bevy_asset/
assets.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
use crate::{self as bevy_asset};
use crate::{Asset, AssetEvent, AssetHandleProvider, AssetId, AssetServer, Handle, UntypedHandle};
use bevy_ecs::{
    prelude::EventWriter,
    system::{Res, ResMut, Resource},
};
use bevy_reflect::{Reflect, TypePath};
use bevy_utils::HashMap;
use crossbeam_channel::{Receiver, Sender};
use serde::{Deserialize, Serialize};
use std::{
    any::TypeId,
    iter::Enumerate,
    marker::PhantomData,
    sync::{atomic::AtomicU32, Arc},
};
use thiserror::Error;
use uuid::Uuid;

/// A generational runtime-only identifier for a specific [`Asset`] stored in [`Assets`]. This is optimized for efficient runtime
/// usage and is not suitable for identifying assets across app runs.
#[derive(
    Debug, Copy, Clone, Eq, PartialEq, Hash, Ord, PartialOrd, Reflect, Serialize, Deserialize,
)]
pub struct AssetIndex {
    pub(crate) generation: u32,
    pub(crate) index: u32,
}

impl AssetIndex {
    /// Convert the [`AssetIndex`] into an opaque blob of bits to transport it in circumstances where carrying a strongly typed index isn't possible.
    ///
    /// The result of this function should not be relied upon for anything except putting it back into [`AssetIndex::from_bits`] to recover the index.
    pub fn to_bits(self) -> u64 {
        let Self { generation, index } = self;
        ((generation as u64) << 32) | index as u64
    }
    /// Convert an opaque `u64` acquired from [`AssetIndex::to_bits`] back into an [`AssetIndex`]. This should not be used with any inputs other than those
    /// derived from [`AssetIndex::to_bits`], as there are no guarantees for what will happen with such inputs.
    pub fn from_bits(bits: u64) -> Self {
        let index = ((bits << 32) >> 32) as u32;
        let generation = (bits >> 32) as u32;
        Self { generation, index }
    }
}

/// Allocates generational [`AssetIndex`] values and facilitates their reuse.
pub(crate) struct AssetIndexAllocator {
    /// A monotonically increasing index.
    next_index: AtomicU32,
    recycled_queue_sender: Sender<AssetIndex>,
    /// This receives every recycled [`AssetIndex`]. It serves as a buffer/queue to store indices ready for reuse.
    recycled_queue_receiver: Receiver<AssetIndex>,
    recycled_sender: Sender<AssetIndex>,
    recycled_receiver: Receiver<AssetIndex>,
}

impl Default for AssetIndexAllocator {
    fn default() -> Self {
        let (recycled_queue_sender, recycled_queue_receiver) = crossbeam_channel::unbounded();
        let (recycled_sender, recycled_receiver) = crossbeam_channel::unbounded();
        Self {
            recycled_queue_sender,
            recycled_queue_receiver,
            recycled_sender,
            recycled_receiver,
            next_index: Default::default(),
        }
    }
}

impl AssetIndexAllocator {
    /// Reserves a new [`AssetIndex`], either by reusing a recycled index (with an incremented generation), or by creating a new index
    /// by incrementing the index counter for a given asset type `A`.
    pub fn reserve(&self) -> AssetIndex {
        if let Ok(mut recycled) = self.recycled_queue_receiver.try_recv() {
            recycled.generation += 1;
            self.recycled_sender.send(recycled).unwrap();
            recycled
        } else {
            AssetIndex {
                index: self
                    .next_index
                    .fetch_add(1, std::sync::atomic::Ordering::Relaxed),
                generation: 0,
            }
        }
    }

    /// Queues the given `index` for reuse. This should only be done if the `index` is no longer being used.
    pub fn recycle(&self, index: AssetIndex) {
        self.recycled_queue_sender.send(index).unwrap();
    }
}

/// A "loaded asset" containing the untyped handle for an asset stored in a given [`AssetPath`].
///
/// [`AssetPath`]: crate::AssetPath
#[derive(Asset, TypePath)]
pub struct LoadedUntypedAsset {
    #[dependency]
    pub handle: UntypedHandle,
}

// PERF: do we actually need this to be an enum? Can we just use an "invalid" generation instead
#[derive(Default)]
enum Entry<A: Asset> {
    /// None is an indicator that this entry does not have live handles.
    #[default]
    None,
    /// Some is an indicator that there is a live handle active for the entry at this [`AssetIndex`]
    Some { value: Option<A>, generation: u32 },
}

/// Stores [`Asset`] values in a Vec-like storage identified by [`AssetIndex`].
struct DenseAssetStorage<A: Asset> {
    storage: Vec<Entry<A>>,
    len: u32,
    allocator: Arc<AssetIndexAllocator>,
}

impl<A: Asset> Default for DenseAssetStorage<A> {
    fn default() -> Self {
        Self {
            len: 0,
            storage: Default::default(),
            allocator: Default::default(),
        }
    }
}

impl<A: Asset> DenseAssetStorage<A> {
    // Returns the number of assets stored.
    pub(crate) fn len(&self) -> usize {
        self.len as usize
    }

    // Returns `true` if there are no assets stored.
    pub(crate) fn is_empty(&self) -> bool {
        self.len == 0
    }

    /// Insert the value at the given index. Returns true if a value already exists (and was replaced)
    pub(crate) fn insert(
        &mut self,
        index: AssetIndex,
        asset: A,
    ) -> Result<bool, InvalidGenerationError> {
        self.flush();
        let entry = &mut self.storage[index.index as usize];
        if let Entry::Some { value, generation } = entry {
            if *generation == index.generation {
                let exists = value.is_some();
                if !exists {
                    self.len += 1;
                }
                *value = Some(asset);
                Ok(exists)
            } else {
                Err(InvalidGenerationError {
                    index,
                    current_generation: *generation,
                })
            }
        } else {
            unreachable!("entries should always be valid after a flush");
        }
    }

    /// Removes the asset stored at the given `index` and returns it as [`Some`] (if the asset exists).
    /// This will recycle the id and allow new entries to be inserted.
    pub(crate) fn remove_dropped(&mut self, index: AssetIndex) -> Option<A> {
        self.remove_internal(index, |dense_storage| {
            dense_storage.storage[index.index as usize] = Entry::None;
            dense_storage.allocator.recycle(index);
        })
    }

    /// Removes the asset stored at the given `index` and returns it as [`Some`] (if the asset exists).
    /// This will _not_ recycle the id. New values with the current ID can still be inserted. The ID will
    /// not be reused until [`DenseAssetStorage::remove_dropped`] is called.
    pub(crate) fn remove_still_alive(&mut self, index: AssetIndex) -> Option<A> {
        self.remove_internal(index, |_| {})
    }

    fn remove_internal(
        &mut self,
        index: AssetIndex,
        removed_action: impl FnOnce(&mut Self),
    ) -> Option<A> {
        self.flush();
        let value = match &mut self.storage[index.index as usize] {
            Entry::None => return None,
            Entry::Some { value, generation } => {
                if *generation == index.generation {
                    value.take().map(|value| {
                        self.len -= 1;
                        value
                    })
                } else {
                    return None;
                }
            }
        };
        removed_action(self);
        value
    }

    pub(crate) fn get(&self, index: AssetIndex) -> Option<&A> {
        let entry = self.storage.get(index.index as usize)?;
        match entry {
            Entry::None => None,
            Entry::Some { value, generation } => {
                if *generation == index.generation {
                    value.as_ref()
                } else {
                    None
                }
            }
        }
    }

    pub(crate) fn get_mut(&mut self, index: AssetIndex) -> Option<&mut A> {
        let entry = self.storage.get_mut(index.index as usize)?;
        match entry {
            Entry::None => None,
            Entry::Some { value, generation } => {
                if *generation == index.generation {
                    value.as_mut()
                } else {
                    None
                }
            }
        }
    }

    pub(crate) fn flush(&mut self) {
        // NOTE: this assumes the allocator index is monotonically increasing.
        let new_len = self
            .allocator
            .next_index
            .load(std::sync::atomic::Ordering::Relaxed);
        self.storage.resize_with(new_len as usize, || Entry::Some {
            value: None,
            generation: 0,
        });
        while let Ok(recycled) = self.allocator.recycled_receiver.try_recv() {
            let entry = &mut self.storage[recycled.index as usize];
            *entry = Entry::Some {
                value: None,
                generation: recycled.generation,
            };
        }
    }

    pub(crate) fn get_index_allocator(&self) -> Arc<AssetIndexAllocator> {
        self.allocator.clone()
    }

    pub(crate) fn ids(&self) -> impl Iterator<Item = AssetId<A>> + '_ {
        self.storage
            .iter()
            .enumerate()
            .filter_map(|(i, v)| match v {
                Entry::None => None,
                Entry::Some { value, generation } => {
                    if value.is_some() {
                        Some(AssetId::from(AssetIndex {
                            index: i as u32,
                            generation: *generation,
                        }))
                    } else {
                        None
                    }
                }
            })
    }
}

/// Stores [`Asset`] values identified by their [`AssetId`].
///
/// Assets identified by [`AssetId::Index`] will be stored in a "dense" vec-like storage. This is more efficient, but it means that
/// the assets can only be identified at runtime. This is the default behavior.
///
/// Assets identified by [`AssetId::Uuid`] will be stored in a hashmap. This is less efficient, but it means that the assets can be referenced
/// at compile time.
///
/// This tracks (and queues) [`AssetEvent`] events whenever changes to the collection occur.
#[derive(Resource)]
pub struct Assets<A: Asset> {
    dense_storage: DenseAssetStorage<A>,
    hash_map: HashMap<Uuid, A>,
    handle_provider: AssetHandleProvider,
    queued_events: Vec<AssetEvent<A>>,
    /// Assets managed by the `Assets` struct with live strong `Handle`s
    /// originating from `get_strong_handle`.
    duplicate_handles: HashMap<AssetId<A>, u16>,
}

impl<A: Asset> Default for Assets<A> {
    fn default() -> Self {
        let dense_storage = DenseAssetStorage::default();
        let handle_provider =
            AssetHandleProvider::new(TypeId::of::<A>(), dense_storage.get_index_allocator());
        Self {
            dense_storage,
            handle_provider,
            hash_map: Default::default(),
            queued_events: Default::default(),
            duplicate_handles: Default::default(),
        }
    }
}

impl<A: Asset> Assets<A> {
    /// Retrieves an [`AssetHandleProvider`] capable of reserving new [`Handle`] values for assets that will be stored in this
    /// collection.
    pub fn get_handle_provider(&self) -> AssetHandleProvider {
        self.handle_provider.clone()
    }

    /// Reserves a new [`Handle`] for an asset that will be stored in this collection.
    pub fn reserve_handle(&self) -> Handle<A> {
        self.handle_provider.reserve_handle().typed::<A>()
    }

    /// Inserts the given `asset`, identified by the given `id`. If an asset already exists for `id`, it will be replaced.
    pub fn insert(&mut self, id: impl Into<AssetId<A>>, asset: A) {
        match id.into() {
            AssetId::Index { index, .. } => {
                self.insert_with_index(index, asset).unwrap();
            }
            AssetId::Uuid { uuid } => {
                self.insert_with_uuid(uuid, asset);
            }
        }
    }

    /// Retrieves an [`Asset`] stored for the given `id` if it exists. If it does not exist, it will be inserted using `insert_fn`.
    // PERF: Optimize this or remove it
    pub fn get_or_insert_with(
        &mut self,
        id: impl Into<AssetId<A>>,
        insert_fn: impl FnOnce() -> A,
    ) -> &mut A {
        let id: AssetId<A> = id.into();
        if self.get(id).is_none() {
            self.insert(id, insert_fn());
        }
        self.get_mut(id).unwrap()
    }

    /// Returns `true` if the `id` exists in this collection. Otherwise it returns `false`.
    pub fn contains(&self, id: impl Into<AssetId<A>>) -> bool {
        match id.into() {
            AssetId::Index { index, .. } => self.dense_storage.get(index).is_some(),
            AssetId::Uuid { uuid } => self.hash_map.contains_key(&uuid),
        }
    }

    pub(crate) fn insert_with_uuid(&mut self, uuid: Uuid, asset: A) -> Option<A> {
        let result = self.hash_map.insert(uuid, asset);
        if result.is_some() {
            self.queued_events
                .push(AssetEvent::Modified { id: uuid.into() });
        } else {
            self.queued_events
                .push(AssetEvent::Added { id: uuid.into() });
        }
        result
    }
    pub(crate) fn insert_with_index(
        &mut self,
        index: AssetIndex,
        asset: A,
    ) -> Result<bool, InvalidGenerationError> {
        let replaced = self.dense_storage.insert(index, asset)?;
        if replaced {
            self.queued_events
                .push(AssetEvent::Modified { id: index.into() });
        } else {
            self.queued_events
                .push(AssetEvent::Added { id: index.into() });
        }
        Ok(replaced)
    }

    /// Adds the given `asset` and allocates a new strong [`Handle`] for it.
    #[inline]
    pub fn add(&mut self, asset: impl Into<A>) -> Handle<A> {
        let index = self.dense_storage.allocator.reserve();
        self.insert_with_index(index, asset.into()).unwrap();
        Handle::Strong(
            self.handle_provider
                .get_handle(index.into(), false, None, None),
        )
    }

    /// Upgrade an `AssetId` into a strong `Handle` that will prevent asset drop.
    ///
    /// Returns `None` if the provided `id` is not part of this `Assets` collection.
    /// For example, it may have been dropped earlier.
    #[inline]
    pub fn get_strong_handle(&mut self, id: AssetId<A>) -> Option<Handle<A>> {
        if !self.contains(id) {
            return None;
        }
        *self.duplicate_handles.entry(id).or_insert(0) += 1;
        let index = match id {
            AssetId::Index { index, .. } => index.into(),
            AssetId::Uuid { uuid } => uuid.into(),
        };
        Some(Handle::Strong(
            self.handle_provider.get_handle(index, false, None, None),
        ))
    }

    /// Retrieves a reference to the [`Asset`] with the given `id`, if it exists.
    /// Note that this supports anything that implements `Into<AssetId<A>>`, which includes [`Handle`] and [`AssetId`].
    #[inline]
    pub fn get(&self, id: impl Into<AssetId<A>>) -> Option<&A> {
        match id.into() {
            AssetId::Index { index, .. } => self.dense_storage.get(index),
            AssetId::Uuid { uuid } => self.hash_map.get(&uuid),
        }
    }

    /// Retrieves a mutable reference to the [`Asset`] with the given `id`, if it exists.
    /// Note that this supports anything that implements `Into<AssetId<A>>`, which includes [`Handle`] and [`AssetId`].
    #[inline]
    pub fn get_mut(&mut self, id: impl Into<AssetId<A>>) -> Option<&mut A> {
        let id: AssetId<A> = id.into();
        let result = match id {
            AssetId::Index { index, .. } => self.dense_storage.get_mut(index),
            AssetId::Uuid { uuid } => self.hash_map.get_mut(&uuid),
        };
        if result.is_some() {
            self.queued_events.push(AssetEvent::Modified { id });
        }
        result
    }

    /// Removes (and returns) the [`Asset`] with the given `id`, if it exists.
    /// Note that this supports anything that implements `Into<AssetId<A>>`, which includes [`Handle`] and [`AssetId`].
    pub fn remove(&mut self, id: impl Into<AssetId<A>>) -> Option<A> {
        let id: AssetId<A> = id.into();
        let result = self.remove_untracked(id);
        if result.is_some() {
            self.queued_events.push(AssetEvent::Removed { id });
        }
        result
    }

    /// Removes (and returns) the [`Asset`] with the given `id`, if it exists. This skips emitting [`AssetEvent::Removed`].
    /// Note that this supports anything that implements `Into<AssetId<A>>`, which includes [`Handle`] and [`AssetId`].
    pub fn remove_untracked(&mut self, id: impl Into<AssetId<A>>) -> Option<A> {
        let id: AssetId<A> = id.into();
        self.duplicate_handles.remove(&id);
        match id {
            AssetId::Index { index, .. } => self.dense_storage.remove_still_alive(index),
            AssetId::Uuid { uuid } => self.hash_map.remove(&uuid),
        }
    }

    /// Removes the [`Asset`] with the given `id`.
    pub(crate) fn remove_dropped(&mut self, id: AssetId<A>) {
        match self.duplicate_handles.get_mut(&id) {
            None | Some(0) => {}
            Some(value) => {
                *value -= 1;
                return;
            }
        }
        let existed = match id {
            AssetId::Index { index, .. } => self.dense_storage.remove_dropped(index).is_some(),
            AssetId::Uuid { uuid } => self.hash_map.remove(&uuid).is_some(),
        };
        if existed {
            self.queued_events.push(AssetEvent::Removed { id });
        }
    }

    /// Returns `true` if there are no assets in this collection.
    pub fn is_empty(&self) -> bool {
        self.dense_storage.is_empty() && self.hash_map.is_empty()
    }

    /// Returns the number of assets currently stored in the collection.
    pub fn len(&self) -> usize {
        self.dense_storage.len() + self.hash_map.len()
    }

    /// Returns an iterator over the [`AssetId`] of every [`Asset`] stored in this collection.
    pub fn ids(&self) -> impl Iterator<Item = AssetId<A>> + '_ {
        self.dense_storage
            .ids()
            .chain(self.hash_map.keys().map(|uuid| AssetId::from(*uuid)))
    }

    /// Returns an iterator over the [`AssetId`] and [`Asset`] ref of every asset in this collection.
    // PERF: this could be accelerated if we implement a skip list. Consider the cost/benefits
    pub fn iter(&self) -> impl Iterator<Item = (AssetId<A>, &A)> {
        self.dense_storage
            .storage
            .iter()
            .enumerate()
            .filter_map(|(i, v)| match v {
                Entry::None => None,
                Entry::Some { value, generation } => value.as_ref().map(|v| {
                    let id = AssetId::Index {
                        index: AssetIndex {
                            generation: *generation,
                            index: i as u32,
                        },
                        marker: PhantomData,
                    };
                    (id, v)
                }),
            })
            .chain(
                self.hash_map
                    .iter()
                    .map(|(i, v)| (AssetId::Uuid { uuid: *i }, v)),
            )
    }

    /// Returns an iterator over the [`AssetId`] and mutable [`Asset`] ref of every asset in this collection.
    // PERF: this could be accelerated if we implement a skip list. Consider the cost/benefits
    pub fn iter_mut(&mut self) -> AssetsMutIterator<'_, A> {
        AssetsMutIterator {
            dense_storage: self.dense_storage.storage.iter_mut().enumerate(),
            hash_map: self.hash_map.iter_mut(),
            queued_events: &mut self.queued_events,
        }
    }

    /// A system that synchronizes the state of assets in this collection with the [`AssetServer`]. This manages
    /// [`Handle`] drop events.
    pub fn track_assets(mut assets: ResMut<Self>, asset_server: Res<AssetServer>) {
        let assets = &mut *assets;
        // note that we must hold this lock for the entire duration of this function to ensure
        // that `asset_server.load` calls that occur during it block, which ensures that
        // re-loads are kicked off appropriately. This function must be "transactional" relative
        // to other asset info operations
        let mut infos = asset_server.data.infos.write();
        while let Ok(drop_event) = assets.handle_provider.drop_receiver.try_recv() {
            let id = drop_event.id.typed();

            if drop_event.asset_server_managed {
                let untyped_id = id.untyped();

                // the process_handle_drop call checks whether new handles have been created since the drop event was fired, before removing the asset
                if !infos.process_handle_drop(untyped_id) {
                    // a new handle has been created, or the asset doesn't exist
                    continue;
                }
            }

            assets.queued_events.push(AssetEvent::Unused { id });
            assets.remove_dropped(id);
        }
    }

    /// A system that applies accumulated asset change events to the [`Events`] resource.
    ///
    /// [`Events`]: bevy_ecs::event::Events
    pub fn asset_events(mut assets: ResMut<Self>, mut events: EventWriter<AssetEvent<A>>) {
        events.send_batch(assets.queued_events.drain(..));
    }

    /// A run condition for [`asset_events`]. The system will not run if there are no events to
    /// flush.
    ///
    /// [`asset_events`]: Self::asset_events
    pub(crate) fn asset_events_condition(assets: Res<Self>) -> bool {
        !assets.queued_events.is_empty()
    }
}

/// A mutable iterator over [`Assets`].
pub struct AssetsMutIterator<'a, A: Asset> {
    queued_events: &'a mut Vec<AssetEvent<A>>,
    dense_storage: Enumerate<std::slice::IterMut<'a, Entry<A>>>,
    hash_map: bevy_utils::hashbrown::hash_map::IterMut<'a, Uuid, A>,
}

impl<'a, A: Asset> Iterator for AssetsMutIterator<'a, A> {
    type Item = (AssetId<A>, &'a mut A);

    fn next(&mut self) -> Option<Self::Item> {
        for (i, entry) in &mut self.dense_storage {
            match entry {
                Entry::None => {
                    continue;
                }
                Entry::Some { value, generation } => {
                    let id = AssetId::Index {
                        index: AssetIndex {
                            generation: *generation,
                            index: i as u32,
                        },
                        marker: PhantomData,
                    };
                    self.queued_events.push(AssetEvent::Modified { id });
                    if let Some(value) = value {
                        return Some((id, value));
                    }
                }
            }
        }
        if let Some((key, value)) = self.hash_map.next() {
            let id = AssetId::Uuid { uuid: *key };
            self.queued_events.push(AssetEvent::Modified { id });
            Some((id, value))
        } else {
            None
        }
    }
}

#[derive(Error, Debug)]
#[error("AssetIndex {index:?} has an invalid generation. The current generation is: '{current_generation}'.")]
pub struct InvalidGenerationError {
    index: AssetIndex,
    current_generation: u32,
}

#[cfg(test)]
mod test {
    use crate::AssetIndex;

    #[test]
    fn asset_index_round_trip() {
        let asset_index = AssetIndex {
            generation: 42,
            index: 1337,
        };
        let roundtripped = AssetIndex::from_bits(asset_index.to_bits());
        assert_eq!(asset_index, roundtripped);
    }
}