async_task/runnable.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
use core::fmt;
use core::future::Future;
use core::marker::PhantomData;
use core::mem;
use core::ptr::NonNull;
use core::sync::atomic::Ordering;
use core::task::Waker;
use alloc::boxed::Box;
use crate::header::Header;
use crate::raw::RawTask;
use crate::state::*;
use crate::Task;
mod sealed {
use super::*;
pub trait Sealed<M> {}
impl<M, F> Sealed<M> for F where F: Fn(Runnable<M>) {}
impl<M, F> Sealed<M> for WithInfo<F> where F: Fn(Runnable<M>, ScheduleInfo) {}
}
/// A builder that creates a new task.
#[derive(Debug)]
pub struct Builder<M> {
/// The metadata associated with the task.
pub(crate) metadata: M,
/// Whether or not a panic that occurs in the task should be propagated.
#[cfg(feature = "std")]
pub(crate) propagate_panic: bool,
}
impl<M: Default> Default for Builder<M> {
fn default() -> Self {
Builder::new().metadata(M::default())
}
}
/// Extra scheduling information that can be passed to the scheduling function.
///
/// The data source of this struct is directly from the actual implementation
/// of the crate itself, different from [`Runnable`]'s metadata, which is
/// managed by the caller.
///
/// # Examples
///
/// ```
/// use async_task::{Runnable, ScheduleInfo, WithInfo};
/// use std::sync::{Arc, Mutex};
///
/// // The future inside the task.
/// let future = async {
/// println!("Hello, world!");
/// };
///
/// // If the task gets woken up while running, it will be sent into this channel.
/// let (s, r) = flume::unbounded();
/// // Otherwise, it will be placed into this slot.
/// let lifo_slot = Arc::new(Mutex::new(None));
/// let schedule = move |runnable: Runnable, info: ScheduleInfo| {
/// if info.woken_while_running {
/// s.send(runnable).unwrap()
/// } else {
/// let last = lifo_slot.lock().unwrap().replace(runnable);
/// if let Some(last) = last {
/// s.send(last).unwrap()
/// }
/// }
/// };
///
/// // Create the actual scheduler to be spawned with some future.
/// let scheduler = WithInfo(schedule);
/// // Create a task with the future and the scheduler.
/// let (runnable, task) = async_task::spawn(future, scheduler);
/// ```
#[derive(Debug, Copy, Clone)]
#[non_exhaustive]
pub struct ScheduleInfo {
/// Indicates whether the task gets woken up while running.
///
/// It is set to true usually because the task has yielded itself to the
/// scheduler.
pub woken_while_running: bool,
}
impl ScheduleInfo {
pub(crate) fn new(woken_while_running: bool) -> Self {
ScheduleInfo {
woken_while_running,
}
}
}
/// The trait for scheduling functions.
pub trait Schedule<M = ()>: sealed::Sealed<M> {
/// The actual scheduling procedure.
fn schedule(&self, runnable: Runnable<M>, info: ScheduleInfo);
}
impl<M, F> Schedule<M> for F
where
F: Fn(Runnable<M>),
{
fn schedule(&self, runnable: Runnable<M>, _: ScheduleInfo) {
self(runnable)
}
}
/// Pass a scheduling function with more scheduling information - a.k.a.
/// [`ScheduleInfo`].
///
/// Sometimes, it's useful to pass the runnable's state directly to the
/// scheduling function, such as whether it's woken up while running. The
/// scheduler can thus use the information to determine its scheduling
/// strategy.
///
/// The data source of [`ScheduleInfo`] is directly from the actual
/// implementation of the crate itself, different from [`Runnable`]'s metadata,
/// which is managed by the caller.
///
/// # Examples
///
/// ```
/// use async_task::{ScheduleInfo, WithInfo};
/// use std::sync::{Arc, Mutex};
///
/// // The future inside the task.
/// let future = async {
/// println!("Hello, world!");
/// };
///
/// // If the task gets woken up while running, it will be sent into this channel.
/// let (s, r) = flume::unbounded();
/// // Otherwise, it will be placed into this slot.
/// let lifo_slot = Arc::new(Mutex::new(None));
/// let schedule = move |runnable, info: ScheduleInfo| {
/// if info.woken_while_running {
/// s.send(runnable).unwrap()
/// } else {
/// let last = lifo_slot.lock().unwrap().replace(runnable);
/// if let Some(last) = last {
/// s.send(last).unwrap()
/// }
/// }
/// };
///
/// // Create a task with the future and the schedule function.
/// let (runnable, task) = async_task::spawn(future, WithInfo(schedule));
/// ```
#[derive(Debug)]
pub struct WithInfo<F>(pub F);
impl<F> From<F> for WithInfo<F> {
fn from(value: F) -> Self {
WithInfo(value)
}
}
impl<M, F> Schedule<M> for WithInfo<F>
where
F: Fn(Runnable<M>, ScheduleInfo),
{
fn schedule(&self, runnable: Runnable<M>, info: ScheduleInfo) {
(self.0)(runnable, info)
}
}
impl Builder<()> {
/// Creates a new task builder.
///
/// By default, this task builder has no metadata. Use the [`metadata`] method to
/// set the metadata.
///
/// # Examples
///
/// ```
/// use async_task::Builder;
///
/// let (runnable, task) = Builder::new().spawn(|()| async {}, |_| {});
/// ```
pub fn new() -> Builder<()> {
Builder {
metadata: (),
#[cfg(feature = "std")]
propagate_panic: false,
}
}
/// Adds metadata to the task.
///
/// In certain cases, it may be useful to associate some metadata with a task. For instance,
/// you may want to associate a name with a task, or a priority for a priority queue. This
/// method allows the user to attach arbitrary metadata to a task that is available through
/// the [`Runnable`] or the [`Task`].
///
/// # Examples
///
/// This example creates an executor that associates a "priority" number with each task, and
/// then runs the tasks in order of priority.
///
/// ```
/// use async_task::{Builder, Runnable};
/// use once_cell::sync::Lazy;
/// use std::cmp;
/// use std::collections::BinaryHeap;
/// use std::sync::Mutex;
///
/// # smol::future::block_on(async {
/// /// A wrapper around a `Runnable<usize>` that implements `Ord` so that it can be used in a
/// /// priority queue.
/// struct TaskWrapper(Runnable<usize>);
///
/// impl PartialEq for TaskWrapper {
/// fn eq(&self, other: &Self) -> bool {
/// self.0.metadata() == other.0.metadata()
/// }
/// }
///
/// impl Eq for TaskWrapper {}
///
/// impl PartialOrd for TaskWrapper {
/// fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
/// Some(self.cmp(other))
/// }
/// }
///
/// impl Ord for TaskWrapper {
/// fn cmp(&self, other: &Self) -> cmp::Ordering {
/// self.0.metadata().cmp(other.0.metadata())
/// }
/// }
///
/// static EXECUTOR: Lazy<Mutex<BinaryHeap<TaskWrapper>>> = Lazy::new(|| {
/// Mutex::new(BinaryHeap::new())
/// });
///
/// let schedule = |runnable| {
/// EXECUTOR.lock().unwrap().push(TaskWrapper(runnable));
/// };
///
/// // Spawn a few tasks with different priorities.
/// let spawn_task = move |priority| {
/// let (runnable, task) = Builder::new().metadata(priority).spawn(
/// move |_| async move { priority },
/// schedule,
/// );
/// runnable.schedule();
/// task
/// };
///
/// let t1 = spawn_task(1);
/// let t2 = spawn_task(2);
/// let t3 = spawn_task(3);
///
/// // Run the tasks in order of priority.
/// let mut metadata_seen = vec![];
/// while let Some(TaskWrapper(runnable)) = EXECUTOR.lock().unwrap().pop() {
/// metadata_seen.push(*runnable.metadata());
/// runnable.run();
/// }
///
/// assert_eq!(metadata_seen, vec![3, 2, 1]);
/// assert_eq!(t1.await, 1);
/// assert_eq!(t2.await, 2);
/// assert_eq!(t3.await, 3);
/// # });
/// ```
pub fn metadata<M>(self, metadata: M) -> Builder<M> {
Builder {
metadata,
#[cfg(feature = "std")]
propagate_panic: self.propagate_panic,
}
}
}
impl<M> Builder<M> {
/// Propagates panics that occur in the task.
///
/// When this is `true`, panics that occur in the task will be propagated to the caller of
/// the [`Task`]. When this is false, no special action is taken when a panic occurs in the
/// task, meaning that the caller of [`Runnable::run`] will observe a panic.
///
/// This is only available when the `std` feature is enabled. By default, this is `false`.
///
/// # Examples
///
/// ```
/// use async_task::Builder;
/// use futures_lite::future::poll_fn;
/// use std::future::Future;
/// use std::panic;
/// use std::pin::Pin;
/// use std::task::{Context, Poll};
///
/// fn did_panic<F: FnOnce()>(f: F) -> bool {
/// panic::catch_unwind(panic::AssertUnwindSafe(f)).is_err()
/// }
///
/// # smol::future::block_on(async {
/// let (runnable1, mut task1) = Builder::new()
/// .propagate_panic(true)
/// .spawn(|()| async move { panic!() }, |_| {});
///
/// let (runnable2, mut task2) = Builder::new()
/// .propagate_panic(false)
/// .spawn(|()| async move { panic!() }, |_| {});
///
/// assert!(!did_panic(|| { runnable1.run(); }));
/// assert!(did_panic(|| { runnable2.run(); }));
///
/// let waker = poll_fn(|cx| Poll::Ready(cx.waker().clone())).await;
/// let mut cx = Context::from_waker(&waker);
/// assert!(did_panic(|| { let _ = Pin::new(&mut task1).poll(&mut cx); }));
/// assert!(did_panic(|| { let _ = Pin::new(&mut task2).poll(&mut cx); }));
/// # });
/// ```
#[cfg(feature = "std")]
pub fn propagate_panic(self, propagate_panic: bool) -> Builder<M> {
Builder {
metadata: self.metadata,
propagate_panic,
}
}
/// Creates a new task.
///
/// The returned [`Runnable`] is used to poll the `future`, and the [`Task`] is used to await its
/// output.
///
/// Method [`run()`][`Runnable::run()`] polls the task's future once. Then, the [`Runnable`]
/// vanishes and only reappears when its [`Waker`] wakes the task, thus scheduling it to be run
/// again.
///
/// When the task is woken, its [`Runnable`] is passed to the `schedule` function.
/// The `schedule` function should not attempt to run the [`Runnable`] nor to drop it. Instead, it
/// should push it into a task queue so that it can be processed later.
///
/// If you need to spawn a future that does not implement [`Send`] or isn't `'static`, consider
/// using [`spawn_local()`] or [`spawn_unchecked()`] instead.
///
/// # Examples
///
/// ```
/// use async_task::Builder;
///
/// // The future inside the task.
/// let future = async {
/// println!("Hello, world!");
/// };
///
/// // A function that schedules the task when it gets woken up.
/// let (s, r) = flume::unbounded();
/// let schedule = move |runnable| s.send(runnable).unwrap();
///
/// // Create a task with the future and the schedule function.
/// let (runnable, task) = Builder::new().spawn(|()| future, schedule);
/// ```
pub fn spawn<F, Fut, S>(self, future: F, schedule: S) -> (Runnable<M>, Task<Fut::Output, M>)
where
F: FnOnce(&M) -> Fut,
Fut: Future + Send + 'static,
Fut::Output: Send + 'static,
S: Schedule<M> + Send + Sync + 'static,
{
unsafe { self.spawn_unchecked(future, schedule) }
}
/// Creates a new thread-local task.
///
/// This function is same as [`spawn()`], except it does not require [`Send`] on `future`. If the
/// [`Runnable`] is used or dropped on another thread, a panic will occur.
///
/// This function is only available when the `std` feature for this crate is enabled.
///
/// # Examples
///
/// ```
/// use async_task::{Builder, Runnable};
/// use flume::{Receiver, Sender};
/// use std::rc::Rc;
///
/// thread_local! {
/// // A queue that holds scheduled tasks.
/// static QUEUE: (Sender<Runnable>, Receiver<Runnable>) = flume::unbounded();
/// }
///
/// // Make a non-Send future.
/// let msg: Rc<str> = "Hello, world!".into();
/// let future = async move {
/// println!("{}", msg);
/// };
///
/// // A function that schedules the task when it gets woken up.
/// let s = QUEUE.with(|(s, _)| s.clone());
/// let schedule = move |runnable| s.send(runnable).unwrap();
///
/// // Create a task with the future and the schedule function.
/// let (runnable, task) = Builder::new().spawn_local(move |()| future, schedule);
/// ```
#[cfg(feature = "std")]
pub fn spawn_local<F, Fut, S>(
self,
future: F,
schedule: S,
) -> (Runnable<M>, Task<Fut::Output, M>)
where
F: FnOnce(&M) -> Fut,
Fut: Future + 'static,
Fut::Output: 'static,
S: Schedule<M> + Send + Sync + 'static,
{
use std::mem::ManuallyDrop;
use std::pin::Pin;
use std::task::{Context, Poll};
use std::thread::{self, ThreadId};
#[inline]
fn thread_id() -> ThreadId {
std::thread_local! {
static ID: ThreadId = thread::current().id();
}
ID.try_with(|id| *id)
.unwrap_or_else(|_| thread::current().id())
}
struct Checked<F> {
id: ThreadId,
inner: ManuallyDrop<F>,
}
impl<F> Drop for Checked<F> {
fn drop(&mut self) {
assert!(
self.id == thread_id(),
"local task dropped by a thread that didn't spawn it"
);
unsafe {
ManuallyDrop::drop(&mut self.inner);
}
}
}
impl<F: Future> Future for Checked<F> {
type Output = F::Output;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
assert!(
self.id == thread_id(),
"local task polled by a thread that didn't spawn it"
);
unsafe { self.map_unchecked_mut(|c| &mut *c.inner).poll(cx) }
}
}
// Wrap the future into one that checks which thread it's on.
let future = move |meta| {
let future = future(meta);
Checked {
id: thread_id(),
inner: ManuallyDrop::new(future),
}
};
unsafe { self.spawn_unchecked(future, schedule) }
}
/// Creates a new task without [`Send`], [`Sync`], and `'static` bounds.
///
/// This function is same as [`spawn()`], except it does not require [`Send`], [`Sync`], and
/// `'static` on `future` and `schedule`.
///
/// # Safety
///
/// - If `Fut` is not [`Send`], its [`Runnable`] must be used and dropped on the original
/// thread.
/// - If `Fut` is not `'static`, borrowed non-metadata variables must outlive its [`Runnable`].
/// - If `schedule` is not [`Send`] and [`Sync`], all instances of the [`Runnable`]'s [`Waker`]
/// must be used and dropped on the original thread.
/// - If `schedule` is not `'static`, borrowed variables must outlive all instances of the
/// [`Runnable`]'s [`Waker`].
///
/// # Examples
///
/// ```
/// use async_task::Builder;
///
/// // The future inside the task.
/// let future = async {
/// println!("Hello, world!");
/// };
///
/// // If the task gets woken up, it will be sent into this channel.
/// let (s, r) = flume::unbounded();
/// let schedule = move |runnable| s.send(runnable).unwrap();
///
/// // Create a task with the future and the schedule function.
/// let (runnable, task) = unsafe { Builder::new().spawn_unchecked(move |()| future, schedule) };
/// ```
pub unsafe fn spawn_unchecked<'a, F, Fut, S>(
self,
future: F,
schedule: S,
) -> (Runnable<M>, Task<Fut::Output, M>)
where
F: FnOnce(&'a M) -> Fut,
Fut: Future + 'a,
S: Schedule<M>,
M: 'a,
{
// Allocate large futures on the heap.
let ptr = if mem::size_of::<Fut>() >= 2048 {
let future = |meta| {
let future = future(meta);
Box::pin(future)
};
RawTask::<_, Fut::Output, S, M>::allocate(future, schedule, self)
} else {
RawTask::<Fut, Fut::Output, S, M>::allocate(future, schedule, self)
};
let runnable = Runnable::from_raw(ptr);
let task = Task {
ptr,
_marker: PhantomData,
};
(runnable, task)
}
}
/// Creates a new task.
///
/// The returned [`Runnable`] is used to poll the `future`, and the [`Task`] is used to await its
/// output.
///
/// Method [`run()`][`Runnable::run()`] polls the task's future once. Then, the [`Runnable`]
/// vanishes and only reappears when its [`Waker`] wakes the task, thus scheduling it to be run
/// again.
///
/// When the task is woken, its [`Runnable`] is passed to the `schedule` function.
/// The `schedule` function should not attempt to run the [`Runnable`] nor to drop it. Instead, it
/// should push it into a task queue so that it can be processed later.
///
/// If you need to spawn a future that does not implement [`Send`] or isn't `'static`, consider
/// using [`spawn_local()`] or [`spawn_unchecked()`] instead.
///
/// # Examples
///
/// ```
/// // The future inside the task.
/// let future = async {
/// println!("Hello, world!");
/// };
///
/// // A function that schedules the task when it gets woken up.
/// let (s, r) = flume::unbounded();
/// let schedule = move |runnable| s.send(runnable).unwrap();
///
/// // Create a task with the future and the schedule function.
/// let (runnable, task) = async_task::spawn(future, schedule);
/// ```
pub fn spawn<F, S>(future: F, schedule: S) -> (Runnable, Task<F::Output>)
where
F: Future + Send + 'static,
F::Output: Send + 'static,
S: Schedule + Send + Sync + 'static,
{
unsafe { spawn_unchecked(future, schedule) }
}
/// Creates a new thread-local task.
///
/// This function is same as [`spawn()`], except it does not require [`Send`] on `future`. If the
/// [`Runnable`] is used or dropped on another thread, a panic will occur.
///
/// This function is only available when the `std` feature for this crate is enabled.
///
/// # Examples
///
/// ```
/// use async_task::Runnable;
/// use flume::{Receiver, Sender};
/// use std::rc::Rc;
///
/// thread_local! {
/// // A queue that holds scheduled tasks.
/// static QUEUE: (Sender<Runnable>, Receiver<Runnable>) = flume::unbounded();
/// }
///
/// // Make a non-Send future.
/// let msg: Rc<str> = "Hello, world!".into();
/// let future = async move {
/// println!("{}", msg);
/// };
///
/// // A function that schedules the task when it gets woken up.
/// let s = QUEUE.with(|(s, _)| s.clone());
/// let schedule = move |runnable| s.send(runnable).unwrap();
///
/// // Create a task with the future and the schedule function.
/// let (runnable, task) = async_task::spawn_local(future, schedule);
/// ```
#[cfg(feature = "std")]
pub fn spawn_local<F, S>(future: F, schedule: S) -> (Runnable, Task<F::Output>)
where
F: Future + 'static,
F::Output: 'static,
S: Schedule + Send + Sync + 'static,
{
Builder::new().spawn_local(move |()| future, schedule)
}
/// Creates a new task without [`Send`], [`Sync`], and `'static` bounds.
///
/// This function is same as [`spawn()`], except it does not require [`Send`], [`Sync`], and
/// `'static` on `future` and `schedule`.
///
/// # Safety
///
/// - If `future` is not [`Send`], its [`Runnable`] must be used and dropped on the original
/// thread.
/// - If `future` is not `'static`, borrowed variables must outlive its [`Runnable`].
/// - If `schedule` is not [`Send`] and [`Sync`], all instances of the [`Runnable`]'s [`Waker`]
/// must be used and dropped on the original thread.
/// - If `schedule` is not `'static`, borrowed variables must outlive all instances of the
/// [`Runnable`]'s [`Waker`].
///
/// # Examples
///
/// ```
/// // The future inside the task.
/// let future = async {
/// println!("Hello, world!");
/// };
///
/// // If the task gets woken up, it will be sent into this channel.
/// let (s, r) = flume::unbounded();
/// let schedule = move |runnable| s.send(runnable).unwrap();
///
/// // Create a task with the future and the schedule function.
/// let (runnable, task) = unsafe { async_task::spawn_unchecked(future, schedule) };
/// ```
pub unsafe fn spawn_unchecked<F, S>(future: F, schedule: S) -> (Runnable, Task<F::Output>)
where
F: Future,
S: Schedule,
{
Builder::new().spawn_unchecked(move |()| future, schedule)
}
/// A handle to a runnable task.
///
/// Every spawned task has a single [`Runnable`] handle, which only exists when the task is
/// scheduled for running.
///
/// Method [`run()`][`Runnable::run()`] polls the task's future once. Then, the [`Runnable`]
/// vanishes and only reappears when its [`Waker`] wakes the task, thus scheduling it to be run
/// again.
///
/// Dropping a [`Runnable`] cancels the task, which means its future won't be polled again, and
/// awaiting the [`Task`] after that will result in a panic.
///
/// # Examples
///
/// ```
/// use async_task::Runnable;
/// use once_cell::sync::Lazy;
/// use std::{panic, thread};
///
/// // A simple executor.
/// static QUEUE: Lazy<flume::Sender<Runnable>> = Lazy::new(|| {
/// let (sender, receiver) = flume::unbounded::<Runnable>();
/// thread::spawn(|| {
/// for runnable in receiver {
/// let _ignore_panic = panic::catch_unwind(|| runnable.run());
/// }
/// });
/// sender
/// });
///
/// // Create a task with a simple future.
/// let schedule = |runnable| QUEUE.send(runnable).unwrap();
/// let (runnable, task) = async_task::spawn(async { 1 + 2 }, schedule);
///
/// // Schedule the task and await its output.
/// runnable.schedule();
/// assert_eq!(smol::future::block_on(task), 3);
/// ```
pub struct Runnable<M = ()> {
/// A pointer to the heap-allocated task.
pub(crate) ptr: NonNull<()>,
/// A marker capturing generic type `M`.
pub(crate) _marker: PhantomData<M>,
}
unsafe impl<M: Send + Sync> Send for Runnable<M> {}
unsafe impl<M: Send + Sync> Sync for Runnable<M> {}
#[cfg(feature = "std")]
impl<M> std::panic::UnwindSafe for Runnable<M> {}
#[cfg(feature = "std")]
impl<M> std::panic::RefUnwindSafe for Runnable<M> {}
impl<M> Runnable<M> {
/// Get the metadata associated with this task.
///
/// Tasks can be created with a metadata object associated with them; by default, this
/// is a `()` value. See the [`Builder::metadata()`] method for more information.
pub fn metadata(&self) -> &M {
&self.header().metadata
}
/// Schedules the task.
///
/// This is a convenience method that passes the [`Runnable`] to the schedule function.
///
/// # Examples
///
/// ```
/// // A function that schedules the task when it gets woken up.
/// let (s, r) = flume::unbounded();
/// let schedule = move |runnable| s.send(runnable).unwrap();
///
/// // Create a task with a simple future and the schedule function.
/// let (runnable, task) = async_task::spawn(async {}, schedule);
///
/// // Schedule the task.
/// assert_eq!(r.len(), 0);
/// runnable.schedule();
/// assert_eq!(r.len(), 1);
/// ```
pub fn schedule(self) {
let ptr = self.ptr.as_ptr();
let header = ptr as *const Header<M>;
mem::forget(self);
unsafe {
((*header).vtable.schedule)(ptr, ScheduleInfo::new(false));
}
}
/// Runs the task by polling its future.
///
/// Returns `true` if the task was woken while running, in which case the [`Runnable`] gets
/// rescheduled at the end of this method invocation. Otherwise, returns `false` and the
/// [`Runnable`] vanishes until the task is woken.
/// The return value is just a hint: `true` usually indicates that the task has yielded, i.e.
/// it woke itself and then gave the control back to the executor.
///
/// If the [`Task`] handle was dropped or if [`cancel()`][`Task::cancel()`] was called, then
/// this method simply destroys the task.
///
/// If the polled future panics, this method propagates the panic, and awaiting the [`Task`]
/// after that will also result in a panic.
///
/// # Examples
///
/// ```
/// // A function that schedules the task when it gets woken up.
/// let (s, r) = flume::unbounded();
/// let schedule = move |runnable| s.send(runnable).unwrap();
///
/// // Create a task with a simple future and the schedule function.
/// let (runnable, task) = async_task::spawn(async { 1 + 2 }, schedule);
///
/// // Run the task and check its output.
/// runnable.run();
/// assert_eq!(smol::future::block_on(task), 3);
/// ```
pub fn run(self) -> bool {
let ptr = self.ptr.as_ptr();
let header = ptr as *const Header<M>;
mem::forget(self);
unsafe { ((*header).vtable.run)(ptr) }
}
/// Returns a waker associated with this task.
///
/// # Examples
///
/// ```
/// use smol::future;
///
/// // A function that schedules the task when it gets woken up.
/// let (s, r) = flume::unbounded();
/// let schedule = move |runnable| s.send(runnable).unwrap();
///
/// // Create a task with a simple future and the schedule function.
/// let (runnable, task) = async_task::spawn(future::pending::<()>(), schedule);
///
/// // Take a waker and run the task.
/// let waker = runnable.waker();
/// runnable.run();
///
/// // Reschedule the task by waking it.
/// assert_eq!(r.len(), 0);
/// waker.wake();
/// assert_eq!(r.len(), 1);
/// ```
pub fn waker(&self) -> Waker {
let ptr = self.ptr.as_ptr();
let header = ptr as *const Header<M>;
unsafe {
let raw_waker = ((*header).vtable.clone_waker)(ptr);
Waker::from_raw(raw_waker)
}
}
fn header(&self) -> &Header<M> {
unsafe { &*(self.ptr.as_ptr() as *const Header<M>) }
}
/// Converts this task into a raw pointer.
///
/// To avoid a memory leak the pointer must be converted back to a Runnable using [`Runnable<M>::from_raw`][from_raw].
///
/// `into_raw` does not change the state of the [`Task`], but there is no guarantee that it will be in the same state after calling [`Runnable<M>::from_raw`][from_raw],
/// as the corresponding [`Task`] might have been dropped or cancelled.
///
/// # Examples
///
/// ```rust
/// use async_task::{Runnable, spawn};
/// let (runnable, task) = spawn(async {}, |_| {});
/// let runnable_pointer = runnable.into_raw();
///
/// unsafe {
/// // Convert back to an `Runnable` to prevent leak.
/// let runnable = Runnable::<()>::from_raw(runnable_pointer);
/// runnable.run();
/// // Further calls to `Runnable::from_raw(runnable_pointer)` would be memory-unsafe.
/// }
/// // The memory was freed when `x` went out of scope above, so `runnable_pointer` is now dangling!
/// ```
/// [from_raw]: #method.from_raw
pub fn into_raw(self) -> NonNull<()> {
let ptr = self.ptr;
mem::forget(self);
ptr
}
/// Converts a raw pointer into a Runnable.
///
/// # Safety
///
/// This method should only be used with raw pointers returned from [`Runnable<M>::into_raw`][into_raw].
/// It is not safe to use the provided pointer once it is passed to `from_raw`.
/// Crucially, it is unsafe to call `from_raw` multiple times with the same pointer - even if the resulting [`Runnable`] is not used -
/// as internally `async-task` uses reference counting.
///
/// It is however safe to call [`Runnable<M>::into_raw`][into_raw] on a [`Runnable`] created with `from_raw` or
/// after the [`Task`] associated with a given Runnable has been dropped or cancelled.
///
/// The state of the [`Runnable`] created with `from_raw` is not specified.
///
/// # Examples
///
/// ```rust
/// use async_task::{Runnable, spawn};
/// let (runnable, task) = spawn(async {}, |_| {});
/// let runnable_pointer = runnable.into_raw();
///
/// drop(task);
/// unsafe {
/// // Convert back to an `Runnable` to prevent leak.
/// let runnable = Runnable::<()>::from_raw(runnable_pointer);
/// let did_poll = runnable.run();
/// assert!(!did_poll);
/// // Further calls to `Runnable::from_raw(runnable_pointer)` would be memory-unsafe.
/// }
/// // The memory was freed when `x` went out of scope above, so `runnable_pointer` is now dangling!
/// ```
/// [into_raw]: #method.into_raw
pub unsafe fn from_raw(ptr: NonNull<()>) -> Self {
Self {
ptr,
_marker: Default::default(),
}
}
}
impl<M> Drop for Runnable<M> {
fn drop(&mut self) {
let ptr = self.ptr.as_ptr();
let header = self.header();
unsafe {
let mut state = header.state.load(Ordering::Acquire);
loop {
// If the task has been completed or closed, it can't be canceled.
if state & (COMPLETED | CLOSED) != 0 {
break;
}
// Mark the task as closed.
match header.state.compare_exchange_weak(
state,
state | CLOSED,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => break,
Err(s) => state = s,
}
}
// Drop the future.
(header.vtable.drop_future)(ptr);
// Mark the task as unscheduled.
let state = header.state.fetch_and(!SCHEDULED, Ordering::AcqRel);
// Notify the awaiter that the future has been dropped.
if state & AWAITER != 0 {
(*header).notify(None);
}
// Drop the task reference.
(header.vtable.drop_ref)(ptr);
}
}
}
impl<M: fmt::Debug> fmt::Debug for Runnable<M> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let ptr = self.ptr.as_ptr();
let header = ptr as *const Header<M>;
f.debug_struct("Runnable")
.field("header", unsafe { &(*header) })
.finish()
}
}