bevy_color/
hsla.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
use crate::{
    Alpha, ColorToComponents, Gray, Hsva, Hue, Hwba, Lcha, LinearRgba, Luminance, Mix, Srgba,
    StandardColor, Xyza,
};
use bevy_math::{Vec3, Vec4};
use bevy_reflect::prelude::*;

/// Color in Hue-Saturation-Lightness (HSL) color space with alpha.
/// Further information on this color model can be found on [Wikipedia](https://en.wikipedia.org/wiki/HSL_and_HSV).
#[doc = include_str!("../docs/conversion.md")]
/// <div>
#[doc = include_str!("../docs/diagrams/model_graph.svg")]
/// </div>
#[derive(Debug, Clone, Copy, PartialEq, Reflect)]
#[reflect(PartialEq, Default)]
#[cfg_attr(
    feature = "serialize",
    derive(serde::Serialize, serde::Deserialize),
    reflect(Serialize, Deserialize)
)]
pub struct Hsla {
    /// The hue channel. [0.0, 360.0]
    pub hue: f32,
    /// The saturation channel. [0.0, 1.0]
    pub saturation: f32,
    /// The lightness channel. [0.0, 1.0]
    pub lightness: f32,
    /// The alpha channel. [0.0, 1.0]
    pub alpha: f32,
}

impl StandardColor for Hsla {}

impl Hsla {
    /// Construct a new [`Hsla`] color from components.
    ///
    /// # Arguments
    ///
    /// * `hue` - Hue channel. [0.0, 360.0]
    /// * `saturation` - Saturation channel. [0.0, 1.0]
    /// * `lightness` - Lightness channel. [0.0, 1.0]
    /// * `alpha` - Alpha channel. [0.0, 1.0]
    pub const fn new(hue: f32, saturation: f32, lightness: f32, alpha: f32) -> Self {
        Self {
            hue,
            saturation,
            lightness,
            alpha,
        }
    }

    /// Construct a new [`Hsla`] color from (h, s, l) components, with the default alpha (1.0).
    ///
    /// # Arguments
    ///
    /// * `hue` - Hue channel. [0.0, 360.0]
    /// * `saturation` - Saturation channel. [0.0, 1.0]
    /// * `lightness` - Lightness channel. [0.0, 1.0]
    pub const fn hsl(hue: f32, saturation: f32, lightness: f32) -> Self {
        Self::new(hue, saturation, lightness, 1.0)
    }

    /// Return a copy of this color with the saturation channel set to the given value.
    pub const fn with_saturation(self, saturation: f32) -> Self {
        Self { saturation, ..self }
    }

    /// Return a copy of this color with the lightness channel set to the given value.
    pub const fn with_lightness(self, lightness: f32) -> Self {
        Self { lightness, ..self }
    }

    /// Generate a deterministic but [quasi-randomly distributed](https://en.wikipedia.org/wiki/Low-discrepancy_sequence)
    /// color from a provided `index`.
    ///
    /// This can be helpful for generating debug colors.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use bevy_color::Hsla;
    /// // Unique color for an entity
    /// # let entity_index = 123;
    /// // let entity_index = entity.index();
    /// let color = Hsla::sequential_dispersed(entity_index);
    ///
    /// // Palette with 5 distinct hues
    /// let palette = (0..5).map(Hsla::sequential_dispersed).collect::<Vec<_>>();
    /// ```
    pub fn sequential_dispersed(index: u32) -> Self {
        const FRAC_U32MAX_GOLDEN_RATIO: u32 = 2654435769; // (u32::MAX / Φ) rounded up
        const RATIO_360: f32 = 360.0 / u32::MAX as f32;

        // from https://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/
        //
        // Map a sequence of integers (eg: 154, 155, 156, 157, 158) into the [0.0..1.0] range,
        // so that the closer the numbers are, the larger the difference of their image.
        let hue = index.wrapping_mul(FRAC_U32MAX_GOLDEN_RATIO) as f32 * RATIO_360;
        Self::hsl(hue, 1., 0.5)
    }
}

impl Default for Hsla {
    fn default() -> Self {
        Self::new(0., 0., 1., 1.)
    }
}

impl Mix for Hsla {
    #[inline]
    fn mix(&self, other: &Self, factor: f32) -> Self {
        let n_factor = 1.0 - factor;
        Self {
            hue: crate::color_ops::lerp_hue(self.hue, other.hue, factor),
            saturation: self.saturation * n_factor + other.saturation * factor,
            lightness: self.lightness * n_factor + other.lightness * factor,
            alpha: self.alpha * n_factor + other.alpha * factor,
        }
    }
}

impl Gray for Hsla {
    const BLACK: Self = Self::new(0., 0., 0., 1.);
    const WHITE: Self = Self::new(0., 0., 1., 1.);
}

impl Alpha for Hsla {
    #[inline]
    fn with_alpha(&self, alpha: f32) -> Self {
        Self { alpha, ..*self }
    }

    #[inline]
    fn alpha(&self) -> f32 {
        self.alpha
    }

    #[inline]
    fn set_alpha(&mut self, alpha: f32) {
        self.alpha = alpha;
    }
}

impl Hue for Hsla {
    #[inline]
    fn with_hue(&self, hue: f32) -> Self {
        Self { hue, ..*self }
    }

    #[inline]
    fn hue(&self) -> f32 {
        self.hue
    }

    #[inline]
    fn set_hue(&mut self, hue: f32) {
        self.hue = hue;
    }
}

impl Luminance for Hsla {
    #[inline]
    fn with_luminance(&self, lightness: f32) -> Self {
        Self { lightness, ..*self }
    }

    fn luminance(&self) -> f32 {
        self.lightness
    }

    fn darker(&self, amount: f32) -> Self {
        Self {
            lightness: (self.lightness - amount).clamp(0., 1.),
            ..*self
        }
    }

    fn lighter(&self, amount: f32) -> Self {
        Self {
            lightness: (self.lightness + amount).min(1.),
            ..*self
        }
    }
}

impl ColorToComponents for Hsla {
    fn to_f32_array(self) -> [f32; 4] {
        [self.hue, self.saturation, self.lightness, self.alpha]
    }

    fn to_f32_array_no_alpha(self) -> [f32; 3] {
        [self.hue, self.saturation, self.lightness]
    }

    fn to_vec4(self) -> Vec4 {
        Vec4::new(self.hue, self.saturation, self.lightness, self.alpha)
    }

    fn to_vec3(self) -> Vec3 {
        Vec3::new(self.hue, self.saturation, self.lightness)
    }

    fn from_f32_array(color: [f32; 4]) -> Self {
        Self {
            hue: color[0],
            saturation: color[1],
            lightness: color[2],
            alpha: color[3],
        }
    }

    fn from_f32_array_no_alpha(color: [f32; 3]) -> Self {
        Self {
            hue: color[0],
            saturation: color[1],
            lightness: color[2],
            alpha: 1.0,
        }
    }

    fn from_vec4(color: Vec4) -> Self {
        Self {
            hue: color[0],
            saturation: color[1],
            lightness: color[2],
            alpha: color[3],
        }
    }

    fn from_vec3(color: Vec3) -> Self {
        Self {
            hue: color[0],
            saturation: color[1],
            lightness: color[2],
            alpha: 1.0,
        }
    }
}

impl From<Hsla> for Hsva {
    fn from(
        Hsla {
            hue,
            saturation,
            lightness,
            alpha,
        }: Hsla,
    ) -> Self {
        // Based on https://en.wikipedia.org/wiki/HSL_and_HSV#HSL_to_HSV
        let value = lightness + saturation * lightness.min(1. - lightness);
        let saturation = if value == 0. {
            0.
        } else {
            2. * (1. - (lightness / value))
        };

        Hsva::new(hue, saturation, value, alpha)
    }
}

impl From<Hsva> for Hsla {
    fn from(
        Hsva {
            hue,
            saturation,
            value,
            alpha,
        }: Hsva,
    ) -> Self {
        // Based on https://en.wikipedia.org/wiki/HSL_and_HSV#HSV_to_HSL
        let lightness = value * (1. - saturation / 2.);
        let saturation = if lightness == 0. || lightness == 1. {
            0.
        } else {
            (value - lightness) / lightness.min(1. - lightness)
        };

        Hsla::new(hue, saturation, lightness, alpha)
    }
}

// Derived Conversions

impl From<Hwba> for Hsla {
    fn from(value: Hwba) -> Self {
        Hsva::from(value).into()
    }
}

impl From<Hsla> for Hwba {
    fn from(value: Hsla) -> Self {
        Hsva::from(value).into()
    }
}

impl From<Srgba> for Hsla {
    fn from(value: Srgba) -> Self {
        Hsva::from(value).into()
    }
}

impl From<Hsla> for Srgba {
    fn from(value: Hsla) -> Self {
        Hsva::from(value).into()
    }
}

impl From<LinearRgba> for Hsla {
    fn from(value: LinearRgba) -> Self {
        Hsva::from(value).into()
    }
}

impl From<Hsla> for LinearRgba {
    fn from(value: Hsla) -> Self {
        Hsva::from(value).into()
    }
}

impl From<Lcha> for Hsla {
    fn from(value: Lcha) -> Self {
        Hsva::from(value).into()
    }
}

impl From<Hsla> for Lcha {
    fn from(value: Hsla) -> Self {
        Hsva::from(value).into()
    }
}

impl From<Xyza> for Hsla {
    fn from(value: Xyza) -> Self {
        Hsva::from(value).into()
    }
}

impl From<Hsla> for Xyza {
    fn from(value: Hsla) -> Self {
        Hsva::from(value).into()
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{
        color_difference::EuclideanDistance, test_colors::TEST_COLORS, testing::assert_approx_eq,
    };

    #[test]
    fn test_to_from_srgba() {
        let hsla = Hsla::new(0.5, 0.5, 0.5, 1.0);
        let srgba: Srgba = hsla.into();
        let hsla2: Hsla = srgba.into();
        assert_approx_eq!(hsla.hue, hsla2.hue, 0.001);
        assert_approx_eq!(hsla.saturation, hsla2.saturation, 0.001);
        assert_approx_eq!(hsla.lightness, hsla2.lightness, 0.001);
        assert_approx_eq!(hsla.alpha, hsla2.alpha, 0.001);
    }

    #[test]
    fn test_to_from_srgba_2() {
        for color in TEST_COLORS.iter() {
            let rgb2: Srgba = (color.hsl).into();
            let hsl2: Hsla = (color.rgb).into();
            assert!(
                color.rgb.distance(&rgb2) < 0.000001,
                "{}: {:?} != {:?}",
                color.name,
                color.rgb,
                rgb2
            );
            assert_approx_eq!(color.hsl.hue, hsl2.hue, 0.001);
            assert_approx_eq!(color.hsl.saturation, hsl2.saturation, 0.001);
            assert_approx_eq!(color.hsl.lightness, hsl2.lightness, 0.001);
            assert_approx_eq!(color.hsl.alpha, hsl2.alpha, 0.001);
        }
    }

    #[test]
    fn test_to_from_linear() {
        let hsla = Hsla::new(0.5, 0.5, 0.5, 1.0);
        let linear: LinearRgba = hsla.into();
        let hsla2: Hsla = linear.into();
        assert_approx_eq!(hsla.hue, hsla2.hue, 0.001);
        assert_approx_eq!(hsla.saturation, hsla2.saturation, 0.001);
        assert_approx_eq!(hsla.lightness, hsla2.lightness, 0.001);
        assert_approx_eq!(hsla.alpha, hsla2.alpha, 0.001);
    }

    #[test]
    fn test_mix_wrap() {
        let hsla0 = Hsla::new(10., 0.5, 0.5, 1.0);
        let hsla1 = Hsla::new(20., 0.5, 0.5, 1.0);
        let hsla2 = Hsla::new(350., 0.5, 0.5, 1.0);
        assert_approx_eq!(hsla0.mix(&hsla1, 0.25).hue, 12.5, 0.001);
        assert_approx_eq!(hsla0.mix(&hsla1, 0.5).hue, 15., 0.001);
        assert_approx_eq!(hsla0.mix(&hsla1, 0.75).hue, 17.5, 0.001);

        assert_approx_eq!(hsla1.mix(&hsla0, 0.25).hue, 17.5, 0.001);
        assert_approx_eq!(hsla1.mix(&hsla0, 0.5).hue, 15., 0.001);
        assert_approx_eq!(hsla1.mix(&hsla0, 0.75).hue, 12.5, 0.001);

        assert_approx_eq!(hsla0.mix(&hsla2, 0.25).hue, 5., 0.001);
        assert_approx_eq!(hsla0.mix(&hsla2, 0.5).hue, 0., 0.001);
        assert_approx_eq!(hsla0.mix(&hsla2, 0.75).hue, 355., 0.001);

        assert_approx_eq!(hsla2.mix(&hsla0, 0.25).hue, 355., 0.001);
        assert_approx_eq!(hsla2.mix(&hsla0, 0.5).hue, 0., 0.001);
        assert_approx_eq!(hsla2.mix(&hsla0, 0.75).hue, 5., 0.001);
    }

    #[test]
    fn test_from_index() {
        let references = [
            Hsla::hsl(0.0, 1., 0.5),
            Hsla::hsl(222.49225, 1., 0.5),
            Hsla::hsl(84.984474, 1., 0.5),
            Hsla::hsl(307.4767, 1., 0.5),
            Hsla::hsl(169.96895, 1., 0.5),
        ];

        for (index, reference) in references.into_iter().enumerate() {
            let color = Hsla::sequential_dispersed(index as u32);

            assert_approx_eq!(color.hue, reference.hue, 0.001);
        }
    }
}