bevy_color/
linear_rgba.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
use crate::{
    color_difference::EuclideanDistance, impl_componentwise_vector_space, Alpha, ColorToComponents,
    ColorToPacked, Gray, Luminance, Mix, StandardColor,
};
use bevy_math::{Vec3, Vec4};
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::prelude::*;
use bytemuck::{Pod, Zeroable};

/// Linear RGB color with alpha.
#[doc = include_str!("../docs/conversion.md")]
/// <div>
#[doc = include_str!("../docs/diagrams/model_graph.svg")]
/// </div>
#[derive(Debug, Clone, Copy, PartialEq, Pod, Zeroable)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(PartialEq, Default))]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    all(feature = "serialize", feature = "bevy_reflect"),
    reflect(Serialize, Deserialize)
)]
#[repr(C)]
pub struct LinearRgba {
    /// The red channel. [0.0, 1.0]
    pub red: f32,
    /// The green channel. [0.0, 1.0]
    pub green: f32,
    /// The blue channel. [0.0, 1.0]
    pub blue: f32,
    /// The alpha channel. [0.0, 1.0]
    pub alpha: f32,
}

impl StandardColor for LinearRgba {}

impl_componentwise_vector_space!(LinearRgba, [red, green, blue, alpha]);

impl LinearRgba {
    /// A fully black color with full alpha.
    pub const BLACK: Self = Self {
        red: 0.0,
        green: 0.0,
        blue: 0.0,
        alpha: 1.0,
    };

    /// A fully white color with full alpha.
    pub const WHITE: Self = Self {
        red: 1.0,
        green: 1.0,
        blue: 1.0,
        alpha: 1.0,
    };

    /// A fully transparent color.
    pub const NONE: Self = Self {
        red: 0.0,
        green: 0.0,
        blue: 0.0,
        alpha: 0.0,
    };

    /// A fully red color with full alpha.
    pub const RED: Self = Self {
        red: 1.0,
        green: 0.0,
        blue: 0.0,
        alpha: 1.0,
    };

    /// A fully green color with full alpha.
    pub const GREEN: Self = Self {
        red: 0.0,
        green: 1.0,
        blue: 0.0,
        alpha: 1.0,
    };

    /// A fully blue color with full alpha.
    pub const BLUE: Self = Self {
        red: 0.0,
        green: 0.0,
        blue: 1.0,
        alpha: 1.0,
    };

    /// An invalid color.
    ///
    /// This type can be used to represent an invalid color value;
    /// in some rendering applications the color will be ignored,
    /// enabling performant hacks like hiding lines by setting their color to `INVALID`.
    pub const NAN: Self = Self {
        red: f32::NAN,
        green: f32::NAN,
        blue: f32::NAN,
        alpha: f32::NAN,
    };

    /// Construct a new [`LinearRgba`] color from components.
    pub const fn new(red: f32, green: f32, blue: f32, alpha: f32) -> Self {
        Self {
            red,
            green,
            blue,
            alpha,
        }
    }

    /// Construct a new [`LinearRgba`] color from (r, g, b) components, with the default alpha (1.0).
    ///
    /// # Arguments
    ///
    /// * `red` - Red channel. [0.0, 1.0]
    /// * `green` - Green channel. [0.0, 1.0]
    /// * `blue` - Blue channel. [0.0, 1.0]
    pub const fn rgb(red: f32, green: f32, blue: f32) -> Self {
        Self {
            red,
            green,
            blue,
            alpha: 1.0,
        }
    }

    /// Return a copy of this color with the red channel set to the given value.
    pub const fn with_red(self, red: f32) -> Self {
        Self { red, ..self }
    }

    /// Return a copy of this color with the green channel set to the given value.
    pub const fn with_green(self, green: f32) -> Self {
        Self { green, ..self }
    }

    /// Return a copy of this color with the blue channel set to the given value.
    pub const fn with_blue(self, blue: f32) -> Self {
        Self { blue, ..self }
    }

    /// Make the color lighter or darker by some amount
    fn adjust_lightness(&mut self, amount: f32) {
        let luminance = self.luminance();
        let target_luminance = (luminance + amount).clamp(0.0, 1.0);
        if target_luminance < luminance {
            let adjustment = (luminance - target_luminance) / luminance;
            self.mix_assign(Self::new(0.0, 0.0, 0.0, self.alpha), adjustment);
        } else if target_luminance > luminance {
            let adjustment = (target_luminance - luminance) / (1. - luminance);
            self.mix_assign(Self::new(1.0, 1.0, 1.0, self.alpha), adjustment);
        }
    }

    /// Converts this color to a u32.
    ///
    /// Maps the RGBA channels in RGBA order to a little-endian byte array (GPUs are little-endian).
    /// `A` will be the most significant byte and `R` the least significant.
    pub fn as_u32(&self) -> u32 {
        u32::from_le_bytes(self.to_u8_array())
    }
}

impl Default for LinearRgba {
    /// Construct a new [`LinearRgba`] color with the default values (white with full alpha).
    fn default() -> Self {
        Self::WHITE
    }
}

impl Luminance for LinearRgba {
    /// Luminance calculated using the [CIE XYZ formula](https://en.wikipedia.org/wiki/Relative_luminance).
    #[inline]
    fn luminance(&self) -> f32 {
        self.red * 0.2126 + self.green * 0.7152 + self.blue * 0.0722
    }

    #[inline]
    fn with_luminance(&self, luminance: f32) -> Self {
        let current_luminance = self.luminance();
        let adjustment = luminance / current_luminance;
        Self {
            red: (self.red * adjustment).clamp(0., 1.),
            green: (self.green * adjustment).clamp(0., 1.),
            blue: (self.blue * adjustment).clamp(0., 1.),
            alpha: self.alpha,
        }
    }

    #[inline]
    fn darker(&self, amount: f32) -> Self {
        let mut result = *self;
        result.adjust_lightness(-amount);
        result
    }

    #[inline]
    fn lighter(&self, amount: f32) -> Self {
        let mut result = *self;
        result.adjust_lightness(amount);
        result
    }
}

impl Mix for LinearRgba {
    #[inline]
    fn mix(&self, other: &Self, factor: f32) -> Self {
        let n_factor = 1.0 - factor;
        Self {
            red: self.red * n_factor + other.red * factor,
            green: self.green * n_factor + other.green * factor,
            blue: self.blue * n_factor + other.blue * factor,
            alpha: self.alpha * n_factor + other.alpha * factor,
        }
    }
}

impl Gray for LinearRgba {
    const BLACK: Self = Self::BLACK;
    const WHITE: Self = Self::WHITE;
}

impl Alpha for LinearRgba {
    #[inline]
    fn with_alpha(&self, alpha: f32) -> Self {
        Self { alpha, ..*self }
    }

    #[inline]
    fn alpha(&self) -> f32 {
        self.alpha
    }

    #[inline]
    fn set_alpha(&mut self, alpha: f32) {
        self.alpha = alpha;
    }
}

impl EuclideanDistance for LinearRgba {
    #[inline]
    fn distance_squared(&self, other: &Self) -> f32 {
        let dr = self.red - other.red;
        let dg = self.green - other.green;
        let db = self.blue - other.blue;
        dr * dr + dg * dg + db * db
    }
}

impl ColorToComponents for LinearRgba {
    fn to_f32_array(self) -> [f32; 4] {
        [self.red, self.green, self.blue, self.alpha]
    }

    fn to_f32_array_no_alpha(self) -> [f32; 3] {
        [self.red, self.green, self.blue]
    }

    fn to_vec4(self) -> Vec4 {
        Vec4::new(self.red, self.green, self.blue, self.alpha)
    }

    fn to_vec3(self) -> Vec3 {
        Vec3::new(self.red, self.green, self.blue)
    }

    fn from_f32_array(color: [f32; 4]) -> Self {
        Self {
            red: color[0],
            green: color[1],
            blue: color[2],
            alpha: color[3],
        }
    }

    fn from_f32_array_no_alpha(color: [f32; 3]) -> Self {
        Self {
            red: color[0],
            green: color[1],
            blue: color[2],
            alpha: 1.0,
        }
    }

    fn from_vec4(color: Vec4) -> Self {
        Self {
            red: color[0],
            green: color[1],
            blue: color[2],
            alpha: color[3],
        }
    }

    fn from_vec3(color: Vec3) -> Self {
        Self {
            red: color[0],
            green: color[1],
            blue: color[2],
            alpha: 1.0,
        }
    }
}

impl ColorToPacked for LinearRgba {
    fn to_u8_array(self) -> [u8; 4] {
        [self.red, self.green, self.blue, self.alpha]
            .map(|v| (v.clamp(0.0, 1.0) * 255.0).round() as u8)
    }

    fn to_u8_array_no_alpha(self) -> [u8; 3] {
        [self.red, self.green, self.blue].map(|v| (v.clamp(0.0, 1.0) * 255.0).round() as u8)
    }

    fn from_u8_array(color: [u8; 4]) -> Self {
        Self::from_f32_array(color.map(|u| u as f32 / 255.0))
    }

    fn from_u8_array_no_alpha(color: [u8; 3]) -> Self {
        Self::from_f32_array_no_alpha(color.map(|u| u as f32 / 255.0))
    }
}

#[cfg(feature = "wgpu-types")]
impl From<LinearRgba> for wgpu_types::Color {
    fn from(color: LinearRgba) -> Self {
        wgpu_types::Color {
            r: color.red as f64,
            g: color.green as f64,
            b: color.blue as f64,
            a: color.alpha as f64,
        }
    }
}

// [`LinearRgba`] is intended to be used with shaders
// So it's the only color type that implements [`ShaderType`] to make it easier to use inside shaders
impl encase::ShaderType for LinearRgba {
    type ExtraMetadata = ();

    const METADATA: encase::private::Metadata<Self::ExtraMetadata> = {
        let size =
            encase::private::SizeValue::from(<f32 as encase::private::ShaderSize>::SHADER_SIZE)
                .mul(4);
        let alignment = encase::private::AlignmentValue::from_next_power_of_two_size(size);

        encase::private::Metadata {
            alignment,
            has_uniform_min_alignment: false,
            is_pod: true,
            min_size: size,
            extra: (),
        }
    };

    const UNIFORM_COMPAT_ASSERT: fn() = || {};
}

impl encase::private::WriteInto for LinearRgba {
    fn write_into<B: encase::private::BufferMut>(&self, writer: &mut encase::private::Writer<B>) {
        for el in &[self.red, self.green, self.blue, self.alpha] {
            encase::private::WriteInto::write_into(el, writer);
        }
    }
}

impl encase::private::ReadFrom for LinearRgba {
    fn read_from<B: encase::private::BufferRef>(
        &mut self,
        reader: &mut encase::private::Reader<B>,
    ) {
        let mut buffer = [0.0f32; 4];
        for el in &mut buffer {
            encase::private::ReadFrom::read_from(el, reader);
        }

        *self = LinearRgba {
            red: buffer[0],
            green: buffer[1],
            blue: buffer[2],
            alpha: buffer[3],
        }
    }
}

impl encase::private::CreateFrom for LinearRgba {
    fn create_from<B>(reader: &mut encase::private::Reader<B>) -> Self
    where
        B: encase::private::BufferRef,
    {
        // These are intentionally not inlined in the constructor to make this
        // resilient to internal Color refactors / implicit type changes.
        let red: f32 = encase::private::CreateFrom::create_from(reader);
        let green: f32 = encase::private::CreateFrom::create_from(reader);
        let blue: f32 = encase::private::CreateFrom::create_from(reader);
        let alpha: f32 = encase::private::CreateFrom::create_from(reader);
        LinearRgba {
            red,
            green,
            blue,
            alpha,
        }
    }
}

impl encase::ShaderSize for LinearRgba {}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn euclidean_distance() {
        // White to black
        let a = LinearRgba::new(0.0, 0.0, 0.0, 1.0);
        let b = LinearRgba::new(1.0, 1.0, 1.0, 1.0);
        assert_eq!(a.distance_squared(&b), 3.0);

        // Alpha shouldn't matter
        let a = LinearRgba::new(0.0, 0.0, 0.0, 1.0);
        let b = LinearRgba::new(1.0, 1.0, 1.0, 0.0);
        assert_eq!(a.distance_squared(&b), 3.0);

        // Red to green
        let a = LinearRgba::new(0.0, 0.0, 0.0, 1.0);
        let b = LinearRgba::new(1.0, 0.0, 0.0, 1.0);
        assert_eq!(a.distance_squared(&b), 1.0);
    }

    #[test]
    fn to_and_from_u8() {
        // from_u8_array
        let a = LinearRgba::from_u8_array([255, 0, 0, 255]);
        let b = LinearRgba::new(1.0, 0.0, 0.0, 1.0);
        assert_eq!(a, b);

        // from_u8_array_no_alpha
        let a = LinearRgba::from_u8_array_no_alpha([255, 255, 0]);
        let b = LinearRgba::rgb(1.0, 1.0, 0.0);
        assert_eq!(a, b);

        // to_u8_array
        let a = LinearRgba::new(0.0, 0.0, 1.0, 1.0).to_u8_array();
        let b = [0, 0, 255, 255];
        assert_eq!(a, b);

        // to_u8_array_no_alpha
        let a = LinearRgba::rgb(0.0, 1.0, 1.0).to_u8_array_no_alpha();
        let b = [0, 255, 255];
        assert_eq!(a, b);

        // clamping
        let a = LinearRgba::rgb(0.0, 100.0, -100.0).to_u8_array_no_alpha();
        let b = [0, 255, 0];
        assert_eq!(a, b);
    }

    #[test]
    fn darker_lighter() {
        // Darker and lighter should be commutative.
        let color = LinearRgba::new(0.4, 0.5, 0.6, 1.0);
        let darker1 = color.darker(0.1);
        let darker2 = darker1.darker(0.1);
        let twice_as_dark = color.darker(0.2);
        assert!(darker2.distance_squared(&twice_as_dark) < 0.0001);

        let lighter1 = color.lighter(0.1);
        let lighter2 = lighter1.lighter(0.1);
        let twice_as_light = color.lighter(0.2);
        assert!(lighter2.distance_squared(&twice_as_light) < 0.0001);
    }
}