bevy_core/task_pool_options.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
use bevy_tasks::{AsyncComputeTaskPool, ComputeTaskPool, IoTaskPool, TaskPoolBuilder};
use bevy_utils::tracing::trace;
/// Defines a simple way to determine how many threads to use given the number of remaining cores
/// and number of total cores
#[derive(Clone, Debug)]
pub struct TaskPoolThreadAssignmentPolicy {
/// Force using at least this many threads
pub min_threads: usize,
/// Under no circumstance use more than this many threads for this pool
pub max_threads: usize,
/// Target using this percentage of total cores, clamped by `min_threads` and `max_threads`. It is
/// permitted to use 1.0 to try to use all remaining threads
pub percent: f32,
}
impl TaskPoolThreadAssignmentPolicy {
/// Determine the number of threads to use for this task pool
fn get_number_of_threads(&self, remaining_threads: usize, total_threads: usize) -> usize {
assert!(self.percent >= 0.0);
let mut desired = (total_threads as f32 * self.percent).round() as usize;
// Limit ourselves to the number of cores available
desired = desired.min(remaining_threads);
// Clamp by min_threads, max_threads. (This may result in us using more threads than are
// available, this is intended. An example case where this might happen is a device with
// <= 2 threads.
desired.clamp(self.min_threads, self.max_threads)
}
}
/// Helper for configuring and creating the default task pools. For end-users who want full control,
/// set up [`TaskPoolPlugin`](super::TaskPoolPlugin)
#[derive(Clone, Debug)]
pub struct TaskPoolOptions {
/// If the number of physical cores is less than `min_total_threads`, force using
/// `min_total_threads`
pub min_total_threads: usize,
/// If the number of physical cores is greater than `max_total_threads`, force using
/// `max_total_threads`
pub max_total_threads: usize,
/// Used to determine number of IO threads to allocate
pub io: TaskPoolThreadAssignmentPolicy,
/// Used to determine number of async compute threads to allocate
pub async_compute: TaskPoolThreadAssignmentPolicy,
/// Used to determine number of compute threads to allocate
pub compute: TaskPoolThreadAssignmentPolicy,
}
impl Default for TaskPoolOptions {
fn default() -> Self {
TaskPoolOptions {
// By default, use however many cores are available on the system
min_total_threads: 1,
max_total_threads: usize::MAX,
// Use 25% of cores for IO, at least 1, no more than 4
io: TaskPoolThreadAssignmentPolicy {
min_threads: 1,
max_threads: 4,
percent: 0.25,
},
// Use 25% of cores for async compute, at least 1, no more than 4
async_compute: TaskPoolThreadAssignmentPolicy {
min_threads: 1,
max_threads: 4,
percent: 0.25,
},
// Use all remaining cores for compute (at least 1)
compute: TaskPoolThreadAssignmentPolicy {
min_threads: 1,
max_threads: usize::MAX,
percent: 1.0, // This 1.0 here means "whatever is left over"
},
}
}
}
impl TaskPoolOptions {
/// Create a configuration that forces using the given number of threads.
pub fn with_num_threads(thread_count: usize) -> Self {
TaskPoolOptions {
min_total_threads: thread_count,
max_total_threads: thread_count,
..Default::default()
}
}
/// Inserts the default thread pools into the given resource map based on the configured values
pub fn create_default_pools(&self) {
let total_threads = bevy_tasks::available_parallelism()
.clamp(self.min_total_threads, self.max_total_threads);
trace!("Assigning {} cores to default task pools", total_threads);
let mut remaining_threads = total_threads;
{
// Determine the number of IO threads we will use
let io_threads = self
.io
.get_number_of_threads(remaining_threads, total_threads);
trace!("IO Threads: {}", io_threads);
remaining_threads = remaining_threads.saturating_sub(io_threads);
IoTaskPool::get_or_init(|| {
TaskPoolBuilder::default()
.num_threads(io_threads)
.thread_name("IO Task Pool".to_string())
.build()
});
}
{
// Determine the number of async compute threads we will use
let async_compute_threads = self
.async_compute
.get_number_of_threads(remaining_threads, total_threads);
trace!("Async Compute Threads: {}", async_compute_threads);
remaining_threads = remaining_threads.saturating_sub(async_compute_threads);
AsyncComputeTaskPool::get_or_init(|| {
TaskPoolBuilder::default()
.num_threads(async_compute_threads)
.thread_name("Async Compute Task Pool".to_string())
.build()
});
}
{
// Determine the number of compute threads we will use
// This is intentionally last so that an end user can specify 1.0 as the percent
let compute_threads = self
.compute
.get_number_of_threads(remaining_threads, total_threads);
trace!("Compute Threads: {}", compute_threads);
ComputeTaskPool::get_or_init(|| {
TaskPoolBuilder::default()
.num_threads(compute_threads)
.thread_name("Compute Task Pool".to_string())
.build()
});
}
}
}