 ScheduleInfo {
92 woken_while_running,
93 }
94 }
95}
96
97/// The trait for scheduling functions.
98pub trait Schedule<M = ()>: sealed::Sealed<M> {
99 /// The actual scheduling procedure.
100 fn schedule(&self, runnable: Runnable<M>, info: ScheduleInfo);
101}
102
103impl<M, F> Schedule<M> for F
104where
105 F: Fn(Runnable<M>),
106{
107 fn schedule(&self, runnable: Runnable<M>, _: ScheduleInfo) {
108 self(runnable)
109 }
110}
111
112/// Pass a scheduling function with more scheduling information - a.k.a.
113/// [`ScheduleInfo`].
114///
115/// Sometimes, it's useful to pass the runnable's state directly to the
116/// scheduling function, such as whether it's woken up while running. The
117/// scheduler can thus use the information to determine its scheduling
118/// strategy.
119///
120/// The data source of [`ScheduleInfo`] is directly from the actual
121/// implementation of the crate itself, different from [`Runnable`]'s metadata,
122/// which is managed by the caller.
123///
124/// # Examples
125///
126/// ```
127/// use async_task::{ScheduleInfo, WithInfo};
128/// use std::sync::{Arc, Mutex};
129///
130/// // The future inside the task.
131/// let future = async {
132/// println!("Hello, world!");
133/// };
134///
135/// // If the task gets woken up while running, it will be sent into this channel.
136/// let (s, r) = flume::unbounded();
137/// // Otherwise, it will be placed into this slot.
138/// let lifo_slot = Arc::new(Mutex::new(None));
139/// let schedule = move |runnable, info: ScheduleInfo| {
140/// if info.woken_while_running {
141/// s.send(runnable).unwrap()
142/// } else {
143/// let last = lifo_slot.lock().unwrap().replace(runnable);
144/// if let Some(last) = last {
145/// s.send(last).unwrap()
146/// }
147/// }
148/// };
149///
150/// // Create a task with the future and the schedule function.
151/// let (runnable, task) = async_task::spawn(future, WithInfo(schedule));
152/// ```
153#[derive(Debug)]
154pub struct WithInfo<F>(pub F);
155
156impl<F> From<F> for WithInfo<F> {
157 fn from(value: F) -> Self {
158 WithInfo(value)
159 }
160}
161
162impl<M, F> Schedule<M> for WithInfo<F>
163where
164 F: Fn(Runnable<M>, ScheduleInfo),
165{
166 fn schedule(&self, runnable: Runnable<M>, info: ScheduleInfo) {
167 (self.0)(runnable, info)
168 }
169}
170
171impl Builder<()> {
172 /// Creates a new task builder.
173 ///
174 /// By default, this task builder has no metadata. Use the [`metadata`] method to
175 /// set the metadata.
176 ///
177 /// # Examples
178 ///
179 /// ```
180 /// use async_task::Builder;
181 ///
182 /// let (runnable, task) = Builder::new().spawn(|()| async {}, |_| {});
183 /// ```
184 pub fn new() -> Builder<()> {
185 Builder {
186 metadata: (),
187 #[cfg(feature = "std")]
188 propagate_panic: false,
189 }
190 }
191
192 /// Adds metadata to the task.
193 ///
194 /// In certain cases, it may be useful to associate some metadata with a task. For instance,
195 /// you may want to associate a name with a task, or a priority for a priority queue. This
196 /// method allows the user to attach arbitrary metadata to a task that is available through
197 /// the [`Runnable`] or the [`Task`].
198 ///
199 /// # Examples
200 ///
201 /// This example creates an executor that associates a "priority" number with each task, and
202 /// then runs the tasks in order of priority.
203 ///
204 /// ```
205 /// use async_task::{Builder, Runnable};
206 /// use once_cell::sync::Lazy;
207 /// use std::cmp;
208 /// use std::collections::BinaryHeap;
209 /// use std::sync::Mutex;
210 ///
211 /// # smol::future::block_on(async {
212 /// /// A wrapper around a `Runnable<usize>` that implements `Ord` so that it can be used in a
213 /// /// priority queue.
214 /// struct TaskWrapper(Runnable<usize>);
215 ///
216 /// impl PartialEq for TaskWrapper {
217 /// fn eq(&self, other: &Self) -> bool {
218 /// self.0.metadata() == other.0.metadata()
219 /// }
220 /// }
221 ///
222 /// impl Eq for TaskWrapper {}
223 ///
224 /// impl PartialOrd for TaskWrapper {
225 /// fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
226 /// Some(self.cmp(other))
227 /// }
228 /// }
229 ///
230 /// impl Ord for TaskWrapper {
231 /// fn cmp(&self, other: &Self) -> cmp::Ordering {
232 /// self.0.metadata().cmp(other.0.metadata())
233 /// }
234 /// }
235 ///
236 /// static EXECUTOR: Lazy<Mutex<BinaryHeap<TaskWrapper>>> = Lazy::new(|| {
237 /// Mutex::new(BinaryHeap::new())
238 /// });
239 ///
240 /// let schedule = |runnable| {
241 /// EXECUTOR.lock().unwrap().push(TaskWrapper(runnable));
242 /// };
243 ///
244 /// // Spawn a few tasks with different priorities.
245 /// let spawn_task = move |priority| {
246 /// let (runnable, task) = Builder::new().metadata(priority).spawn(
247 /// move |_| async move { priority },
248 /// schedule,
249 /// );
250 /// runnable.schedule();
251 /// task
252 /// };
253 ///
254 /// let t1 = spawn_task(1);
255 /// let t2 = spawn_task(2);
256 /// let t3 = spawn_task(3);
257 ///
258 /// // Run the tasks in order of priority.
259 /// let mut metadata_seen = vec![];
260 /// while let Some(TaskWrapper(runnable)) = EXECUTOR.lock().unwrap().pop() {
261 /// metadata_seen.push(*runnable.metadata());
262 /// runnable.run();
263 /// }
264 ///
265 /// assert_eq!(metadata_seen, vec![3, 2, 1]);
266 /// assert_eq!(t1.await, 1);
267 /// assert_eq!(t2.await, 2);
268 /// assert_eq!(t3.await, 3);
269 /// # });
270 /// ```
271 pub fn metadata<M>(self, metadata: M) -> Builder<M> {
272 Builder {
273 metadata,
274 #[cfg(feature = "std")]
275 propagate_panic: self.propagate_panic,
276 }
277 }
278}
279
280impl<M> Builder<M> {
281 /// Propagates panics that occur in the task.
282 ///
283 /// When this is `true`, panics that occur in the task will be propagated to the caller of
284 /// the [`Task`]. When this is false, no special action is taken when a panic occurs in the
285 /// task, meaning that the caller of [`Runnable::run`] will observe a panic.
286 ///
287 /// This is only available when the `std` feature is enabled. By default, this is `false`.
288 ///
289 /// # Examples
290 ///
291 /// ```
292 /// use async_task::Builder;
293 /// use futures_lite::future::poll_fn;
294 /// use std::future::Future;
295 /// use std::panic;
296 /// use std::pin::Pin;
297 /// use std::task::{Context, Poll};
298 ///
299 /// fn did_panic<F: FnOnce()>(f: F) -> bool {
300 /// panic::catch_unwind(panic::AssertUnwindSafe(f)).is_err()
301 /// }
302 ///
303 /// # smol::future::block_on(async {
304 /// let (runnable1, mut task1) = Builder::new()
305 /// .propagate_panic(true)
306 /// .spawn(|()| async move { panic!() }, |_| {});
307 ///
308 /// let (runnable2, mut task2) = Builder::new()
309 /// .propagate_panic(false)
310 /// .spawn(|()| async move { panic!() }, |_| {});
311 ///
312 /// assert!(!did_panic(|| { runnable1.run(); }));
313 /// assert!(did_panic(|| { runnable2.run(); }));
314 ///
315 /// let waker = poll_fn(|cx| Poll::Ready(cx.waker().clone())).await;
316 /// let mut cx = Context::from_waker(&waker);
317 /// assert!(did_panic(|| { let _ = Pin::new(&mut task1).poll(&mut cx); }));
318 /// assert!(did_panic(|| { let _ = Pin::new(&mut task2).poll(&mut cx); }));
319 /// # });
320 /// ```
321 #[cfg(feature = "std")]
322 pub fn propagate_panic(self, propagate_panic: bool) -> Builder<M> {
323 Builder {
324 metadata: self.metadata,
325 propagate_panic,
326 }
327 }
328
329 /// Creates a new task.
330 ///
331 /// The returned [`Runnable`] is used to poll the `future`, and the [`Task`] is used to await its
332 /// output.
333 ///
334 /// Method [`run()`][`Runnable::run()`] polls the task's future once. Then, the [`Runnable`]
335 /// vanishes and only reappears when its [`Waker`] wakes the task, thus scheduling it to be run
336 /// again.
337 ///
338 /// When the task is woken, its [`Runnable`] is passed to the `schedule` function.
339 /// The `schedule` function should not attempt to run the [`Runnable`] nor to drop it. Instead, it
340 /// should push it into a task queue so that it can be processed later.
341 ///
342 /// If you need to spawn a future that does not implement [`Send`] or isn't `'static`, consider
343 /// using [`spawn_local()`] or [`spawn_unchecked()`] instead.
344 ///
345 /// # Examples
346 ///
347 /// ```
348 /// use async_task::Builder;
349 ///
350 /// // The future inside the task.
351 /// let future = async {
352 /// println!("Hello, world!");
353 /// };
354 ///
355 /// // A function that schedules the task when it gets woken up.
356 /// let (s, r) = flume::unbounded();
357 /// let schedule = move |runnable| s.send(runnable).unwrap();
358 ///
359 /// // Create a task with the future and the schedule function.
360 /// let (runnable, task) = Builder::new().spawn(|()| future, schedule);
361 /// ```
362 pub fn spawn<F, Fut, S>(self, future: F, schedule: S) -> (Runnable<M>, Task<Fut::Output, M>)
363 where
364 F: FnOnce(&M) -> Fut,
365 Fut: Future + Send + 'static,
366 Fut::Output: Send + 'static,
367 S: Schedule<M> + Send + Sync + 'static,
368 {
369 unsafe { self.spawn_unchecked(future, schedule) }
370 }
371
372 /// Creates a new thread-local task.
373 ///
374 /// This function is same as [`spawn()`], except it does not require [`Send`] on `future`. If the
375 /// [`Runnable`] is used or dropped on another thread, a panic will occur.
376 ///
377 /// This function is only available when the `std` feature for this crate is enabled.
378 ///
379 /// # Examples
380 ///
381 /// ```
382 /// use async_task::{Builder, Runnable};
383 /// use flume::{Receiver, Sender};
384 /// use std::rc::Rc;
385 ///
386 /// thread_local! {
387 /// // A queue that holds scheduled tasks.
388 /// static QUEUE: (Sender<Runnable>, Receiver<Runnable>) = flume::unbounded();
389 /// }
390 ///
391 /// // Make a non-Send future.
392 /// let msg: Rc<str> = "Hello, world!".into();
393 /// let future = async move {
394 /// println!("{}", msg);
395 /// };
396 ///
397 /// // A function that schedules the task when it gets woken up.
398 /// let s = QUEUE.with(|(s, _)| s.clone());
399 /// let schedule = move |runnable| s.send(runnable).unwrap();
400 ///
401 /// // Create a task with the future and the schedule function.
402 /// let (runnable, task) = Builder::new().spawn_local(move |()| future, schedule);
403 /// ```
404 #[cfg(feature = "std")]
405 pub fn spawn_local<F, Fut, S>(
406 self,
407 future: F,
408 schedule: S,
409 ) -> (Runnable<M>, Task<Fut::Output, M>)
410 where
411 F: FnOnce(&M) -> Fut,
412 Fut: Future + 'static,
413 Fut::Output: 'static,
414 S: Schedule<M> + Send + Sync + 'static,
415 {
416 use std::mem::ManuallyDrop;
417 use std::pin::Pin;
418 use std::task::{Context, Poll};
419 use std::thread::{self, ThreadId};
420
421 #[inline]
422 fn thread_id() -> ThreadId {
423 std::thread_local! {
424 static ID: ThreadId = thread::current().id();
425 }
426 ID.try_with(|id| *id)
427 .unwrap_or_else(|_| thread::current().id())
428 }
429
430 struct Checked<F> {
431 id: ThreadId,
432 inner: ManuallyDrop<F>,
433 }
434
435 impl<F> Drop for Checked<F> {
436 fn drop(&mut self) {
437 assert!(
438 self.id == thread_id(),
439 "local task dropped by a thread that didn't spawn it"
440 );
441 unsafe {
442 ManuallyDrop::drop(&mut self.inner);
443 }
444 }
445 }
446
447 impl<F: Future> Future for Checked<F> {
448 type Output = F::Output;
449
450 fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
451 assert!(
452 self.id == thread_id(),
453 "local task polled by a thread that didn't spawn it"
454 );
455 unsafe { self.map_unchecked_mut(|c| &mut *c.inner).poll(cx) }
456 }
457 }
458
459 // Wrap the future into one that checks which thread it's on.
460 let future = move |meta| {
461 let future = future(meta);
462
463 Checked {
464 id: thread_id(),
465 inner: ManuallyDrop::new(future),
466 }
467 };
468
469 unsafe { self.spawn_unchecked(future, schedule) }
470 }
471
472 /// Creates a new task without [`Send`], [`Sync`], and `'static` bounds.
473 ///
474 /// This function is same as [`spawn()`], except it does not require [`Send`], [`Sync`], and
475 /// `'static` on `future` and `schedule`.
476 ///
477 /// # Safety
478 ///
479 /// - If `Fut` is not [`Send`], its [`Runnable`] must be used and dropped on the original
480 /// thread.
481 /// - If `Fut` is not `'static`, borrowed non-metadata variables must outlive its [`Runnable`].
482 /// - If `schedule` is not [`Send`] and [`Sync`], all instances of the [`Runnable`]'s [`Waker`]
483 /// must be used and dropped on the original thread.
484 /// - If `schedule` is not `'static`, borrowed variables must outlive all instances of the
485 /// [`Runnable`]'s [`Waker`].
486 ///
487 /// # Examples
488 ///
489 /// ```
490 /// use async_task::Builder;
491 ///
492 /// // The future inside the task.
493 /// let future = async {
494 /// println!("Hello, world!");
495 /// };
496 ///
497 /// // If the task gets woken up, it will be sent into this channel.
498 /// let (s, r) = flume::unbounded();
499 /// let schedule = move |runnable| s.send(runnable).unwrap();
500 ///
501 /// // Create a task with the future and the schedule function.
502 /// let (runnable, task) = unsafe { Builder::new().spawn_unchecked(move |()| future, schedule) };
503 /// ```
504 pub unsafe fn spawn_unchecked<'a, F, Fut, S>(
505 self,
506 future: F,
507 schedule: S,
508 ) -> (Runnable<M>, Task<Fut::Output, M>)
509 where
510 F: FnOnce(&'a M) -> Fut,
511 Fut: Future + 'a,
512 S: Schedule<M>,
513 M: 'a,
514 {
515 // Allocate large futures on the heap.
516 let ptr = if mem::size_of::<Fut>() >= 2048 {
517 let future = |meta| {
518 let future = future(meta);
519 Box::pin(future)
520 };
521
522 RawTask::<_, Fut::Output, S, M>::allocate(future, schedule, self)
523 } else {
524 RawTask::<Fut, Fut::Output, S, M>::allocate(future, schedule, self)
525 };
526
527 let runnable = Runnable::from_raw(ptr);
528 let task = Task {
529 ptr,
530 _marker: PhantomData,
531 };
532 (runnable, task)
533 }
534}
535
536/// Creates a new task.
537///
538/// The returned [`Runnable`] is used to poll the `future`, and the [`Task`] is used to await its
539/// output.
540///
541/// Method [`run()`][`Runnable::run()`] polls the task's future once. Then, the [`Runnable`]
542/// vanishes and only reappears when its [`Waker`] wakes the task, thus scheduling it to be run
543/// again.
544///
545/// When the task is woken, its [`Runnable`] is passed to the `schedule` function.
546/// The `schedule` function should not attempt to run the [`Runnable`] nor to drop it. Instead, it
547/// should push it into a task queue so that it can be processed later.
548///
549/// If you need to spawn a future that does not implement [`Send`] or isn't `'static`, consider
550/// using [`spawn_local()`] or [`spawn_unchecked()`] instead.
551///
552/// # Examples
553///
554/// ```
555/// // The future inside the task.
556/// let future = async {
557/// println!("Hello, world!");
558/// };
559///
560/// // A function that schedules the task when it gets woken up.
561/// let (s, r) = flume::unbounded();
562/// let schedule = move |runnable| s.send(runnable).unwrap();
563///
564/// // Create a task with the future and the schedule function.
565/// let (runnable, task) = async_task::spawn(future, schedule);
566/// ```
567pub fn spawn<F, S>(future: F, schedule: S) -> (Runnable, Task<F::Output>)
568where
569 F: Future + Send + 'static,
570 F::Output: Send + 'static,
571 S: Schedule + Send + Sync + 'static,
572{
573 unsafe { spawn_unchecked(future, schedule) }
574}
575
576/// Creates a new thread-local task.
577///
578/// This function is same as [`spawn()`], except it does not require [`Send`] on `future`. If the
579/// [`Runnable`] is used or dropped on another thread, a panic will occur.
580///
581/// This function is only available when the `std` feature for this crate is enabled.
582///
583/// # Examples
584///
585/// ```
586/// use async_task::Runnable;
587/// use flume::{Receiver, Sender};
588/// use std::rc::Rc;
589///
590/// thread_local! {
591/// // A queue that holds scheduled tasks.
592/// static QUEUE: (Sender<Runnable>, Receiver<Runnable>) = flume::unbounded();
593/// }
594///
595/// // Make a non-Send future.
596/// let msg: Rc<str> = "Hello, world!".into();
597/// let future = async move {
598/// println!("{}", msg);
599/// };
600///
601/// // A function that schedules the task when it gets woken up.
602/// let s = QUEUE.with(|(s, _)| s.clone());
603/// let schedule = move |runnable| s.send(runnable).unwrap();
604///
605/// // Create a task with the future and the schedule function.
606/// let (runnable, task) = async_task::spawn_local(future, schedule);
607/// ```
608#[cfg(feature = "std")]
609pub fn spawn_local<F, S>(future: F, schedule: S) -> (Runnable, Task<F::Output>)
610where
611 F: Future + 'static,
612 F::Output: 'static,
613 S: Schedule + Send + Sync + 'static,
614{
615 Builder::new().spawn_local(move |()| future, schedule)
616}
617
618/// Creates a new task without [`Send`], [`Sync`], and `'static` bounds.
619///
620/// This function is same as [`spawn()`], except it does not require [`Send`], [`Sync`], and
621/// `'static` on `future` and `schedule`.
622///
623/// # Safety
624///
625/// - If `future` is not [`Send`], its [`Runnable`] must be used and dropped on the original
626/// thread.
627/// - If `future` is not `'static`, borrowed variables must outlive its [`Runnable`].
628/// - If `schedule` is not [`Send`] and [`Sync`], all instances of the [`Runnable`]'s [`Waker`]
629/// must be used and dropped on the original thread.
630/// - If `schedule` is not `'static`, borrowed variables must outlive all instances of the
631/// [`Runnable`]'s [`Waker`].
632///
633/// # Examples
634///
635/// ```
636/// // The future inside the task.
637/// let future = async {
638/// println!("Hello, world!");
639/// };
640///
641/// // If the task gets woken up, it will be sent into this channel.
642/// let (s, r) = flume::unbounded();
643/// let schedule = move |runnable| s.send(runnable).unwrap();
644///
645/// // Create a task with the future and the schedule function.
646/// let (runnable, task) = unsafe { async_task::spawn_unchecked(future, schedule) };
647/// ```
648pub unsafe fn spawn_unchecked<F, S>(future: F, schedule: S) -> (Runnable, Task<F::Output>)
649where
650 F: Future,
651 S: Schedule,
652{
653 Builder::new().spawn_unchecked(move |()| future, schedule)
654}
655
656/// A handle to a runnable task.
657///
658/// Every spawned task has a single [`Runnable`] handle, which only exists when the task is
659/// scheduled for running.
660///
661/// Method [`run()`][`Runnable::run()`] polls the task's future once. Then, the [`Runnable`]
662/// vanishes and only reappears when its [`Waker`] wakes the task, thus scheduling it to be run
663/// again.
664///
665/// Dropping a [`Runnable`] cancels the task, which means its future won't be polled again, and
666/// awaiting the [`Task`] after that will result in a panic.
667///
668/// # Examples
669///
670/// ```
671/// use async_task::Runnable;
672/// use once_cell::sync::Lazy;
673/// use std::{panic, thread};
674///
675/// // A simple executor.
676/// static QUEUE: Lazy<flume::Sender<Runnable>> = Lazy::new(|| {
677/// let (sender, receiver) = flume::unbounded::<Runnable>();
678/// thread::spawn(|| {
679/// for runnable in receiver {
680/// let _ignore_panic = panic::catch_unwind(|| runnable.run());
681/// }
682/// });
683/// sender
684/// });
685///
686/// // Create a task with a simple future.
687/// let schedule = |runnable| QUEUE.send(runnable).unwrap();
688/// let (runnable, task) = async_task::spawn(async { 1 + 2 }, schedule);
689///
690/// // Schedule the task and await its output.
691/// runnable.schedule();
692/// assert_eq!(smol::future::block_on(task), 3);
693/// ```
694pub struct Runnable<M = ()> {
695 /// A pointer to the heap-allocated task.
696 pub(crate) ptr: NonNull<()>,
697
698 /// A marker capturing generic type `M`.
699 pub(crate) _marker: PhantomData<M>,
700}
701
702unsafe impl<M: Send + Sync> Send for Runnable<M> {}
703unsafe impl<M: Send + Sync> Sync for Runnable<M> {}
704
705#[cfg(feature = "std")]
706impl<M> std::panic::UnwindSafe for Runnable<M> {}
707#[cfg(feature = "std")]
708impl<M> std::panic::RefUnwindSafe for Runnable<M> {}
709
710impl<M> Runnable<M> {
711 /// Get the metadata associated with this task.
712 ///
713 /// Tasks can be created with a metadata object associated with them; by default, this
714 /// is a `()` value. See the [`Builder::metadata()`] method for more information.
715 pub fn metadata(&self) -> &M {
716 &self.header().metadata
717 }
718
719 /// Schedules the task.
720 ///
721 /// This is a convenience method that passes the [`Runnable`] to the schedule function.
722 ///
723 /// # Examples
724 ///
725 /// ```
726 /// // A function that schedules the task when it gets woken up.
727 /// let (s, r) = flume::unbounded();
728 /// let schedule = move |runnable| s.send(runnable).unwrap();
729 ///
730 /// // Create a task with a simple future and the schedule function.
731 /// let (runnable, task) = async_task::spawn(async {}, schedule);
732 ///
733 /// // Schedule the task.
734 /// assert_eq!(r.len(), 0);
735 /// runnable.schedule();
736 /// assert_eq!(r.len(), 1);
737 /// ```
738 pub fn schedule(self) {
739 let ptr = self.ptr.as_ptr();
740 let header = ptr as *const Header<M>;
741 mem::forget(self);
742
743 unsafe {
744 ((*header).vtable.schedule)(ptr, ScheduleInfo::new(false));
745 }
746 }
747
748 /// Runs the task by polling its future.
749 ///
750 /// Returns `true` if the task was woken while running, in which case the [`Runnable`] gets
751 /// rescheduled at the end of this method invocation. Otherwise, returns `false` and the
752 /// [`Runnable`] vanishes until the task is woken.
753 /// The return value is just a hint: `true` usually indicates that the task has yielded, i.e.
754 /// it woke itself and then gave the control back to the executor.
755 ///
756 /// If the [`Task`] handle was dropped or if [`cancel()`][`Task::cancel()`] was called, then
757 /// this method simply destroys the task.
758 ///
759 /// If the polled future panics, this method propagates the panic, and awaiting the [`Task`]
760 /// after that will also result in a panic.
761 ///
762 /// # Examples
763 ///
764 /// ```
765 /// // A function that schedules the task when it gets woken up.
766 /// let (s, r) = flume::unbounded();
767 /// let schedule = move |runnable| s.send(runnable).unwrap();
768 ///
769 /// // Create a task with a simple future and the schedule function.
770 /// let (runnable, task) = async_task::spawn(async { 1 + 2 }, schedule);
771 ///
772 /// // Run the task and check its output.
773 /// runnable.run();
774 /// assert_eq!(smol::future::block_on(task), 3);
775 /// ```
776 pub fn run(self) -> bool {
777 let ptr = self.ptr.as_ptr();
778 let header = ptr as *const Header<M>;
779 mem::forget(self);
780
781 unsafe { ((*header).vtable.run)(ptr) }
782 }
783
784 /// Returns a waker associated with this task.
785 ///
786 /// # Examples
787 ///
788 /// ```
789 /// use smol::future;
790 ///
791 /// // A function that schedules the task when it gets woken up.
792 /// let (s, r) = flume::unbounded();
793 /// let schedule = move |runnable| s.send(runnable).unwrap();
794 ///
795 /// // Create a task with a simple future and the schedule function.
796 /// let (runnable, task) = async_task::spawn(future::pending::<()>(), schedule);
797 ///
798 /// // Take a waker and run the task.
799 /// let waker = runnable.waker();
800 /// runnable.run();
801 ///
802 /// // Reschedule the task by waking it.
803 /// assert_eq!(r.len(), 0);
804 /// waker.wake();
805 /// assert_eq!(r.len(), 1);
806 /// ```
807 pub fn waker(&self) -> Waker {
808 let ptr = self.ptr.as_ptr();
809 let header = ptr as *const Header<M>;
810
811 unsafe {
812 let raw_waker = ((*header).vtable.clone_waker)(ptr);
813 Waker::from_raw(raw_waker)
814 }
815 }
816
817 fn header(&self) -> &Header<M> {
818 unsafe { &*(self.ptr.as_ptr() as *const Header<M>) }
819 }
820
821 /// Converts this task into a raw pointer.
822 ///
823 /// To avoid a memory leak the pointer must be converted back to a Runnable using [`Runnable<M>::from_raw`][from_raw].
824 ///
825 /// `into_raw` does not change the state of the [`Task`], but there is no guarantee that it will be in the same state after calling [`Runnable<M>::from_raw`][from_raw],
826 /// as the corresponding [`Task`] might have been dropped or cancelled.
827 ///
828 /// # Examples
829 ///
830 /// ```rust
831 /// use async_task::{Runnable, spawn};
832
833 /// let (runnable, task) = spawn(async {}, |_| {});
834 /// let runnable_pointer = runnable.into_raw();
835 ///
836 /// unsafe {
837 /// // Convert back to an `Runnable` to prevent leak.
838 /// let runnable = Runnable::<()>::from_raw(runnable_pointer);
839 /// runnable.run();
840 /// // Further calls to `Runnable::from_raw(runnable_pointer)` would be memory-unsafe.
841 /// }
842 /// // The memory was freed when `x` went out of scope above, so `runnable_pointer` is now dangling!
843 /// ```
844 /// [from_raw]: #method.from_raw
845 pub fn into_raw(self) -> NonNull<()> {
846 let ptr = self.ptr;
847 mem::forget(self);
848 ptr
849 }
850
851 /// Converts a raw pointer into a Runnable.
852 ///
853 /// # Safety
854 ///
855 /// This method should only be used with raw pointers returned from [`Runnable<M>::into_raw`][into_raw].
856 /// It is not safe to use the provided pointer once it is passed to `from_raw`.
857 /// Crucially, it is unsafe to call `from_raw` multiple times with the same pointer - even if the resulting [`Runnable`] is not used -
858 /// as internally `async-task` uses reference counting.
859 ///
860 /// It is however safe to call [`Runnable<M>::into_raw`][into_raw] on a [`Runnable`] created with `from_raw` or
861 /// after the [`Task`] associated with a given Runnable has been dropped or cancelled.
862 ///
863 /// The state of the [`Runnable`] created with `from_raw` is not specified.
864 ///
865 /// # Examples
866 ///
867 /// ```rust
868 /// use async_task::{Runnable, spawn};
869
870 /// let (runnable, task) = spawn(async {}, |_| {});
871 /// let runnable_pointer = runnable.into_raw();
872 ///
873 /// drop(task);
874 /// unsafe {
875 /// // Convert back to an `Runnable` to prevent leak.
876 /// let runnable = Runnable::<()>::from_raw(runnable_pointer);
877 /// let did_poll = runnable.run();
878 /// assert!(!did_poll);
879 /// // Further calls to `Runnable::from_raw(runnable_pointer)` would be memory-unsafe.
880 /// }
881 /// // The memory was freed when `x` went out of scope above, so `runnable_pointer` is now dangling!
882 /// ```
883
884 /// [into_raw]: #method.into_raw
885 pub unsafe fn from_raw(ptr: NonNull<()>) -> Self {
886 Self {
887 ptr,
888 _marker: Default::default(),
889 }
890 }
891}
892
893impl<M> Drop for Runnable<M> {
894 fn drop(&mut self) {
895 let ptr = self.ptr.as_ptr();
896 let header = self.header();
897
898 unsafe {
899 let mut state = header.state.load(Ordering::Acquire);
900
901 loop {
902 // If the task has been completed or closed, it can't be canceled.
903 if state & (COMPLETED | CLOSED) != 0 {
904 break;
905 }
906
907 // Mark the task as closed.
908 match header.state.compare_exchange_weak(
909 state,
910 state | CLOSED,
911 Ordering::AcqRel,
912 Ordering::Acquire,
913 ) {
914 Ok(_) => break,
915 Err(s) => state = s,
916 }
917 }
918
919 // Drop the future.
920 (header.vtable.drop_future)(ptr);
921
922 // Mark the task as unscheduled.
923 let state = header.state.fetch_and(!SCHEDULED, Ordering::AcqRel);
924
925 // Notify the awaiter that the future has been dropped.
926 if state & AWAITER != 0 {
927 (*header).notify(None);
928 }
929
930 // Drop the task reference.
931 (header.vtable.drop_ref)(ptr);
932 }
933 }
934}
935
936impl<M: fmt::Debug> fmt::Debug for Runnable<M> {
937 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
938 let ptr = self.ptr.as_ptr();
939 let header = ptr as *const Header<M>;
940
941 f.debug_struct("Runnable")
942 .field("header", unsafe { &(*header) })
943 .finish()
944 }
945}