bevy_ecs/
component.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
//! Types for declaring and storing [`Component`]s.

use crate::{
    self as bevy_ecs,
    archetype::ArchetypeFlags,
    bundle::BundleInfo,
    change_detection::MAX_CHANGE_AGE,
    entity::Entity,
    query::DebugCheckedUnwrap,
    storage::{SparseSetIndex, SparseSets, Storages, Table, TableRow},
    system::{Local, Resource, SystemParam},
    world::{DeferredWorld, FromWorld, World},
};
use alloc::{borrow::Cow, sync::Arc};
pub use bevy_ecs_macros::Component;
use bevy_ptr::{OwningPtr, UnsafeCellDeref};
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::Reflect;
use bevy_utils::{HashMap, HashSet, TypeIdMap};
#[cfg(feature = "track_change_detection")]
use core::panic::Location;
use core::{
    alloc::Layout,
    any::{Any, TypeId},
    cell::UnsafeCell,
    fmt::Debug,
    marker::PhantomData,
    mem::needs_drop,
};
use derive_more::derive::{Display, Error};

/// A data type that can be used to store data for an [entity].
///
/// `Component` is a [derivable trait]: this means that a data type can implement it by applying a `#[derive(Component)]` attribute to it.
/// However, components must always satisfy the `Send + Sync + 'static` trait bounds.
///
/// [entity]: crate::entity
/// [derivable trait]: https://doc.rust-lang.org/book/appendix-03-derivable-traits.html
///
/// # Examples
///
/// Components can take many forms: they are usually structs, but can also be of every other kind of data type, like enums or zero sized types.
/// The following examples show how components are laid out in code.
///
/// ```
/// # use bevy_ecs::component::Component;
/// # struct Color;
/// #
/// // A component can contain data...
/// #[derive(Component)]
/// struct LicensePlate(String);
///
/// // ... but it can also be a zero-sized marker.
/// #[derive(Component)]
/// struct Car;
///
/// // Components can also be structs with named fields...
/// #[derive(Component)]
/// struct VehiclePerformance {
///     acceleration: f32,
///     top_speed: f32,
///     handling: f32,
/// }
///
/// // ... or enums.
/// #[derive(Component)]
/// enum WheelCount {
///     Two,
///     Three,
///     Four,
/// }
/// ```
///
/// # Component and data access
///
/// See the [`entity`] module level documentation to learn how to add or remove components from an entity.
///
/// See the documentation for [`Query`] to learn how to access component data from a system.
///
/// [`entity`]: crate::entity#usage
/// [`Query`]: crate::system::Query
///
/// # Choosing a storage type
///
/// Components can be stored in the world using different strategies with their own performance implications.
/// By default, components are added to the [`Table`] storage, which is optimized for query iteration.
///
/// Alternatively, components can be added to the [`SparseSet`] storage, which is optimized for component insertion and removal.
/// This is achieved by adding an additional `#[component(storage = "SparseSet")]` attribute to the derive one:
///
/// ```
/// # use bevy_ecs::component::Component;
/// #
/// #[derive(Component)]
/// #[component(storage = "SparseSet")]
/// struct ComponentA;
/// ```
///
/// [`Table`]: crate::storage::Table
/// [`SparseSet`]: crate::storage::SparseSet
///
/// # Required Components
///
/// Components can specify Required Components. If some [`Component`] `A` requires [`Component`] `B`,  then when `A` is inserted,
/// `B` will _also_ be initialized and inserted (if it was not manually specified).
///
/// The [`Default`] constructor will be used to initialize the component, by default:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #[derive(Component)]
/// #[require(B)]
/// struct A;
///
/// #[derive(Component, Default, PartialEq, Eq, Debug)]
/// struct B(usize);
///
/// # let mut world = World::default();
/// // This will implicitly also insert B with the Default constructor
/// let id = world.spawn(A).id();
/// assert_eq!(&B(0), world.entity(id).get::<B>().unwrap());
///
/// // This will _not_ implicitly insert B, because it was already provided
/// world.spawn((A, B(11)));
/// ```
///
/// Components can have more than one required component:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #[derive(Component)]
/// #[require(B, C)]
/// struct A;
///
/// #[derive(Component, Default, PartialEq, Eq, Debug)]
/// #[require(C)]
/// struct B(usize);
///
/// #[derive(Component, Default, PartialEq, Eq, Debug)]
/// struct C(u32);
///
/// # let mut world = World::default();
/// // This will implicitly also insert B and C with their Default constructors
/// let id = world.spawn(A).id();
/// assert_eq!(&B(0), world.entity(id).get::<B>().unwrap());
/// assert_eq!(&C(0), world.entity(id).get::<C>().unwrap());
/// ```
///
/// You can also define a custom constructor function or closure:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #[derive(Component)]
/// #[require(C(init_c))]
/// struct A;
///
/// #[derive(Component, PartialEq, Eq, Debug)]
/// #[require(C(|| C(20)))]
/// struct B;
///
/// #[derive(Component, PartialEq, Eq, Debug)]
/// struct C(usize);
///
/// fn init_c() -> C {
///     C(10)
/// }
///
/// # let mut world = World::default();
/// // This will implicitly also insert C with the init_c() constructor
/// let id = world.spawn(A).id();
/// assert_eq!(&C(10), world.entity(id).get::<C>().unwrap());
///
/// // This will implicitly also insert C with the `|| C(20)` constructor closure
/// let id = world.spawn(B).id();
/// assert_eq!(&C(20), world.entity(id).get::<C>().unwrap());
/// ```
///
/// Required components are _recursive_. This means, if a Required Component has required components,
/// those components will _also_ be inserted if they are missing:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #[derive(Component)]
/// #[require(B)]
/// struct A;
///
/// #[derive(Component, Default, PartialEq, Eq, Debug)]
/// #[require(C)]
/// struct B(usize);
///
/// #[derive(Component, Default, PartialEq, Eq, Debug)]
/// struct C(u32);
///
/// # let mut world = World::default();
/// // This will implicitly also insert B and C with their Default constructors
/// let id = world.spawn(A).id();
/// assert_eq!(&B(0), world.entity(id).get::<B>().unwrap());
/// assert_eq!(&C(0), world.entity(id).get::<C>().unwrap());
/// ```
///
/// Note that cycles in the "component require tree" will result in stack overflows when attempting to
/// insert a component.
///
/// This "multiple inheritance" pattern does mean that it is possible to have duplicate requires for a given type
/// at different levels of the inheritance tree:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #[derive(Component)]
/// struct X(usize);
///
/// #[derive(Component, Default)]
/// #[require(X(|| X(1)))]
/// struct Y;
///
/// #[derive(Component)]
/// #[require(
///     Y,
///     X(|| X(2)),
/// )]
/// struct Z;
///
/// # let mut world = World::default();
/// // In this case, the x2 constructor is used for X
/// let id = world.spawn(Z).id();
/// assert_eq!(2, world.entity(id).get::<X>().unwrap().0);
/// ```
///
/// In general, this shouldn't happen often, but when it does the algorithm for choosing the constructor from the tree is simple and predictable:
/// 1. A constructor from a direct `#[require()]`, if one exists, is selected with priority.
/// 2. Otherwise, perform a Depth First Search on the tree of requirements and select the first one found.
///
/// From a user perspective, just think about this as the following:
/// 1. Specifying a required component constructor for Foo directly on a spawned component Bar will result in that constructor being used (and overriding existing constructors lower in the inheritance tree). This is the classic "inheritance override" behavior people expect.
/// 2. For cases where "multiple inheritance" results in constructor clashes, Components should be listed in "importance order". List a component earlier in the requirement list to initialize its inheritance tree earlier.
///
/// ## Registering required components at runtime
///
/// In most cases, required components should be registered using the `require` attribute as shown above.
/// However, in some cases, it may be useful to register required components at runtime.
///
/// This can be done through [`World::register_required_components`] or  [`World::register_required_components_with`]
/// for the [`Default`] and custom constructors respectively:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #[derive(Component)]
/// struct A;
///
/// #[derive(Component, Default, PartialEq, Eq, Debug)]
/// struct B(usize);
///
/// #[derive(Component, PartialEq, Eq, Debug)]
/// struct C(u32);
///
/// # let mut world = World::default();
/// // Register B as required by A and C as required by B.
/// world.register_required_components::<A, B>();
/// world.register_required_components_with::<B, C>(|| C(2));
///
/// // This will implicitly also insert B with its Default constructor
/// // and C with the custom constructor defined by B.
/// let id = world.spawn(A).id();
/// assert_eq!(&B(0), world.entity(id).get::<B>().unwrap());
/// assert_eq!(&C(2), world.entity(id).get::<C>().unwrap());
/// ```
///
/// Similar rules as before apply to duplicate requires fer a given type at different levels
/// of the inheritance tree. `A` requiring `C` directly would take precedence over indirectly
/// requiring it through `A` requiring `B` and `B` requiring `C`.
///
/// Unlike with the `require` attribute, directly requiring the same component multiple times
/// for the same component will result in a panic. This is done to prevent conflicting constructors
/// and confusing ordering dependencies.
///
/// Note that requirements must currently be registered before the requiring component is inserted
/// into the world for the first time. Registering requirements after this will lead to a panic.
///
/// # Adding component's hooks
///
/// See [`ComponentHooks`] for a detailed explanation of component's hooks.
///
/// Alternatively to the example shown in [`ComponentHooks`]' documentation, hooks can be configured using following attributes:
/// - `#[component(on_add = on_add_function)]`
/// - `#[component(on_insert = on_insert_function)]`
/// - `#[component(on_replace = on_replace_function)]`
/// - `#[component(on_remove = on_remove_function)]`
///
/// ```
/// # use bevy_ecs::component::Component;
/// # use bevy_ecs::world::DeferredWorld;
/// # use bevy_ecs::entity::Entity;
/// # use bevy_ecs::component::ComponentId;
/// #
/// #[derive(Component)]
/// #[component(on_add = my_on_add_hook)]
/// #[component(on_insert = my_on_insert_hook)]
/// // Another possible way of configuring hooks:
/// // #[component(on_add = my_on_add_hook, on_insert = my_on_insert_hook)]
/// //
/// // We don't have a replace or remove hook, so we can leave them out:
/// // #[component(on_replace = my_on_replace_hook, on_remove = my_on_remove_hook)]
/// struct ComponentA;
///
/// fn my_on_add_hook(world: DeferredWorld, entity: Entity, id: ComponentId) {
///     // ...
/// }
///
/// // You can also omit writing some types using generics.
/// fn my_on_insert_hook<T1, T2>(world: DeferredWorld, _: T1, _: T2) {
///     // ...
/// }
/// ```
///
/// # Implementing the trait for foreign types
///
/// As a consequence of the [orphan rule], it is not possible to separate into two different crates the implementation of `Component` from the definition of a type.
/// This means that it is not possible to directly have a type defined in a third party library as a component.
/// This important limitation can be easily worked around using the [newtype pattern]:
/// this makes it possible to locally define and implement `Component` for a tuple struct that wraps the foreign type.
/// The following example gives a demonstration of this pattern.
///
/// ```
/// // `Component` is defined in the `bevy_ecs` crate.
/// use bevy_ecs::component::Component;
///
/// // `Duration` is defined in the `std` crate.
/// use std::time::Duration;
///
/// // It is not possible to implement `Component` for `Duration` from this position, as they are
/// // both foreign items, defined in an external crate. However, nothing prevents to define a new
/// // `Cooldown` type that wraps `Duration`. As `Cooldown` is defined in a local crate, it is
/// // possible to implement `Component` for it.
/// #[derive(Component)]
/// struct Cooldown(Duration);
/// ```
///
/// [orphan rule]: https://doc.rust-lang.org/book/ch10-02-traits.html#implementing-a-trait-on-a-type
/// [newtype pattern]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#using-the-newtype-pattern-to-implement-external-traits-on-external-types
///
/// # `!Sync` Components
/// A `!Sync` type cannot implement `Component`. However, it is possible to wrap a `Send` but not `Sync`
/// type in [`SyncCell`] or the currently unstable [`Exclusive`] to make it `Sync`. This forces only
/// having mutable access (`&mut T` only, never `&T`), but makes it safe to reference across multiple
/// threads.
///
/// This will fail to compile since `RefCell` is `!Sync`.
/// ```compile_fail
/// # use std::cell::RefCell;
/// # use bevy_ecs::component::Component;
/// #[derive(Component)]
/// struct NotSync {
///    counter: RefCell<usize>,
/// }
/// ```
///
/// This will compile since the `RefCell` is wrapped with `SyncCell`.
/// ```
/// # use std::cell::RefCell;
/// # use bevy_ecs::component::Component;
/// use bevy_utils::synccell::SyncCell;
///
/// // This will compile.
/// #[derive(Component)]
/// struct ActuallySync {
///    counter: SyncCell<RefCell<usize>>,
/// }
/// ```
///
/// [`SyncCell`]: bevy_utils::synccell::SyncCell
/// [`Exclusive`]: https://doc.rust-lang.org/nightly/std/sync/struct.Exclusive.html
#[diagnostic::on_unimplemented(
    message = "`{Self}` is not a `Component`",
    label = "invalid `Component`",
    note = "consider annotating `{Self}` with `#[derive(Component)]`"
)]
pub trait Component: Send + Sync + 'static {
    /// A constant indicating the storage type used for this component.
    const STORAGE_TYPE: StorageType;

    /// Called when registering this component, allowing mutable access to its [`ComponentHooks`].
    fn register_component_hooks(_hooks: &mut ComponentHooks) {}

    /// Registers required components.
    fn register_required_components(
        _component_id: ComponentId,
        _components: &mut Components,
        _storages: &mut Storages,
        _required_components: &mut RequiredComponents,
        _inheritance_depth: u16,
    ) {
    }
}

/// The storage used for a specific component type.
///
/// # Examples
/// The [`StorageType`] for a component is configured via the derive attribute
///
/// ```
/// # use bevy_ecs::{prelude::*, component::*};
/// #[derive(Component)]
/// #[component(storage = "SparseSet")]
/// struct A;
/// ```
#[derive(Debug, Copy, Clone, Default, Eq, PartialEq)]
pub enum StorageType {
    /// Provides fast and cache-friendly iteration, but slower addition and removal of components.
    /// This is the default storage type.
    #[default]
    Table,
    /// Provides fast addition and removal of components, but slower iteration.
    SparseSet,
}

/// The type used for [`Component`] lifecycle hooks such as `on_add`, `on_insert` or `on_remove`
pub type ComponentHook = for<'w> fn(DeferredWorld<'w>, Entity, ComponentId);

/// [`World`]-mutating functions that run as part of lifecycle events of a [`Component`].
///
/// Hooks are functions that run when a component is added, overwritten, or removed from an entity.
/// These are intended to be used for structural side effects that need to happen when a component is added or removed,
/// and are not intended for general-purpose logic.
///
/// For example, you might use a hook to update a cached index when a component is added,
/// to clean up resources when a component is removed,
/// or to keep hierarchical data structures across entities in sync.
///
/// This information is stored in the [`ComponentInfo`] of the associated component.
///
/// There is two ways of configuring hooks for a component:
/// 1. Defining the [`Component::register_component_hooks`] method (see [`Component`])
/// 2. Using the [`World::register_component_hooks`] method
///
/// # Example 2
///
/// ```
/// use bevy_ecs::prelude::*;
/// use bevy_utils::HashSet;
///
/// #[derive(Component)]
/// struct MyTrackedComponent;
///
/// #[derive(Resource, Default)]
/// struct TrackedEntities(HashSet<Entity>);
///
/// let mut world = World::new();
/// world.init_resource::<TrackedEntities>();
///
/// // No entities with `MyTrackedComponent` have been added yet, so we can safely add component hooks
/// let mut tracked_component_query = world.query::<&MyTrackedComponent>();
/// assert!(tracked_component_query.iter(&world).next().is_none());
///
/// world.register_component_hooks::<MyTrackedComponent>().on_add(|mut world, entity, _component_id| {
///    let mut tracked_entities = world.resource_mut::<TrackedEntities>();
///   tracked_entities.0.insert(entity);
/// });
///
/// world.register_component_hooks::<MyTrackedComponent>().on_remove(|mut world, entity, _component_id| {
///   let mut tracked_entities = world.resource_mut::<TrackedEntities>();
///   tracked_entities.0.remove(&entity);
/// });
///
/// let entity = world.spawn(MyTrackedComponent).id();
/// let tracked_entities = world.resource::<TrackedEntities>();
/// assert!(tracked_entities.0.contains(&entity));
///
/// world.despawn(entity);
/// let tracked_entities = world.resource::<TrackedEntities>();
/// assert!(!tracked_entities.0.contains(&entity));
/// ```
#[derive(Debug, Clone, Default)]
pub struct ComponentHooks {
    pub(crate) on_add: Option<ComponentHook>,
    pub(crate) on_insert: Option<ComponentHook>,
    pub(crate) on_replace: Option<ComponentHook>,
    pub(crate) on_remove: Option<ComponentHook>,
}

impl ComponentHooks {
    /// Register a [`ComponentHook`] that will be run when this component is added to an entity.
    /// An `on_add` hook will always run before `on_insert` hooks. Spawning an entity counts as
    /// adding all of its components.
    ///
    /// # Panics
    ///
    /// Will panic if the component already has an `on_add` hook
    pub fn on_add(&mut self, hook: ComponentHook) -> &mut Self {
        self.try_on_add(hook)
            .expect("Component already has an on_add hook")
    }

    /// Register a [`ComponentHook`] that will be run when this component is added (with `.insert`)
    /// or replaced.
    ///
    /// An `on_insert` hook always runs after any `on_add` hooks (if the entity didn't already have the component).
    ///
    /// # Warning
    ///
    /// The hook won't run if the component is already present and is only mutated, such as in a system via a query.
    /// As a result, this is *not* an appropriate mechanism for reliably updating indexes and other caches.
    ///
    /// # Panics
    ///
    /// Will panic if the component already has an `on_insert` hook
    pub fn on_insert(&mut self, hook: ComponentHook) -> &mut Self {
        self.try_on_insert(hook)
            .expect("Component already has an on_insert hook")
    }

    /// Register a [`ComponentHook`] that will be run when this component is about to be dropped,
    /// such as being replaced (with `.insert`) or removed.
    ///
    /// If this component is inserted onto an entity that already has it, this hook will run before the value is replaced,
    /// allowing access to the previous data just before it is dropped.
    /// This hook does *not* run if the entity did not already have this component.
    ///
    /// An `on_replace` hook always runs before any `on_remove` hooks (if the component is being removed from the entity).
    ///
    /// # Warning
    ///
    /// The hook won't run if the component is already present and is only mutated, such as in a system via a query.
    /// As a result, this is *not* an appropriate mechanism for reliably updating indexes and other caches.
    ///
    /// # Panics
    ///
    /// Will panic if the component already has an `on_replace` hook
    pub fn on_replace(&mut self, hook: ComponentHook) -> &mut Self {
        self.try_on_replace(hook)
            .expect("Component already has an on_replace hook")
    }

    /// Register a [`ComponentHook`] that will be run when this component is removed from an entity.
    /// Despawning an entity counts as removing all of its components.
    ///
    /// # Panics
    ///
    /// Will panic if the component already has an `on_remove` hook
    pub fn on_remove(&mut self, hook: ComponentHook) -> &mut Self {
        self.try_on_remove(hook)
            .expect("Component already has an on_remove hook")
    }

    /// Attempt to register a [`ComponentHook`] that will be run when this component is added to an entity.
    ///
    /// This is a fallible version of [`Self::on_add`].
    ///
    /// Returns `None` if the component already has an `on_add` hook.
    pub fn try_on_add(&mut self, hook: ComponentHook) -> Option<&mut Self> {
        if self.on_add.is_some() {
            return None;
        }
        self.on_add = Some(hook);
        Some(self)
    }

    /// Attempt to register a [`ComponentHook`] that will be run when this component is added (with `.insert`)
    ///
    /// This is a fallible version of [`Self::on_insert`].
    ///
    /// Returns `None` if the component already has an `on_insert` hook.
    pub fn try_on_insert(&mut self, hook: ComponentHook) -> Option<&mut Self> {
        if self.on_insert.is_some() {
            return None;
        }
        self.on_insert = Some(hook);
        Some(self)
    }

    /// Attempt to register a [`ComponentHook`] that will be run when this component is replaced (with `.insert`) or removed
    ///
    /// This is a fallible version of [`Self::on_replace`].
    ///
    /// Returns `None` if the component already has an `on_replace` hook.
    pub fn try_on_replace(&mut self, hook: ComponentHook) -> Option<&mut Self> {
        if self.on_replace.is_some() {
            return None;
        }
        self.on_replace = Some(hook);
        Some(self)
    }

    /// Attempt to register a [`ComponentHook`] that will be run when this component is removed from an entity.
    ///
    /// This is a fallible version of [`Self::on_remove`].
    ///
    /// Returns `None` if the component already has an `on_remove` hook.
    pub fn try_on_remove(&mut self, hook: ComponentHook) -> Option<&mut Self> {
        if self.on_remove.is_some() {
            return None;
        }
        self.on_remove = Some(hook);
        Some(self)
    }
}

/// Stores metadata for a type of component or resource stored in a specific [`World`].
#[derive(Debug, Clone)]
pub struct ComponentInfo {
    id: ComponentId,
    descriptor: ComponentDescriptor,
    hooks: ComponentHooks,
    required_components: RequiredComponents,
    required_by: HashSet<ComponentId>,
}

impl ComponentInfo {
    /// Returns a value uniquely identifying the current component.
    #[inline]
    pub fn id(&self) -> ComponentId {
        self.id
    }

    /// Returns the name of the current component.
    #[inline]
    pub fn name(&self) -> &str {
        &self.descriptor.name
    }

    /// Returns the [`TypeId`] of the underlying component type.
    /// Returns `None` if the component does not correspond to a Rust type.
    #[inline]
    pub fn type_id(&self) -> Option<TypeId> {
        self.descriptor.type_id
    }

    /// Returns the layout used to store values of this component in memory.
    #[inline]
    pub fn layout(&self) -> Layout {
        self.descriptor.layout
    }

    #[inline]
    /// Get the function which should be called to clean up values of
    /// the underlying component type. This maps to the
    /// [`Drop`] implementation for 'normal' Rust components
    ///
    /// Returns `None` if values of the underlying component type don't
    /// need to be dropped, e.g. as reported by [`needs_drop`].
    pub fn drop(&self) -> Option<unsafe fn(OwningPtr<'_>)> {
        self.descriptor.drop
    }

    /// Returns a value indicating the storage strategy for the current component.
    #[inline]
    pub fn storage_type(&self) -> StorageType {
        self.descriptor.storage_type
    }

    /// Returns `true` if the underlying component type can be freely shared between threads.
    /// If this returns `false`, then extra care must be taken to ensure that components
    /// are not accessed from the wrong thread.
    #[inline]
    pub fn is_send_and_sync(&self) -> bool {
        self.descriptor.is_send_and_sync
    }

    /// Create a new [`ComponentInfo`].
    pub(crate) fn new(id: ComponentId, descriptor: ComponentDescriptor) -> Self {
        ComponentInfo {
            id,
            descriptor,
            hooks: Default::default(),
            required_components: Default::default(),
            required_by: Default::default(),
        }
    }

    /// Update the given flags to include any [`ComponentHook`] registered to self
    #[inline]
    pub(crate) fn update_archetype_flags(&self, flags: &mut ArchetypeFlags) {
        if self.hooks().on_add.is_some() {
            flags.insert(ArchetypeFlags::ON_ADD_HOOK);
        }
        if self.hooks().on_insert.is_some() {
            flags.insert(ArchetypeFlags::ON_INSERT_HOOK);
        }
        if self.hooks().on_replace.is_some() {
            flags.insert(ArchetypeFlags::ON_REPLACE_HOOK);
        }
        if self.hooks().on_remove.is_some() {
            flags.insert(ArchetypeFlags::ON_REMOVE_HOOK);
        }
    }

    /// Provides a reference to the collection of hooks associated with this [`Component`]
    pub fn hooks(&self) -> &ComponentHooks {
        &self.hooks
    }

    /// Retrieves the [`RequiredComponents`] collection, which contains all required components (and their constructors)
    /// needed by this component. This includes _recursive_ required components.
    pub fn required_components(&self) -> &RequiredComponents {
        &self.required_components
    }
}

/// A value which uniquely identifies the type of a [`Component`] or [`Resource`] within a
/// [`World`].
///
/// Each time a new `Component` type is registered within a `World` using
/// e.g. [`World::register_component`] or [`World::register_component_with_descriptor`]
/// or a Resource with e.g. [`World::init_resource`],
/// a corresponding `ComponentId` is created to track it.
///
/// While the distinction between `ComponentId` and [`TypeId`] may seem superficial, breaking them
/// into two separate but related concepts allows components to exist outside of Rust's type system.
/// Each Rust type registered as a `Component` will have a corresponding `ComponentId`, but additional
/// `ComponentId`s may exist in a `World` to track components which cannot be
/// represented as Rust types for scripting or other advanced use-cases.
///
/// A `ComponentId` is tightly coupled to its parent `World`. Attempting to use a `ComponentId` from
/// one `World` to access the metadata of a `Component` in a different `World` is undefined behavior
/// and must not be attempted.
///
/// Given a type `T` which implements [`Component`], the `ComponentId` for `T` can be retrieved
/// from a `World` using [`World::component_id()`] or via [`Components::component_id()`]. Access
/// to the `ComponentId` for a [`Resource`] is available via [`Components::resource_id()`].
#[derive(Debug, Copy, Clone, Hash, Ord, PartialOrd, Eq, PartialEq)]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect),
    reflect(Debug, Hash, PartialEq)
)]
pub struct ComponentId(usize);

impl ComponentId {
    /// Creates a new [`ComponentId`].
    ///
    /// The `index` is a unique value associated with each type of component in a given world.
    /// Usually, this value is taken from a counter incremented for each type of component registered with the world.
    #[inline]
    pub const fn new(index: usize) -> ComponentId {
        ComponentId(index)
    }

    /// Returns the index of the current component.
    #[inline]
    pub fn index(self) -> usize {
        self.0
    }
}

impl SparseSetIndex for ComponentId {
    #[inline]
    fn sparse_set_index(&self) -> usize {
        self.index()
    }

    #[inline]
    fn get_sparse_set_index(value: usize) -> Self {
        Self(value)
    }
}

/// A value describing a component or resource, which may or may not correspond to a Rust type.
#[derive(Clone)]
pub struct ComponentDescriptor {
    name: Cow<'static, str>,
    // SAFETY: This must remain private. It must match the statically known StorageType of the
    // associated rust component type if one exists.
    storage_type: StorageType,
    // SAFETY: This must remain private. It must only be set to "true" if this component is
    // actually Send + Sync
    is_send_and_sync: bool,
    type_id: Option<TypeId>,
    layout: Layout,
    // SAFETY: this function must be safe to call with pointers pointing to items of the type
    // this descriptor describes.
    // None if the underlying type doesn't need to be dropped
    drop: Option<for<'a> unsafe fn(OwningPtr<'a>)>,
}

// We need to ignore the `drop` field in our `Debug` impl
impl Debug for ComponentDescriptor {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.debug_struct("ComponentDescriptor")
            .field("name", &self.name)
            .field("storage_type", &self.storage_type)
            .field("is_send_and_sync", &self.is_send_and_sync)
            .field("type_id", &self.type_id)
            .field("layout", &self.layout)
            .finish()
    }
}

impl ComponentDescriptor {
    /// # Safety
    ///
    /// `x` must point to a valid value of type `T`.
    unsafe fn drop_ptr<T>(x: OwningPtr<'_>) {
        // SAFETY: Contract is required to be upheld by the caller.
        unsafe {
            x.drop_as::<T>();
        }
    }

    /// Create a new `ComponentDescriptor` for the type `T`.
    pub fn new<T: Component>() -> Self {
        Self {
            name: Cow::Borrowed(core::any::type_name::<T>()),
            storage_type: T::STORAGE_TYPE,
            is_send_and_sync: true,
            type_id: Some(TypeId::of::<T>()),
            layout: Layout::new::<T>(),
            drop: needs_drop::<T>().then_some(Self::drop_ptr::<T> as _),
        }
    }

    /// Create a new `ComponentDescriptor`.
    ///
    /// # Safety
    /// - the `drop` fn must be usable on a pointer with a value of the layout `layout`
    /// - the component type must be safe to access from any thread (Send + Sync in rust terms)
    pub unsafe fn new_with_layout(
        name: impl Into<Cow<'static, str>>,
        storage_type: StorageType,
        layout: Layout,
        drop: Option<for<'a> unsafe fn(OwningPtr<'a>)>,
    ) -> Self {
        Self {
            name: name.into(),
            storage_type,
            is_send_and_sync: true,
            type_id: None,
            layout,
            drop,
        }
    }

    /// Create a new `ComponentDescriptor` for a resource.
    ///
    /// The [`StorageType`] for resources is always [`StorageType::Table`].
    pub fn new_resource<T: Resource>() -> Self {
        Self {
            name: Cow::Borrowed(core::any::type_name::<T>()),
            // PERF: `SparseStorage` may actually be a more
            // reasonable choice as `storage_type` for resources.
            storage_type: StorageType::Table,
            is_send_and_sync: true,
            type_id: Some(TypeId::of::<T>()),
            layout: Layout::new::<T>(),
            drop: needs_drop::<T>().then_some(Self::drop_ptr::<T> as _),
        }
    }

    fn new_non_send<T: Any>(storage_type: StorageType) -> Self {
        Self {
            name: Cow::Borrowed(core::any::type_name::<T>()),
            storage_type,
            is_send_and_sync: false,
            type_id: Some(TypeId::of::<T>()),
            layout: Layout::new::<T>(),
            drop: needs_drop::<T>().then_some(Self::drop_ptr::<T> as _),
        }
    }

    /// Returns a value indicating the storage strategy for the current component.
    #[inline]
    pub fn storage_type(&self) -> StorageType {
        self.storage_type
    }

    /// Returns the [`TypeId`] of the underlying component type.
    /// Returns `None` if the component does not correspond to a Rust type.
    #[inline]
    pub fn type_id(&self) -> Option<TypeId> {
        self.type_id
    }

    /// Returns the name of the current component.
    #[inline]
    pub fn name(&self) -> &str {
        self.name.as_ref()
    }
}

/// Stores metadata associated with each kind of [`Component`] in a given [`World`].
#[derive(Debug, Default)]
pub struct Components {
    components: Vec<ComponentInfo>,
    indices: TypeIdMap<ComponentId>,
    resource_indices: TypeIdMap<ComponentId>,
}

impl Components {
    /// Registers a [`Component`] of type `T` with this instance.
    /// If a component of this type has already been registered, this will return
    /// the ID of the pre-existing component.
    ///
    /// # See also
    ///
    /// * [`Components::component_id()`]
    /// * [`Components::register_component_with_descriptor()`]
    #[inline]
    pub fn register_component<T: Component>(&mut self, storages: &mut Storages) -> ComponentId {
        let mut registered = false;
        let id = {
            let Components {
                indices,
                components,
                ..
            } = self;
            let type_id = TypeId::of::<T>();
            *indices.entry(type_id).or_insert_with(|| {
                let id = Components::register_component_inner(
                    components,
                    storages,
                    ComponentDescriptor::new::<T>(),
                );
                registered = true;
                id
            })
        };
        if registered {
            let mut required_components = RequiredComponents::default();
            T::register_required_components(id, self, storages, &mut required_components, 0);
            let info = &mut self.components[id.index()];
            T::register_component_hooks(&mut info.hooks);
            info.required_components = required_components;
        }
        id
    }

    /// Registers a component described by `descriptor`.
    ///
    /// # Note
    ///
    /// If this method is called multiple times with identical descriptors, a distinct [`ComponentId`]
    /// will be created for each one.
    ///
    /// # See also
    ///
    /// * [`Components::component_id()`]
    /// * [`Components::register_component()`]
    pub fn register_component_with_descriptor(
        &mut self,
        storages: &mut Storages,
        descriptor: ComponentDescriptor,
    ) -> ComponentId {
        Components::register_component_inner(&mut self.components, storages, descriptor)
    }

    #[inline]
    fn register_component_inner(
        components: &mut Vec<ComponentInfo>,
        storages: &mut Storages,
        descriptor: ComponentDescriptor,
    ) -> ComponentId {
        let component_id = ComponentId(components.len());
        let info = ComponentInfo::new(component_id, descriptor);
        if info.descriptor.storage_type == StorageType::SparseSet {
            storages.sparse_sets.get_or_insert(&info);
        }
        components.push(info);
        component_id
    }

    /// Returns the number of components registered with this instance.
    #[inline]
    pub fn len(&self) -> usize {
        self.components.len()
    }

    /// Returns `true` if there are no components registered with this instance. Otherwise, this returns `false`.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.components.len() == 0
    }

    /// Gets the metadata associated with the given component.
    ///
    /// This will return an incorrect result if `id` did not come from the same world as `self`. It may return `None` or a garbage value.
    #[inline]
    pub fn get_info(&self, id: ComponentId) -> Option<&ComponentInfo> {
        self.components.get(id.0)
    }

    /// Returns the name associated with the given component.
    ///
    /// This will return an incorrect result if `id` did not come from the same world as `self`. It may return `None` or a garbage value.
    #[inline]
    pub fn get_name(&self, id: ComponentId) -> Option<&str> {
        self.get_info(id).map(ComponentInfo::name)
    }

    /// Gets the metadata associated with the given component.
    /// # Safety
    ///
    /// `id` must be a valid [`ComponentId`]
    #[inline]
    pub unsafe fn get_info_unchecked(&self, id: ComponentId) -> &ComponentInfo {
        debug_assert!(id.index() < self.components.len());
        // SAFETY: The caller ensures `id` is valid.
        unsafe { self.components.get_unchecked(id.0) }
    }

    #[inline]
    pub(crate) fn get_hooks_mut(&mut self, id: ComponentId) -> Option<&mut ComponentHooks> {
        self.components.get_mut(id.0).map(|info| &mut info.hooks)
    }

    #[inline]
    pub(crate) fn get_required_components_mut(
        &mut self,
        id: ComponentId,
    ) -> Option<&mut RequiredComponents> {
        self.components
            .get_mut(id.0)
            .map(|info| &mut info.required_components)
    }

    /// Registers the given component `R` and [required components] inherited from it as required by `T`.
    ///
    /// When `T` is added to an entity, `R` will also be added if it was not already provided.
    /// The given `constructor` will be used for the creation of `R`.
    ///
    /// [required components]: Component#required-components
    ///
    /// # Safety
    ///
    /// The given component IDs `required` and `requiree` must be valid.
    ///
    /// # Errors
    ///
    /// Returns a [`RequiredComponentsError`] if the `required` component is already a directly required component for the `requiree`.
    ///
    /// Indirect requirements through other components are allowed. In those cases, the more specific
    /// registration will be used.
    pub(crate) unsafe fn register_required_components<R: Component>(
        &mut self,
        requiree: ComponentId,
        required: ComponentId,
        constructor: fn() -> R,
    ) -> Result<(), RequiredComponentsError> {
        // SAFETY: The caller ensures that the `requiree` is valid.
        let required_components = unsafe {
            self.get_required_components_mut(requiree)
                .debug_checked_unwrap()
        };

        // Cannot directly require the same component twice.
        if required_components
            .0
            .get(&required)
            .is_some_and(|c| c.inheritance_depth == 0)
        {
            return Err(RequiredComponentsError::DuplicateRegistration(
                requiree, required,
            ));
        }

        // Register the required component for the requiree.
        // This is a direct requirement with a depth of `0`.
        required_components.register_by_id(required, constructor, 0);

        // Add the requiree to the list of components that require the required component.
        // SAFETY: The component is in the list of required components, so it must exist already.
        let required_by = unsafe { self.get_required_by_mut(required).debug_checked_unwrap() };
        required_by.insert(requiree);

        // SAFETY: The caller ensures that the `requiree` and `required` components are valid.
        let inherited_requirements =
            unsafe { self.register_inherited_required_components(requiree, required) };

        // Propagate the new required components up the chain to all components that require the requiree.
        if let Some(required_by) = self.get_required_by(requiree).cloned() {
            // `required` is now required by anything that `requiree` was required by.
            self.get_required_by_mut(required)
                .unwrap()
                .extend(required_by.iter().copied());
            for &required_by_id in required_by.iter() {
                // SAFETY: The component is in the list of required components, so it must exist already.
                let required_components = unsafe {
                    self.get_required_components_mut(required_by_id)
                        .debug_checked_unwrap()
                };

                // Register the original required component in the "parent" of the requiree.
                // The inheritance depth is 1 deeper than the `requiree` wrt `required_by_id`.
                let depth = required_components.0.get(&requiree).expect("requiree is required by required_by_id, so its required_components must include requiree").inheritance_depth;
                required_components.register_by_id(required, constructor, depth + 1);

                for (component_id, component) in inherited_requirements.iter() {
                    // Register the required component.
                    // The inheritance depth of inherited components is whatever the requiree's
                    // depth is relative to `required_by_id`, plus the inheritance depth of the
                    // inherited component relative to the requiree, plus 1 to account for the
                    // requiree in between.
                    // SAFETY: Component ID and constructor match the ones on the original requiree.
                    //         The original requiree is responsible for making sure the registration is safe.
                    unsafe {
                        required_components.register_dynamic(
                            *component_id,
                            component.constructor.clone(),
                            component.inheritance_depth + depth + 1,
                        );
                    };
                }
            }
        }

        Ok(())
    }

    /// Registers the components inherited from `required` for the given `requiree`,
    /// returning the requirements in a list.
    ///
    /// # Safety
    ///
    /// The given component IDs `requiree` and `required` must be valid.
    unsafe fn register_inherited_required_components(
        &mut self,
        requiree: ComponentId,
        required: ComponentId,
    ) -> Vec<(ComponentId, RequiredComponent)> {
        // Get required components inherited from the `required` component.
        // SAFETY: The caller ensures that the `required` component is valid.
        let required_component_info = unsafe { self.get_info(required).debug_checked_unwrap() };
        let inherited_requirements: Vec<(ComponentId, RequiredComponent)> = required_component_info
            .required_components()
            .0
            .iter()
            .map(|(component_id, required_component)| {
                (
                    *component_id,
                    RequiredComponent {
                        constructor: required_component.constructor.clone(),
                        // Add `1` to the inheritance depth since this will be registered
                        // for the component that requires `required`.
                        inheritance_depth: required_component.inheritance_depth + 1,
                    },
                )
            })
            .collect();

        // Register the new required components.
        for (component_id, component) in inherited_requirements.iter().cloned() {
            // SAFETY: The caller ensures that the `requiree` is valid.
            let required_components = unsafe {
                self.get_required_components_mut(requiree)
                    .debug_checked_unwrap()
            };

            // Register the required component for the requiree.
            // SAFETY: Component ID and constructor match the ones on the original requiree.
            unsafe {
                required_components.register_dynamic(
                    component_id,
                    component.constructor,
                    component.inheritance_depth,
                );
            };

            // Add the requiree to the list of components that require the required component.
            // SAFETY: The caller ensures that the required components are valid.
            let required_by = unsafe {
                self.get_required_by_mut(component_id)
                    .debug_checked_unwrap()
            };
            required_by.insert(requiree);
        }

        inherited_requirements
    }

    // NOTE: This should maybe be private, but it is currently public so that `bevy_ecs_macros` can use it.
    //       We can't directly move this there either, because this uses `Components::get_required_by_mut`,
    //       which is private, and could be equally risky to expose to users.
    /// Registers the given component `R` and [required components] inherited from it as required by `T`,
    /// and adds `T` to their lists of requirees.
    ///
    /// The given `inheritance_depth` determines how many levels of inheritance deep the requirement is.
    /// A direct requirement has a depth of `0`, and each level of inheritance increases the depth by `1`.
    /// Lower depths are more specific requirements, and can override existing less specific registrations.
    ///
    /// This method does *not* register any components as required by components that require `T`.
    ///
    /// Only use this method if you know what you are doing. In most cases, you should instead use [`World::register_required_components`],
    /// or the equivalent method in `bevy_app::App`.
    ///
    /// [required component]: Component#required-components
    #[doc(hidden)]
    pub fn register_required_components_manual<T: Component, R: Component>(
        &mut self,
        storages: &mut Storages,
        required_components: &mut RequiredComponents,
        constructor: fn() -> R,
        inheritance_depth: u16,
    ) {
        let requiree = self.register_component::<T>(storages);
        let required = self.register_component::<R>(storages);

        // SAFETY: We just created the components.
        unsafe {
            self.register_required_components_manual_unchecked::<R>(
                requiree,
                required,
                required_components,
                constructor,
                inheritance_depth,
            );
        }
    }

    /// Registers the given component `R` and [required components] inherited from it as required by `T`,
    /// and adds `T` to their lists of requirees.
    ///
    /// The given `inheritance_depth` determines how many levels of inheritance deep the requirement is.
    /// A direct requirement has a depth of `0`, and each level of inheritance increases the depth by `1`.
    /// Lower depths are more specific requirements, and can override existing less specific registrations.
    ///
    /// This method does *not* register any components as required by components that require `T`.
    ///
    /// [required component]: Component#required-components
    ///
    /// # Safety
    ///
    /// The given component IDs `required` and `requiree` must be valid.
    pub(crate) unsafe fn register_required_components_manual_unchecked<R: Component>(
        &mut self,
        requiree: ComponentId,
        required: ComponentId,
        required_components: &mut RequiredComponents,
        constructor: fn() -> R,
        inheritance_depth: u16,
    ) {
        // Components cannot require themselves.
        if required == requiree {
            return;
        }

        // Register the required component `R` for the requiree.
        required_components.register_by_id(required, constructor, inheritance_depth);

        // Add the requiree to the list of components that require `R`.
        // SAFETY: The caller ensures that the component ID is valid.
        //         Assuming it is valid, the component is in the list of required components, so it must exist already.
        let required_by = unsafe { self.get_required_by_mut(required).debug_checked_unwrap() };
        required_by.insert(requiree);

        // Register the inherited required components for the requiree.
        let required: Vec<(ComponentId, RequiredComponent)> = self
            .get_info(required)
            .unwrap()
            .required_components()
            .0
            .iter()
            .map(|(id, component)| (*id, component.clone()))
            .collect();

        for (id, component) in required {
            // Register the inherited required components for the requiree.
            // The inheritance depth is increased by `1` since this is a component required by the original required component.
            required_components.register_dynamic(
                id,
                component.constructor.clone(),
                component.inheritance_depth + 1,
            );
            self.get_required_by_mut(id).unwrap().insert(requiree);
        }
    }

    #[inline]
    pub(crate) fn get_required_by(&self, id: ComponentId) -> Option<&HashSet<ComponentId>> {
        self.components.get(id.0).map(|info| &info.required_by)
    }

    #[inline]
    pub(crate) fn get_required_by_mut(
        &mut self,
        id: ComponentId,
    ) -> Option<&mut HashSet<ComponentId>> {
        self.components
            .get_mut(id.0)
            .map(|info| &mut info.required_by)
    }

    /// Type-erased equivalent of [`Components::component_id()`].
    #[inline]
    pub fn get_id(&self, type_id: TypeId) -> Option<ComponentId> {
        self.indices.get(&type_id).copied()
    }

    /// Returns the [`ComponentId`] of the given [`Component`] type `T`.
    ///
    /// The returned `ComponentId` is specific to the `Components` instance
    /// it was retrieved from and should not be used with another `Components`
    /// instance.
    ///
    /// Returns [`None`] if the `Component` type has not
    /// yet been initialized using [`Components::register_component()`].
    ///
    /// ```
    /// use bevy_ecs::prelude::*;
    ///
    /// let mut world = World::new();
    ///
    /// #[derive(Component)]
    /// struct ComponentA;
    ///
    /// let component_a_id = world.register_component::<ComponentA>();
    ///
    /// assert_eq!(component_a_id, world.components().component_id::<ComponentA>().unwrap())
    /// ```
    ///
    /// # See also
    ///
    /// * [`Components::get_id()`]
    /// * [`Components::resource_id()`]
    /// * [`World::component_id()`]
    #[inline]
    pub fn component_id<T: Component>(&self) -> Option<ComponentId> {
        self.get_id(TypeId::of::<T>())
    }

    /// Type-erased equivalent of [`Components::resource_id()`].
    #[inline]
    pub fn get_resource_id(&self, type_id: TypeId) -> Option<ComponentId> {
        self.resource_indices.get(&type_id).copied()
    }

    /// Returns the [`ComponentId`] of the given [`Resource`] type `T`.
    ///
    /// The returned `ComponentId` is specific to the `Components` instance
    /// it was retrieved from and should not be used with another `Components`
    /// instance.
    ///
    /// Returns [`None`] if the `Resource` type has not
    /// yet been initialized using [`Components::register_resource()`].
    ///
    /// ```
    /// use bevy_ecs::prelude::*;
    ///
    /// let mut world = World::new();
    ///
    /// #[derive(Resource, Default)]
    /// struct ResourceA;
    ///
    /// let resource_a_id = world.init_resource::<ResourceA>();
    ///
    /// assert_eq!(resource_a_id, world.components().resource_id::<ResourceA>().unwrap())
    /// ```
    ///
    /// # See also
    ///
    /// * [`Components::component_id()`]
    /// * [`Components::get_resource_id()`]
    #[inline]
    pub fn resource_id<T: Resource>(&self) -> Option<ComponentId> {
        self.get_resource_id(TypeId::of::<T>())
    }

    /// Registers a [`Resource`] of type `T` with this instance.
    /// If a resource of this type has already been registered, this will return
    /// the ID of the pre-existing resource.
    ///
    /// # See also
    ///
    /// * [`Components::resource_id()`]
    /// * [`Components::register_resource_with_descriptor()`]
    #[inline]
    pub fn register_resource<T: Resource>(&mut self) -> ComponentId {
        // SAFETY: The [`ComponentDescriptor`] matches the [`TypeId`]
        unsafe {
            self.get_or_register_resource_with(TypeId::of::<T>(), || {
                ComponentDescriptor::new_resource::<T>()
            })
        }
    }

    /// Registers a [`Resource`] described by `descriptor`.
    ///
    /// # Note
    ///
    /// If this method is called multiple times with identical descriptors, a distinct [`ComponentId`]
    /// will be created for each one.
    ///
    /// # See also
    ///
    /// * [`Components::resource_id()`]
    /// * [`Components::register_resource()`]
    pub fn register_resource_with_descriptor(
        &mut self,
        descriptor: ComponentDescriptor,
    ) -> ComponentId {
        Components::register_resource_inner(&mut self.components, descriptor)
    }

    /// Registers a [non-send resource](crate::system::NonSend) of type `T` with this instance.
    /// If a resource of this type has already been registered, this will return
    /// the ID of the pre-existing resource.
    #[inline]
    pub fn register_non_send<T: Any>(&mut self) -> ComponentId {
        // SAFETY: The [`ComponentDescriptor`] matches the [`TypeId`]
        unsafe {
            self.get_or_register_resource_with(TypeId::of::<T>(), || {
                ComponentDescriptor::new_non_send::<T>(StorageType::default())
            })
        }
    }

    /// # Safety
    ///
    /// The [`ComponentDescriptor`] must match the [`TypeId`]
    #[inline]
    unsafe fn get_or_register_resource_with(
        &mut self,
        type_id: TypeId,
        func: impl FnOnce() -> ComponentDescriptor,
    ) -> ComponentId {
        let components = &mut self.components;
        *self.resource_indices.entry(type_id).or_insert_with(|| {
            let descriptor = func();
            Components::register_resource_inner(components, descriptor)
        })
    }

    #[inline]
    fn register_resource_inner(
        components: &mut Vec<ComponentInfo>,
        descriptor: ComponentDescriptor,
    ) -> ComponentId {
        let component_id = ComponentId(components.len());
        components.push(ComponentInfo::new(component_id, descriptor));
        component_id
    }

    /// Gets an iterator over all components registered with this instance.
    pub fn iter(&self) -> impl Iterator<Item = &ComponentInfo> + '_ {
        self.components.iter()
    }
}

/// A value that tracks when a system ran relative to other systems.
/// This is used to power change detection.
///
/// *Note* that a system that hasn't been run yet has a `Tick` of 0.
#[derive(Copy, Clone, Default, Debug, Eq, Hash, PartialEq)]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect),
    reflect(Debug, Hash, PartialEq)
)]
pub struct Tick {
    tick: u32,
}

impl Tick {
    /// The maximum relative age for a change tick.
    /// The value of this is equal to [`MAX_CHANGE_AGE`].
    ///
    /// Since change detection will not work for any ticks older than this,
    /// ticks are periodically scanned to ensure their relative values are below this.
    pub const MAX: Self = Self::new(MAX_CHANGE_AGE);

    /// Creates a new [`Tick`] wrapping the given value.
    #[inline]
    pub const fn new(tick: u32) -> Self {
        Self { tick }
    }

    /// Gets the value of this change tick.
    #[inline]
    pub const fn get(self) -> u32 {
        self.tick
    }

    /// Sets the value of this change tick.
    #[inline]
    pub fn set(&mut self, tick: u32) {
        self.tick = tick;
    }

    /// Returns `true` if this `Tick` occurred since the system's `last_run`.
    ///
    /// `this_run` is the current tick of the system, used as a reference to help deal with wraparound.
    #[inline]
    pub fn is_newer_than(self, last_run: Tick, this_run: Tick) -> bool {
        // This works even with wraparound because the world tick (`this_run`) is always "newer" than
        // `last_run` and `self.tick`, and we scan periodically to clamp `ComponentTicks` values
        // so they never get older than `u32::MAX` (the difference would overflow).
        //
        // The clamp here ensures determinism (since scans could differ between app runs).
        let ticks_since_insert = this_run.relative_to(self).tick.min(MAX_CHANGE_AGE);
        let ticks_since_system = this_run.relative_to(last_run).tick.min(MAX_CHANGE_AGE);

        ticks_since_system > ticks_since_insert
    }

    /// Returns a change tick representing the relationship between `self` and `other`.
    #[inline]
    pub(crate) fn relative_to(self, other: Self) -> Self {
        let tick = self.tick.wrapping_sub(other.tick);
        Self { tick }
    }

    /// Wraps this change tick's value if it exceeds [`Tick::MAX`].
    ///
    /// Returns `true` if wrapping was performed. Otherwise, returns `false`.
    #[inline]
    pub(crate) fn check_tick(&mut self, tick: Tick) -> bool {
        let age = tick.relative_to(*self);
        // This comparison assumes that `age` has not overflowed `u32::MAX` before, which will be true
        // so long as this check always runs before that can happen.
        if age.get() > Self::MAX.get() {
            *self = tick.relative_to(Self::MAX);
            true
        } else {
            false
        }
    }
}

/// Interior-mutable access to the [`Tick`]s for a single component or resource.
#[derive(Copy, Clone, Debug)]
pub struct TickCells<'a> {
    /// The tick indicating when the value was added to the world.
    pub added: &'a UnsafeCell<Tick>,
    /// The tick indicating the last time the value was modified.
    pub changed: &'a UnsafeCell<Tick>,
}

impl<'a> TickCells<'a> {
    /// # Safety
    /// All cells contained within must uphold the safety invariants of [`UnsafeCellDeref::read`].
    #[inline]
    pub(crate) unsafe fn read(&self) -> ComponentTicks {
        ComponentTicks {
            // SAFETY: The callers uphold the invariants for `read`.
            added: unsafe { self.added.read() },
            // SAFETY: The callers uphold the invariants for `read`.
            changed: unsafe { self.changed.read() },
        }
    }
}

/// Records when a component or resource was added and when it was last mutably dereferenced (or added).
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug))]
pub struct ComponentTicks {
    /// Tick recording the time this component or resource was added.
    pub added: Tick,

    /// Tick recording the time this component or resource was most recently changed.
    pub changed: Tick,
}

impl ComponentTicks {
    /// Returns `true` if the component or resource was added after the system last ran
    /// (or the system is running for the first time).
    #[inline]
    pub fn is_added(&self, last_run: Tick, this_run: Tick) -> bool {
        self.added.is_newer_than(last_run, this_run)
    }

    /// Returns `true` if the component or resource was added or mutably dereferenced after the system last ran
    /// (or the system is running for the first time).
    #[inline]
    pub fn is_changed(&self, last_run: Tick, this_run: Tick) -> bool {
        self.changed.is_newer_than(last_run, this_run)
    }

    /// Creates a new instance with the same change tick for `added` and `changed`.
    pub fn new(change_tick: Tick) -> Self {
        Self {
            added: change_tick,
            changed: change_tick,
        }
    }

    /// Manually sets the change tick.
    ///
    /// This is normally done automatically via the [`DerefMut`](std::ops::DerefMut) implementation
    /// on [`Mut<T>`](crate::change_detection::Mut), [`ResMut<T>`](crate::change_detection::ResMut), etc.
    /// However, components and resources that make use of interior mutability might require manual updates.
    ///
    /// # Example
    /// ```no_run
    /// # use bevy_ecs::{world::World, component::ComponentTicks};
    /// let world: World = unimplemented!();
    /// let component_ticks: ComponentTicks = unimplemented!();
    ///
    /// component_ticks.set_changed(world.read_change_tick());
    /// ```
    #[inline]
    pub fn set_changed(&mut self, change_tick: Tick) {
        self.changed = change_tick;
    }
}

/// A [`SystemParam`] that provides access to the [`ComponentId`] for a specific component type.
///
/// # Example
/// ```
/// # use bevy_ecs::{system::Local, component::{Component, ComponentId, ComponentIdFor}};
/// #[derive(Component)]
/// struct Player;
/// fn my_system(component_id: ComponentIdFor<Player>) {
///     let component_id: ComponentId = component_id.get();
///     // ...
/// }
/// ```
#[derive(SystemParam)]
pub struct ComponentIdFor<'s, T: Component>(Local<'s, InitComponentId<T>>);

impl<T: Component> ComponentIdFor<'_, T> {
    /// Gets the [`ComponentId`] for the type `T`.
    #[inline]
    pub fn get(&self) -> ComponentId {
        **self
    }
}

impl<T: Component> core::ops::Deref for ComponentIdFor<'_, T> {
    type Target = ComponentId;
    fn deref(&self) -> &Self::Target {
        &self.0.component_id
    }
}

impl<T: Component> From<ComponentIdFor<'_, T>> for ComponentId {
    #[inline]
    fn from(to_component_id: ComponentIdFor<T>) -> ComponentId {
        *to_component_id
    }
}

/// Initializes the [`ComponentId`] for a specific type when used with [`FromWorld`].
struct InitComponentId<T: Component> {
    component_id: ComponentId,
    marker: PhantomData<T>,
}

impl<T: Component> FromWorld for InitComponentId<T> {
    fn from_world(world: &mut World) -> Self {
        Self {
            component_id: world.register_component::<T>(),
            marker: PhantomData,
        }
    }
}

/// An error returned when the registration of a required component fails.
#[derive(Error, Display, Debug)]
#[non_exhaustive]
pub enum RequiredComponentsError {
    /// The component is already a directly required component for the requiree.
    #[display("Component {0:?} already directly requires component {_1:?}")]
    #[error(ignore)]
    DuplicateRegistration(ComponentId, ComponentId),
    /// An archetype with the component that requires other components already exists
    #[display(
        "An archetype with the component {_0:?} that requires other components already exists"
    )]
    #[error(ignore)]
    ArchetypeExists(ComponentId),
}

/// A Required Component constructor. See [`Component`] for details.
#[cfg(feature = "track_change_detection")]
#[derive(Clone)]
pub struct RequiredComponentConstructor(
    pub Arc<dyn Fn(&mut Table, &mut SparseSets, Tick, TableRow, Entity, &'static Location<'static>)>,
);

/// A Required Component constructor. See [`Component`] for details.
#[cfg(not(feature = "track_change_detection"))]
#[derive(Clone)]
pub struct RequiredComponentConstructor(
    pub Arc<dyn Fn(&mut Table, &mut SparseSets, Tick, TableRow, Entity)>,
);

impl RequiredComponentConstructor {
    /// # Safety
    /// This is intended to only be called in the context of [`BundleInfo::write_components`] to initialized required components.
    /// Calling it _anywhere else_ should be considered unsafe.
    ///
    /// `table_row` and `entity` must correspond to a valid entity that currently needs a component initialized via the constructor stored
    /// on this [`RequiredComponentConstructor`]. The stored constructor must correspond to a component on `entity` that needs initialization.
    /// `table` and `sparse_sets` must correspond to storages on a world where `entity` needs this required component initialized.
    ///
    /// Again, don't call this anywhere but [`BundleInfo::write_components`].
    pub(crate) unsafe fn initialize(
        &self,
        table: &mut Table,
        sparse_sets: &mut SparseSets,
        change_tick: Tick,
        table_row: TableRow,
        entity: Entity,
        #[cfg(feature = "track_change_detection")] caller: &'static Location<'static>,
    ) {
        (self.0)(
            table,
            sparse_sets,
            change_tick,
            table_row,
            entity,
            #[cfg(feature = "track_change_detection")]
            caller,
        );
    }
}

/// Metadata associated with a required component. See [`Component`] for details.
#[derive(Clone)]
pub struct RequiredComponent {
    /// The constructor used for the required component.
    pub constructor: RequiredComponentConstructor,

    /// The depth of the component requirement in the requirement hierarchy for this component.
    /// This is used for determining which constructor is used in cases where there are duplicate requires.
    ///
    /// For example, consider the inheritance tree `X -> Y -> Z`, where `->` indicates a requirement.
    /// `X -> Y` and `Y -> Z` are direct requirements with a depth of 0, while `Z` is only indirectly
    /// required for `X` with a depth of `1`.
    ///
    /// In cases where there are multiple conflicting requirements with the same depth, a higher priority
    /// will be given to components listed earlier in the `require` attribute, or to the latest added requirement
    /// if registered at runtime.
    pub inheritance_depth: u16,
}

/// The collection of metadata for components that are required for a given component.
///
/// For more information, see the "Required Components" section of [`Component`].
#[derive(Default, Clone)]
pub struct RequiredComponents(pub(crate) HashMap<ComponentId, RequiredComponent>);

impl Debug for RequiredComponents {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.debug_tuple("RequiredComponents")
            .field(&self.0.keys())
            .finish()
    }
}

impl RequiredComponents {
    /// Registers a required component.
    ///
    /// If the component is already registered, it will be overwritten if the given inheritance depth
    /// is smaller than the depth of the existing registration. Otherwise, the new registration will be ignored.
    ///
    /// # Safety
    ///
    /// `component_id` must match the type initialized by `constructor`.
    /// `constructor` _must_ initialize a component for `component_id` in such a way that
    /// matches the storage type of the component. It must only use the given `table_row` or `Entity` to
    /// initialize the storage for `component_id` corresponding to the given entity.
    pub unsafe fn register_dynamic(
        &mut self,
        component_id: ComponentId,
        constructor: RequiredComponentConstructor,
        inheritance_depth: u16,
    ) {
        self.0
            .entry(component_id)
            .and_modify(|component| {
                if component.inheritance_depth > inheritance_depth {
                    // New registration is more specific than existing requirement
                    component.constructor = constructor.clone();
                    component.inheritance_depth = inheritance_depth;
                }
            })
            .or_insert(RequiredComponent {
                constructor,
                inheritance_depth,
            });
    }

    /// Registers a required component.
    ///
    /// If the component is already registered, it will be overwritten if the given inheritance depth
    /// is smaller than the depth of the existing registration. Otherwise, the new registration will be ignored.
    pub fn register<C: Component>(
        &mut self,
        components: &mut Components,
        storages: &mut Storages,
        constructor: fn() -> C,
        inheritance_depth: u16,
    ) {
        let component_id = components.register_component::<C>(storages);
        self.register_by_id(component_id, constructor, inheritance_depth);
    }

    /// Registers the [`Component`] with the given ID as required if it exists.
    ///
    /// If the component is already registered, it will be overwritten if the given inheritance depth
    /// is smaller than the depth of the existing registration. Otherwise, the new registration will be ignored.
    pub fn register_by_id<C: Component>(
        &mut self,
        component_id: ComponentId,
        constructor: fn() -> C,
        inheritance_depth: u16,
    ) {
        let erased: RequiredComponentConstructor = RequiredComponentConstructor(Arc::new(
            move |table,
                  sparse_sets,
                  change_tick,
                  table_row,
                  entity,
                  #[cfg(feature = "track_change_detection")] caller| {
                OwningPtr::make(constructor(), |ptr| {
                    // SAFETY: This will only be called in the context of `BundleInfo::write_components`, which will
                    // pass in a valid table_row and entity requiring a C constructor
                    // C::STORAGE_TYPE is the storage type associated with `component_id` / `C`
                    // `ptr` points to valid `C` data, which matches the type associated with `component_id`
                    unsafe {
                        BundleInfo::initialize_required_component(
                            table,
                            sparse_sets,
                            change_tick,
                            table_row,
                            entity,
                            component_id,
                            C::STORAGE_TYPE,
                            ptr,
                            #[cfg(feature = "track_change_detection")]
                            caller,
                        );
                    }
                });
            },
        ));
        // SAFETY:
        // `component_id` matches the type initialized by the `erased` constructor above.
        // `erased` initializes a component for `component_id` in such a way that
        // matches the storage type of the component. It only uses the given `table_row` or `Entity` to
        // initialize the storage corresponding to the given entity.
        unsafe { self.register_dynamic(component_id, erased, inheritance_depth) };
    }

    /// Iterates the ids of all required components. This includes recursive required components.
    pub fn iter_ids(&self) -> impl Iterator<Item = ComponentId> + '_ {
        self.0.keys().copied()
    }

    /// Removes components that are explicitly provided in a given [`Bundle`]. These components should
    /// be logically treated as normal components, not "required components".
    ///
    /// [`Bundle`]: crate::bundle::Bundle
    pub(crate) fn remove_explicit_components(&mut self, components: &[ComponentId]) {
        for component in components {
            self.0.remove(component);
        }
    }

    // Merges `required_components` into this collection. This only inserts a required component
    // if it _did not already exist_.
    pub(crate) fn merge(&mut self, required_components: &RequiredComponents) {
        for (id, constructor) in &required_components.0 {
            self.0.entry(*id).or_insert_with(|| constructor.clone());
        }
    }
}