bevy_ecs/component.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
//! Types for declaring and storing [`Component`]s.
use crate::{
self as bevy_ecs,
archetype::ArchetypeFlags,
bundle::BundleInfo,
change_detection::MAX_CHANGE_AGE,
entity::Entity,
query::DebugCheckedUnwrap,
storage::{SparseSetIndex, SparseSets, Storages, Table, TableRow},
system::{Local, Resource, SystemParam},
world::{DeferredWorld, FromWorld, World},
};
use alloc::{borrow::Cow, sync::Arc};
pub use bevy_ecs_macros::Component;
use bevy_ptr::{OwningPtr, UnsafeCellDeref};
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::Reflect;
use bevy_utils::{HashMap, HashSet, TypeIdMap};
#[cfg(feature = "track_change_detection")]
use core::panic::Location;
use core::{
alloc::Layout,
any::{Any, TypeId},
cell::UnsafeCell,
fmt::Debug,
marker::PhantomData,
mem::needs_drop,
};
use derive_more::derive::{Display, Error};
/// A data type that can be used to store data for an [entity].
///
/// `Component` is a [derivable trait]: this means that a data type can implement it by applying a `#[derive(Component)]` attribute to it.
/// However, components must always satisfy the `Send + Sync + 'static` trait bounds.
///
/// [entity]: crate::entity
/// [derivable trait]: https://doc.rust-lang.org/book/appendix-03-derivable-traits.html
///
/// # Examples
///
/// Components can take many forms: they are usually structs, but can also be of every other kind of data type, like enums or zero sized types.
/// The following examples show how components are laid out in code.
///
/// ```
/// # use bevy_ecs::component::Component;
/// # struct Color;
/// #
/// // A component can contain data...
/// #[derive(Component)]
/// struct LicensePlate(String);
///
/// // ... but it can also be a zero-sized marker.
/// #[derive(Component)]
/// struct Car;
///
/// // Components can also be structs with named fields...
/// #[derive(Component)]
/// struct VehiclePerformance {
/// acceleration: f32,
/// top_speed: f32,
/// handling: f32,
/// }
///
/// // ... or enums.
/// #[derive(Component)]
/// enum WheelCount {
/// Two,
/// Three,
/// Four,
/// }
/// ```
///
/// # Component and data access
///
/// See the [`entity`] module level documentation to learn how to add or remove components from an entity.
///
/// See the documentation for [`Query`] to learn how to access component data from a system.
///
/// [`entity`]: crate::entity#usage
/// [`Query`]: crate::system::Query
///
/// # Choosing a storage type
///
/// Components can be stored in the world using different strategies with their own performance implications.
/// By default, components are added to the [`Table`] storage, which is optimized for query iteration.
///
/// Alternatively, components can be added to the [`SparseSet`] storage, which is optimized for component insertion and removal.
/// This is achieved by adding an additional `#[component(storage = "SparseSet")]` attribute to the derive one:
///
/// ```
/// # use bevy_ecs::component::Component;
/// #
/// #[derive(Component)]
/// #[component(storage = "SparseSet")]
/// struct ComponentA;
/// ```
///
/// [`Table`]: crate::storage::Table
/// [`SparseSet`]: crate::storage::SparseSet
///
/// # Required Components
///
/// Components can specify Required Components. If some [`Component`] `A` requires [`Component`] `B`, then when `A` is inserted,
/// `B` will _also_ be initialized and inserted (if it was not manually specified).
///
/// The [`Default`] constructor will be used to initialize the component, by default:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #[derive(Component)]
/// #[require(B)]
/// struct A;
///
/// #[derive(Component, Default, PartialEq, Eq, Debug)]
/// struct B(usize);
///
/// # let mut world = World::default();
/// // This will implicitly also insert B with the Default constructor
/// let id = world.spawn(A).id();
/// assert_eq!(&B(0), world.entity(id).get::<B>().unwrap());
///
/// // This will _not_ implicitly insert B, because it was already provided
/// world.spawn((A, B(11)));
/// ```
///
/// Components can have more than one required component:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #[derive(Component)]
/// #[require(B, C)]
/// struct A;
///
/// #[derive(Component, Default, PartialEq, Eq, Debug)]
/// #[require(C)]
/// struct B(usize);
///
/// #[derive(Component, Default, PartialEq, Eq, Debug)]
/// struct C(u32);
///
/// # let mut world = World::default();
/// // This will implicitly also insert B and C with their Default constructors
/// let id = world.spawn(A).id();
/// assert_eq!(&B(0), world.entity(id).get::<B>().unwrap());
/// assert_eq!(&C(0), world.entity(id).get::<C>().unwrap());
/// ```
///
/// You can also define a custom constructor function or closure:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #[derive(Component)]
/// #[require(C(init_c))]
/// struct A;
///
/// #[derive(Component, PartialEq, Eq, Debug)]
/// #[require(C(|| C(20)))]
/// struct B;
///
/// #[derive(Component, PartialEq, Eq, Debug)]
/// struct C(usize);
///
/// fn init_c() -> C {
/// C(10)
/// }
///
/// # let mut world = World::default();
/// // This will implicitly also insert C with the init_c() constructor
/// let id = world.spawn(A).id();
/// assert_eq!(&C(10), world.entity(id).get::<C>().unwrap());
///
/// // This will implicitly also insert C with the `|| C(20)` constructor closure
/// let id = world.spawn(B).id();
/// assert_eq!(&C(20), world.entity(id).get::<C>().unwrap());
/// ```
///
/// Required components are _recursive_. This means, if a Required Component has required components,
/// those components will _also_ be inserted if they are missing:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #[derive(Component)]
/// #[require(B)]
/// struct A;
///
/// #[derive(Component, Default, PartialEq, Eq, Debug)]
/// #[require(C)]
/// struct B(usize);
///
/// #[derive(Component, Default, PartialEq, Eq, Debug)]
/// struct C(u32);
///
/// # let mut world = World::default();
/// // This will implicitly also insert B and C with their Default constructors
/// let id = world.spawn(A).id();
/// assert_eq!(&B(0), world.entity(id).get::<B>().unwrap());
/// assert_eq!(&C(0), world.entity(id).get::<C>().unwrap());
/// ```
///
/// Note that cycles in the "component require tree" will result in stack overflows when attempting to
/// insert a component.
///
/// This "multiple inheritance" pattern does mean that it is possible to have duplicate requires for a given type
/// at different levels of the inheritance tree:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #[derive(Component)]
/// struct X(usize);
///
/// #[derive(Component, Default)]
/// #[require(X(|| X(1)))]
/// struct Y;
///
/// #[derive(Component)]
/// #[require(
/// Y,
/// X(|| X(2)),
/// )]
/// struct Z;
///
/// # let mut world = World::default();
/// // In this case, the x2 constructor is used for X
/// let id = world.spawn(Z).id();
/// assert_eq!(2, world.entity(id).get::<X>().unwrap().0);
/// ```
///
/// In general, this shouldn't happen often, but when it does the algorithm for choosing the constructor from the tree is simple and predictable:
/// 1. A constructor from a direct `#[require()]`, if one exists, is selected with priority.
/// 2. Otherwise, perform a Depth First Search on the tree of requirements and select the first one found.
///
/// From a user perspective, just think about this as the following:
/// 1. Specifying a required component constructor for Foo directly on a spawned component Bar will result in that constructor being used (and overriding existing constructors lower in the inheritance tree). This is the classic "inheritance override" behavior people expect.
/// 2. For cases where "multiple inheritance" results in constructor clashes, Components should be listed in "importance order". List a component earlier in the requirement list to initialize its inheritance tree earlier.
///
/// ## Registering required components at runtime
///
/// In most cases, required components should be registered using the `require` attribute as shown above.
/// However, in some cases, it may be useful to register required components at runtime.
///
/// This can be done through [`World::register_required_components`] or [`World::register_required_components_with`]
/// for the [`Default`] and custom constructors respectively:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #[derive(Component)]
/// struct A;
///
/// #[derive(Component, Default, PartialEq, Eq, Debug)]
/// struct B(usize);
///
/// #[derive(Component, PartialEq, Eq, Debug)]
/// struct C(u32);
///
/// # let mut world = World::default();
/// // Register B as required by A and C as required by B.
/// world.register_required_components::<A, B>();
/// world.register_required_components_with::<B, C>(|| C(2));
///
/// // This will implicitly also insert B with its Default constructor
/// // and C with the custom constructor defined by B.
/// let id = world.spawn(A).id();
/// assert_eq!(&B(0), world.entity(id).get::<B>().unwrap());
/// assert_eq!(&C(2), world.entity(id).get::<C>().unwrap());
/// ```
///
/// Similar rules as before apply to duplicate requires fer a given type at different levels
/// of the inheritance tree. `A` requiring `C` directly would take precedence over indirectly
/// requiring it through `A` requiring `B` and `B` requiring `C`.
///
/// Unlike with the `require` attribute, directly requiring the same component multiple times
/// for the same component will result in a panic. This is done to prevent conflicting constructors
/// and confusing ordering dependencies.
///
/// Note that requirements must currently be registered before the requiring component is inserted
/// into the world for the first time. Registering requirements after this will lead to a panic.
///
/// # Adding component's hooks
///
/// See [`ComponentHooks`] for a detailed explanation of component's hooks.
///
/// Alternatively to the example shown in [`ComponentHooks`]' documentation, hooks can be configured using following attributes:
/// - `#[component(on_add = on_add_function)]`
/// - `#[component(on_insert = on_insert_function)]`
/// - `#[component(on_replace = on_replace_function)]`
/// - `#[component(on_remove = on_remove_function)]`
///
/// ```
/// # use bevy_ecs::component::Component;
/// # use bevy_ecs::world::DeferredWorld;
/// # use bevy_ecs::entity::Entity;
/// # use bevy_ecs::component::ComponentId;
/// #
/// #[derive(Component)]
/// #[component(on_add = my_on_add_hook)]
/// #[component(on_insert = my_on_insert_hook)]
/// // Another possible way of configuring hooks:
/// // #[component(on_add = my_on_add_hook, on_insert = my_on_insert_hook)]
/// //
/// // We don't have a replace or remove hook, so we can leave them out:
/// // #[component(on_replace = my_on_replace_hook, on_remove = my_on_remove_hook)]
/// struct ComponentA;
///
/// fn my_on_add_hook(world: DeferredWorld, entity: Entity, id: ComponentId) {
/// // ...
/// }
///
/// // You can also omit writing some types using generics.
/// fn my_on_insert_hook<T1, T2>(world: DeferredWorld, _: T1, _: T2) {
/// // ...
/// }
/// ```
///
/// # Implementing the trait for foreign types
///
/// As a consequence of the [orphan rule], it is not possible to separate into two different crates the implementation of `Component` from the definition of a type.
/// This means that it is not possible to directly have a type defined in a third party library as a component.
/// This important limitation can be easily worked around using the [newtype pattern]:
/// this makes it possible to locally define and implement `Component` for a tuple struct that wraps the foreign type.
/// The following example gives a demonstration of this pattern.
///
/// ```
/// // `Component` is defined in the `bevy_ecs` crate.
/// use bevy_ecs::component::Component;
///
/// // `Duration` is defined in the `std` crate.
/// use std::time::Duration;
///
/// // It is not possible to implement `Component` for `Duration` from this position, as they are
/// // both foreign items, defined in an external crate. However, nothing prevents to define a new
/// // `Cooldown` type that wraps `Duration`. As `Cooldown` is defined in a local crate, it is
/// // possible to implement `Component` for it.
/// #[derive(Component)]
/// struct Cooldown(Duration);
/// ```
///
/// [orphan rule]: https://doc.rust-lang.org/book/ch10-02-traits.html#implementing-a-trait-on-a-type
/// [newtype pattern]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#using-the-newtype-pattern-to-implement-external-traits-on-external-types
///
/// # `!Sync` Components
/// A `!Sync` type cannot implement `Component`. However, it is possible to wrap a `Send` but not `Sync`
/// type in [`SyncCell`] or the currently unstable [`Exclusive`] to make it `Sync`. This forces only
/// having mutable access (`&mut T` only, never `&T`), but makes it safe to reference across multiple
/// threads.
///
/// This will fail to compile since `RefCell` is `!Sync`.
/// ```compile_fail
/// # use std::cell::RefCell;
/// # use bevy_ecs::component::Component;
/// #[derive(Component)]
/// struct NotSync {
/// counter: RefCell<usize>,
/// }
/// ```
///
/// This will compile since the `RefCell` is wrapped with `SyncCell`.
/// ```
/// # use std::cell::RefCell;
/// # use bevy_ecs::component::Component;
/// use bevy_utils::synccell::SyncCell;
///
/// // This will compile.
/// #[derive(Component)]
/// struct ActuallySync {
/// counter: SyncCell<RefCell<usize>>,
/// }
/// ```
///
/// [`SyncCell`]: bevy_utils::synccell::SyncCell
/// [`Exclusive`]: https://doc.rust-lang.org/nightly/std/sync/struct.Exclusive.html
#[diagnostic::on_unimplemented(
message = "`{Self}` is not a `Component`",
label = "invalid `Component`",
note = "consider annotating `{Self}` with `#[derive(Component)]`"
)]
pub trait Component: Send + Sync + 'static {
/// A constant indicating the storage type used for this component.
const STORAGE_TYPE: StorageType;
/// Called when registering this component, allowing mutable access to its [`ComponentHooks`].
fn register_component_hooks(_hooks: &mut ComponentHooks) {}
/// Registers required components.
fn register_required_components(
_component_id: ComponentId,
_components: &mut Components,
_storages: &mut Storages,
_required_components: &mut RequiredComponents,
_inheritance_depth: u16,
) {
}
}
/// The storage used for a specific component type.
///
/// # Examples
/// The [`StorageType`] for a component is configured via the derive attribute
///
/// ```
/// # use bevy_ecs::{prelude::*, component::*};
/// #[derive(Component)]
/// #[component(storage = "SparseSet")]
/// struct A;
/// ```
#[derive(Debug, Copy, Clone, Default, Eq, PartialEq)]
pub enum StorageType {
/// Provides fast and cache-friendly iteration, but slower addition and removal of components.
/// This is the default storage type.
#[default]
Table,
/// Provides fast addition and removal of components, but slower iteration.
SparseSet,
}
/// The type used for [`Component`] lifecycle hooks such as `on_add`, `on_insert` or `on_remove`
pub type ComponentHook = for<'w> fn(DeferredWorld<'w>, Entity, ComponentId);
/// [`World`]-mutating functions that run as part of lifecycle events of a [`Component`].
///
/// Hooks are functions that run when a component is added, overwritten, or removed from an entity.
/// These are intended to be used for structural side effects that need to happen when a component is added or removed,
/// and are not intended for general-purpose logic.
///
/// For example, you might use a hook to update a cached index when a component is added,
/// to clean up resources when a component is removed,
/// or to keep hierarchical data structures across entities in sync.
///
/// This information is stored in the [`ComponentInfo`] of the associated component.
///
/// There is two ways of configuring hooks for a component:
/// 1. Defining the [`Component::register_component_hooks`] method (see [`Component`])
/// 2. Using the [`World::register_component_hooks`] method
///
/// # Example 2
///
/// ```
/// use bevy_ecs::prelude::*;
/// use bevy_utils::HashSet;
///
/// #[derive(Component)]
/// struct MyTrackedComponent;
///
/// #[derive(Resource, Default)]
/// struct TrackedEntities(HashSet<Entity>);
///
/// let mut world = World::new();
/// world.init_resource::<TrackedEntities>();
///
/// // No entities with `MyTrackedComponent` have been added yet, so we can safely add component hooks
/// let mut tracked_component_query = world.query::<&MyTrackedComponent>();
/// assert!(tracked_component_query.iter(&world).next().is_none());
///
/// world.register_component_hooks::<MyTrackedComponent>().on_add(|mut world, entity, _component_id| {
/// let mut tracked_entities = world.resource_mut::<TrackedEntities>();
/// tracked_entities.0.insert(entity);
/// });
///
/// world.register_component_hooks::<MyTrackedComponent>().on_remove(|mut world, entity, _component_id| {
/// let mut tracked_entities = world.resource_mut::<TrackedEntities>();
/// tracked_entities.0.remove(&entity);
/// });
///
/// let entity = world.spawn(MyTrackedComponent).id();
/// let tracked_entities = world.resource::<TrackedEntities>();
/// assert!(tracked_entities.0.contains(&entity));
///
/// world.despawn(entity);
/// let tracked_entities = world.resource::<TrackedEntities>();
/// assert!(!tracked_entities.0.contains(&entity));
/// ```
#[derive(Debug, Clone, Default)]
pub struct ComponentHooks {
pub(crate) on_add: Option<ComponentHook>,
pub(crate) on_insert: Option<ComponentHook>,
pub(crate) on_replace: Option<ComponentHook>,
pub(crate) on_remove: Option<ComponentHook>,
}
impl ComponentHooks {
/// Register a [`ComponentHook`] that will be run when this component is added to an entity.
/// An `on_add` hook will always run before `on_insert` hooks. Spawning an entity counts as
/// adding all of its components.
///
/// # Panics
///
/// Will panic if the component already has an `on_add` hook
pub fn on_add(&mut self, hook: ComponentHook) -> &mut Self {
self.try_on_add(hook)
.expect("Component already has an on_add hook")
}
/// Register a [`ComponentHook`] that will be run when this component is added (with `.insert`)
/// or replaced.
///
/// An `on_insert` hook always runs after any `on_add` hooks (if the entity didn't already have the component).
///
/// # Warning
///
/// The hook won't run if the component is already present and is only mutated, such as in a system via a query.
/// As a result, this is *not* an appropriate mechanism for reliably updating indexes and other caches.
///
/// # Panics
///
/// Will panic if the component already has an `on_insert` hook
pub fn on_insert(&mut self, hook: ComponentHook) -> &mut Self {
self.try_on_insert(hook)
.expect("Component already has an on_insert hook")
}
/// Register a [`ComponentHook`] that will be run when this component is about to be dropped,
/// such as being replaced (with `.insert`) or removed.
///
/// If this component is inserted onto an entity that already has it, this hook will run before the value is replaced,
/// allowing access to the previous data just before it is dropped.
/// This hook does *not* run if the entity did not already have this component.
///
/// An `on_replace` hook always runs before any `on_remove` hooks (if the component is being removed from the entity).
///
/// # Warning
///
/// The hook won't run if the component is already present and is only mutated, such as in a system via a query.
/// As a result, this is *not* an appropriate mechanism for reliably updating indexes and other caches.
///
/// # Panics
///
/// Will panic if the component already has an `on_replace` hook
pub fn on_replace(&mut self, hook: ComponentHook) -> &mut Self {
self.try_on_replace(hook)
.expect("Component already has an on_replace hook")
}
/// Register a [`ComponentHook`] that will be run when this component is removed from an entity.
/// Despawning an entity counts as removing all of its components.
///
/// # Panics
///
/// Will panic if the component already has an `on_remove` hook
pub fn on_remove(&mut self, hook: ComponentHook) -> &mut Self {
self.try_on_remove(hook)
.expect("Component already has an on_remove hook")
}
/// Attempt to register a [`ComponentHook`] that will be run when this component is added to an entity.
///
/// This is a fallible version of [`Self::on_add`].
///
/// Returns `None` if the component already has an `on_add` hook.
pub fn try_on_add(&mut self, hook: ComponentHook) -> Option<&mut Self> {
if self.on_add.is_some() {
return None;
}
self.on_add = Some(hook);
Some(self)
}
/// Attempt to register a [`ComponentHook`] that will be run when this component is added (with `.insert`)
///
/// This is a fallible version of [`Self::on_insert`].
///
/// Returns `None` if the component already has an `on_insert` hook.
pub fn try_on_insert(&mut self, hook: ComponentHook) -> Option<&mut Self> {
if self.on_insert.is_some() {
return None;
}
self.on_insert = Some(hook);
Some(self)
}
/// Attempt to register a [`ComponentHook`] that will be run when this component is replaced (with `.insert`) or removed
///
/// This is a fallible version of [`Self::on_replace`].
///
/// Returns `None` if the component already has an `on_replace` hook.
pub fn try_on_replace(&mut self, hook: ComponentHook) -> Option<&mut Self> {
if self.on_replace.is_some() {
return None;
}
self.on_replace = Some(hook);
Some(self)
}
/// Attempt to register a [`ComponentHook`] that will be run when this component is removed from an entity.
///
/// This is a fallible version of [`Self::on_remove`].
///
/// Returns `None` if the component already has an `on_remove` hook.
pub fn try_on_remove(&mut self, hook: ComponentHook) -> Option<&mut Self> {
if self.on_remove.is_some() {
return None;
}
self.on_remove = Some(hook);
Some(self)
}
}
/// Stores metadata for a type of component or resource stored in a specific [`World`].
#[derive(Debug, Clone)]
pub struct ComponentInfo {
id: ComponentId,
descriptor: ComponentDescriptor,
hooks: ComponentHooks,
required_components: RequiredComponents,
required_by: HashSet<ComponentId>,
}
impl ComponentInfo {
/// Returns a value uniquely identifying the current component.
#[inline]
pub fn id(&self) -> ComponentId {
self.id
}
/// Returns the name of the current component.
#[inline]
pub fn name(&self) -> &str {
&self.descriptor.name
}
/// Returns the [`TypeId`] of the underlying component type.
/// Returns `None` if the component does not correspond to a Rust type.
#[inline]
pub fn type_id(&self) -> Option<TypeId> {
self.descriptor.type_id
}
/// Returns the layout used to store values of this component in memory.
#[inline]
pub fn layout(&self) -> Layout {
self.descriptor.layout
}
#[inline]
/// Get the function which should be called to clean up values of
/// the underlying component type. This maps to the
/// [`Drop`] implementation for 'normal' Rust components
///
/// Returns `None` if values of the underlying component type don't
/// need to be dropped, e.g. as reported by [`needs_drop`].
pub fn drop(&self) -> Option<unsafe fn(OwningPtr<'_>)> {
self.descriptor.drop
}
/// Returns a value indicating the storage strategy for the current component.
#[inline]
pub fn storage_type(&self) -> StorageType {
self.descriptor.storage_type
}
/// Returns `true` if the underlying component type can be freely shared between threads.
/// If this returns `false`, then extra care must be taken to ensure that components
/// are not accessed from the wrong thread.
#[inline]
pub fn is_send_and_sync(&self) -> bool {
self.descriptor.is_send_and_sync
}
/// Create a new [`ComponentInfo`].
pub(crate) fn new(id: ComponentId, descriptor: ComponentDescriptor) -> Self {
ComponentInfo {
id,
descriptor,
hooks: Default::default(),
required_components: Default::default(),
required_by: Default::default(),
}
}
/// Update the given flags to include any [`ComponentHook`] registered to self
#[inline]
pub(crate) fn update_archetype_flags(&self, flags: &mut ArchetypeFlags) {
if self.hooks().on_add.is_some() {
flags.insert(ArchetypeFlags::ON_ADD_HOOK);
}
if self.hooks().on_insert.is_some() {
flags.insert(ArchetypeFlags::ON_INSERT_HOOK);
}
if self.hooks().on_replace.is_some() {
flags.insert(ArchetypeFlags::ON_REPLACE_HOOK);
}
if self.hooks().on_remove.is_some() {
flags.insert(ArchetypeFlags::ON_REMOVE_HOOK);
}
}
/// Provides a reference to the collection of hooks associated with this [`Component`]
pub fn hooks(&self) -> &ComponentHooks {
&self.hooks
}
/// Retrieves the [`RequiredComponents`] collection, which contains all required components (and their constructors)
/// needed by this component. This includes _recursive_ required components.
pub fn required_components(&self) -> &RequiredComponents {
&self.required_components
}
}
/// A value which uniquely identifies the type of a [`Component`] or [`Resource`] within a
/// [`World`].
///
/// Each time a new `Component` type is registered within a `World` using
/// e.g. [`World::register_component`] or [`World::register_component_with_descriptor`]
/// or a Resource with e.g. [`World::init_resource`],
/// a corresponding `ComponentId` is created to track it.
///
/// While the distinction between `ComponentId` and [`TypeId`] may seem superficial, breaking them
/// into two separate but related concepts allows components to exist outside of Rust's type system.
/// Each Rust type registered as a `Component` will have a corresponding `ComponentId`, but additional
/// `ComponentId`s may exist in a `World` to track components which cannot be
/// represented as Rust types for scripting or other advanced use-cases.
///
/// A `ComponentId` is tightly coupled to its parent `World`. Attempting to use a `ComponentId` from
/// one `World` to access the metadata of a `Component` in a different `World` is undefined behavior
/// and must not be attempted.
///
/// Given a type `T` which implements [`Component`], the `ComponentId` for `T` can be retrieved
/// from a `World` using [`World::component_id()`] or via [`Components::component_id()`]. Access
/// to the `ComponentId` for a [`Resource`] is available via [`Components::resource_id()`].
#[derive(Debug, Copy, Clone, Hash, Ord, PartialOrd, Eq, PartialEq)]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, Hash, PartialEq)
)]
pub struct ComponentId(usize);
impl ComponentId {
/// Creates a new [`ComponentId`].
///
/// The `index` is a unique value associated with each type of component in a given world.
/// Usually, this value is taken from a counter incremented for each type of component registered with the world.
#[inline]
pub const fn new(index: usize) -> ComponentId {
ComponentId(index)
}
/// Returns the index of the current component.
#[inline]
pub fn index(self) -> usize {
self.0
}
}
impl SparseSetIndex for ComponentId {
#[inline]
fn sparse_set_index(&self) -> usize {
self.index()
}
#[inline]
fn get_sparse_set_index(value: usize) -> Self {
Self(value)
}
}
/// A value describing a component or resource, which may or may not correspond to a Rust type.
#[derive(Clone)]
pub struct ComponentDescriptor {
name: Cow<'static, str>,
// SAFETY: This must remain private. It must match the statically known StorageType of the
// associated rust component type if one exists.
storage_type: StorageType,
// SAFETY: This must remain private. It must only be set to "true" if this component is
// actually Send + Sync
is_send_and_sync: bool,
type_id: Option<TypeId>,
layout: Layout,
// SAFETY: this function must be safe to call with pointers pointing to items of the type
// this descriptor describes.
// None if the underlying type doesn't need to be dropped
drop: Option<for<'a> unsafe fn(OwningPtr<'a>)>,
}
// We need to ignore the `drop` field in our `Debug` impl
impl Debug for ComponentDescriptor {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.debug_struct("ComponentDescriptor")
.field("name", &self.name)
.field("storage_type", &self.storage_type)
.field("is_send_and_sync", &self.is_send_and_sync)
.field("type_id", &self.type_id)
.field("layout", &self.layout)
.finish()
}
}
impl ComponentDescriptor {
/// # Safety
///
/// `x` must point to a valid value of type `T`.
unsafe fn drop_ptr<T>(x: OwningPtr<'_>) {
// SAFETY: Contract is required to be upheld by the caller.
unsafe {
x.drop_as::<T>();
}
}
/// Create a new `ComponentDescriptor` for the type `T`.
pub fn new<T: Component>() -> Self {
Self {
name: Cow::Borrowed(core::any::type_name::<T>()),
storage_type: T::STORAGE_TYPE,
is_send_and_sync: true,
type_id: Some(TypeId::of::<T>()),
layout: Layout::new::<T>(),
drop: needs_drop::<T>().then_some(Self::drop_ptr::<T> as _),
}
}
/// Create a new `ComponentDescriptor`.
///
/// # Safety
/// - the `drop` fn must be usable on a pointer with a value of the layout `layout`
/// - the component type must be safe to access from any thread (Send + Sync in rust terms)
pub unsafe fn new_with_layout(
name: impl Into<Cow<'static, str>>,
storage_type: StorageType,
layout: Layout,
drop: Option<for<'a> unsafe fn(OwningPtr<'a>)>,
) -> Self {
Self {
name: name.into(),
storage_type,
is_send_and_sync: true,
type_id: None,
layout,
drop,
}
}
/// Create a new `ComponentDescriptor` for a resource.
///
/// The [`StorageType`] for resources is always [`StorageType::Table`].
pub fn new_resource<T: Resource>() -> Self {
Self {
name: Cow::Borrowed(core::any::type_name::<T>()),
// PERF: `SparseStorage` may actually be a more
// reasonable choice as `storage_type` for resources.
storage_type: StorageType::Table,
is_send_and_sync: true,
type_id: Some(TypeId::of::<T>()),
layout: Layout::new::<T>(),
drop: needs_drop::<T>().then_some(Self::drop_ptr::<T> as _),
}
}
fn new_non_send<T: Any>(storage_type: StorageType) -> Self {
Self {
name: Cow::Borrowed(core::any::type_name::<T>()),
storage_type,
is_send_and_sync: false,
type_id: Some(TypeId::of::<T>()),
layout: Layout::new::<T>(),
drop: needs_drop::<T>().then_some(Self::drop_ptr::<T> as _),
}
}
/// Returns a value indicating the storage strategy for the current component.
#[inline]
pub fn storage_type(&self) -> StorageType {
self.storage_type
}
/// Returns the [`TypeId`] of the underlying component type.
/// Returns `None` if the component does not correspond to a Rust type.
#[inline]
pub fn type_id(&self) -> Option<TypeId> {
self.type_id
}
/// Returns the name of the current component.
#[inline]
pub fn name(&self) -> &str {
self.name.as_ref()
}
}
/// Stores metadata associated with each kind of [`Component`] in a given [`World`].
#[derive(Debug, Default)]
pub struct Components {
components: Vec<ComponentInfo>,
indices: TypeIdMap<ComponentId>,
resource_indices: TypeIdMap<ComponentId>,
}
impl Components {
/// Registers a [`Component`] of type `T` with this instance.
/// If a component of this type has already been registered, this will return
/// the ID of the pre-existing component.
///
/// # See also
///
/// * [`Components::component_id()`]
/// * [`Components::register_component_with_descriptor()`]
#[inline]
pub fn register_component<T: Component>(&mut self, storages: &mut Storages) -> ComponentId {
let mut registered = false;
let id = {
let Components {
indices,
components,
..
} = self;
let type_id = TypeId::of::<T>();
*indices.entry(type_id).or_insert_with(|| {
let id = Components::register_component_inner(
components,
storages,
ComponentDescriptor::new::<T>(),
);
registered = true;
id
})
};
if registered {
let mut required_components = RequiredComponents::default();
T::register_required_components(id, self, storages, &mut required_components, 0);
let info = &mut self.components[id.index()];
T::register_component_hooks(&mut info.hooks);
info.required_components = required_components;
}
id
}
/// Registers a component described by `descriptor`.
///
/// # Note
///
/// If this method is called multiple times with identical descriptors, a distinct [`ComponentId`]
/// will be created for each one.
///
/// # See also
///
/// * [`Components::component_id()`]
/// * [`Components::register_component()`]
pub fn register_component_with_descriptor(
&mut self,
storages: &mut Storages,
descriptor: ComponentDescriptor,
) -> ComponentId {
Components::register_component_inner(&mut self.components, storages, descriptor)
}
#[inline]
fn register_component_inner(
components: &mut Vec<ComponentInfo>,
storages: &mut Storages,
descriptor: ComponentDescriptor,
) -> ComponentId {
let component_id = ComponentId(components.len());
let info = ComponentInfo::new(component_id, descriptor);
if info.descriptor.storage_type == StorageType::SparseSet {
storages.sparse_sets.get_or_insert(&info);
}
components.push(info);
component_id
}
/// Returns the number of components registered with this instance.
#[inline]
pub fn len(&self) -> usize {
self.components.len()
}
/// Returns `true` if there are no components registered with this instance. Otherwise, this returns `false`.
#[inline]
pub fn is_empty(&self) -> bool {
self.components.len() == 0
}
/// Gets the metadata associated with the given component.
///
/// This will return an incorrect result if `id` did not come from the same world as `self`. It may return `None` or a garbage value.
#[inline]
pub fn get_info(&self, id: ComponentId) -> Option<&ComponentInfo> {
self.components.get(id.0)
}
/// Returns the name associated with the given component.
///
/// This will return an incorrect result if `id` did not come from the same world as `self`. It may return `None` or a garbage value.
#[inline]
pub fn get_name(&self, id: ComponentId) -> Option<&str> {
self.get_info(id).map(ComponentInfo::name)
}
/// Gets the metadata associated with the given component.
/// # Safety
///
/// `id` must be a valid [`ComponentId`]
#[inline]
pub unsafe fn get_info_unchecked(&self, id: ComponentId) -> &ComponentInfo {
debug_assert!(id.index() < self.components.len());
// SAFETY: The caller ensures `id` is valid.
unsafe { self.components.get_unchecked(id.0) }
}
#[inline]
pub(crate) fn get_hooks_mut(&mut self, id: ComponentId) -> Option<&mut ComponentHooks> {
self.components.get_mut(id.0).map(|info| &mut info.hooks)
}
#[inline]
pub(crate) fn get_required_components_mut(
&mut self,
id: ComponentId,
) -> Option<&mut RequiredComponents> {
self.components
.get_mut(id.0)
.map(|info| &mut info.required_components)
}
/// Registers the given component `R` and [required components] inherited from it as required by `T`.
///
/// When `T` is added to an entity, `R` will also be added if it was not already provided.
/// The given `constructor` will be used for the creation of `R`.
///
/// [required components]: Component#required-components
///
/// # Safety
///
/// The given component IDs `required` and `requiree` must be valid.
///
/// # Errors
///
/// Returns a [`RequiredComponentsError`] if the `required` component is already a directly required component for the `requiree`.
///
/// Indirect requirements through other components are allowed. In those cases, the more specific
/// registration will be used.
pub(crate) unsafe fn register_required_components<R: Component>(
&mut self,
requiree: ComponentId,
required: ComponentId,
constructor: fn() -> R,
) -> Result<(), RequiredComponentsError> {
// SAFETY: The caller ensures that the `requiree` is valid.
let required_components = unsafe {
self.get_required_components_mut(requiree)
.debug_checked_unwrap()
};
// Cannot directly require the same component twice.
if required_components
.0
.get(&required)
.is_some_and(|c| c.inheritance_depth == 0)
{
return Err(RequiredComponentsError::DuplicateRegistration(
requiree, required,
));
}
// Register the required component for the requiree.
// This is a direct requirement with a depth of `0`.
required_components.register_by_id(required, constructor, 0);
// Add the requiree to the list of components that require the required component.
// SAFETY: The component is in the list of required components, so it must exist already.
let required_by = unsafe { self.get_required_by_mut(required).debug_checked_unwrap() };
required_by.insert(requiree);
// SAFETY: The caller ensures that the `requiree` and `required` components are valid.
let inherited_requirements =
unsafe { self.register_inherited_required_components(requiree, required) };
// Propagate the new required components up the chain to all components that require the requiree.
if let Some(required_by) = self.get_required_by(requiree).cloned() {
// `required` is now required by anything that `requiree` was required by.
self.get_required_by_mut(required)
.unwrap()
.extend(required_by.iter().copied());
for &required_by_id in required_by.iter() {
// SAFETY: The component is in the list of required components, so it must exist already.
let required_components = unsafe {
self.get_required_components_mut(required_by_id)
.debug_checked_unwrap()
};
// Register the original required component in the "parent" of the requiree.
// The inheritance depth is 1 deeper than the `requiree` wrt `required_by_id`.
let depth = required_components.0.get(&requiree).expect("requiree is required by required_by_id, so its required_components must include requiree").inheritance_depth;
required_components.register_by_id(required, constructor, depth + 1);
for (component_id, component) in inherited_requirements.iter() {
// Register the required component.
// The inheritance depth of inherited components is whatever the requiree's
// depth is relative to `required_by_id`, plus the inheritance depth of the
// inherited component relative to the requiree, plus 1 to account for the
// requiree in between.
// SAFETY: Component ID and constructor match the ones on the original requiree.
// The original requiree is responsible for making sure the registration is safe.
unsafe {
required_components.register_dynamic(
*component_id,
component.constructor.clone(),
component.inheritance_depth + depth + 1,
);
};
}
}
}
Ok(())
}
/// Registers the components inherited from `required` for the given `requiree`,
/// returning the requirements in a list.
///
/// # Safety
///
/// The given component IDs `requiree` and `required` must be valid.
unsafe fn register_inherited_required_components(
&mut self,
requiree: ComponentId,
required: ComponentId,
) -> Vec<(ComponentId, RequiredComponent)> {
// Get required components inherited from the `required` component.
// SAFETY: The caller ensures that the `required` component is valid.
let required_component_info = unsafe { self.get_info(required).debug_checked_unwrap() };
let inherited_requirements: Vec<(ComponentId, RequiredComponent)> = required_component_info
.required_components()
.0
.iter()
.map(|(component_id, required_component)| {
(
*component_id,
RequiredComponent {
constructor: required_component.constructor.clone(),
// Add `1` to the inheritance depth since this will be registered
// for the component that requires `required`.
inheritance_depth: required_component.inheritance_depth + 1,
},
)
})
.collect();
// Register the new required components.
for (component_id, component) in inherited_requirements.iter().cloned() {
// SAFETY: The caller ensures that the `requiree` is valid.
let required_components = unsafe {
self.get_required_components_mut(requiree)
.debug_checked_unwrap()
};
// Register the required component for the requiree.
// SAFETY: Component ID and constructor match the ones on the original requiree.
unsafe {
required_components.register_dynamic(
component_id,
component.constructor,
component.inheritance_depth,
);
};
// Add the requiree to the list of components that require the required component.
// SAFETY: The caller ensures that the required components are valid.
let required_by = unsafe {
self.get_required_by_mut(component_id)
.debug_checked_unwrap()
};
required_by.insert(requiree);
}
inherited_requirements
}
// NOTE: This should maybe be private, but it is currently public so that `bevy_ecs_macros` can use it.
// We can't directly move this there either, because this uses `Components::get_required_by_mut`,
// which is private, and could be equally risky to expose to users.
/// Registers the given component `R` and [required components] inherited from it as required by `T`,
/// and adds `T` to their lists of requirees.
///
/// The given `inheritance_depth` determines how many levels of inheritance deep the requirement is.
/// A direct requirement has a depth of `0`, and each level of inheritance increases the depth by `1`.
/// Lower depths are more specific requirements, and can override existing less specific registrations.
///
/// This method does *not* register any components as required by components that require `T`.
///
/// Only use this method if you know what you are doing. In most cases, you should instead use [`World::register_required_components`],
/// or the equivalent method in `bevy_app::App`.
///
/// [required component]: Component#required-components
#[doc(hidden)]
pub fn register_required_components_manual<T: Component, R: Component>(
&mut self,
storages: &mut Storages,
required_components: &mut RequiredComponents,
constructor: fn() -> R,
inheritance_depth: u16,
) {
let requiree = self.register_component::<T>(storages);
let required = self.register_component::<R>(storages);
// SAFETY: We just created the components.
unsafe {
self.register_required_components_manual_unchecked::<R>(
requiree,
required,
required_components,
constructor,
inheritance_depth,
);
}
}
/// Registers the given component `R` and [required components] inherited from it as required by `T`,
/// and adds `T` to their lists of requirees.
///
/// The given `inheritance_depth` determines how many levels of inheritance deep the requirement is.
/// A direct requirement has a depth of `0`, and each level of inheritance increases the depth by `1`.
/// Lower depths are more specific requirements, and can override existing less specific registrations.
///
/// This method does *not* register any components as required by components that require `T`.
///
/// [required component]: Component#required-components
///
/// # Safety
///
/// The given component IDs `required` and `requiree` must be valid.
pub(crate) unsafe fn register_required_components_manual_unchecked<R: Component>(
&mut self,
requiree: ComponentId,
required: ComponentId,
required_components: &mut RequiredComponents,
constructor: fn() -> R,
inheritance_depth: u16,
) {
// Components cannot require themselves.
if required == requiree {
return;
}
// Register the required component `R` for the requiree.
required_components.register_by_id(required, constructor, inheritance_depth);
// Add the requiree to the list of components that require `R`.
// SAFETY: The caller ensures that the component ID is valid.
// Assuming it is valid, the component is in the list of required components, so it must exist already.
let required_by = unsafe { self.get_required_by_mut(required).debug_checked_unwrap() };
required_by.insert(requiree);
// Register the inherited required components for the requiree.
let required: Vec<(ComponentId, RequiredComponent)> = self
.get_info(required)
.unwrap()
.required_components()
.0
.iter()
.map(|(id, component)| (*id, component.clone()))
.collect();
for (id, component) in required {
// Register the inherited required components for the requiree.
// The inheritance depth is increased by `1` since this is a component required by the original required component.
required_components.register_dynamic(
id,
component.constructor.clone(),
component.inheritance_depth + 1,
);
self.get_required_by_mut(id).unwrap().insert(requiree);
}
}
#[inline]
pub(crate) fn get_required_by(&self, id: ComponentId) -> Option<&HashSet<ComponentId>> {
self.components.get(id.0).map(|info| &info.required_by)
}
#[inline]
pub(crate) fn get_required_by_mut(
&mut self,
id: ComponentId,
) -> Option<&mut HashSet<ComponentId>> {
self.components
.get_mut(id.0)
.map(|info| &mut info.required_by)
}
/// Type-erased equivalent of [`Components::component_id()`].
#[inline]
pub fn get_id(&self, type_id: TypeId) -> Option<ComponentId> {
self.indices.get(&type_id).copied()
}
/// Returns the [`ComponentId`] of the given [`Component`] type `T`.
///
/// The returned `ComponentId` is specific to the `Components` instance
/// it was retrieved from and should not be used with another `Components`
/// instance.
///
/// Returns [`None`] if the `Component` type has not
/// yet been initialized using [`Components::register_component()`].
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// let mut world = World::new();
///
/// #[derive(Component)]
/// struct ComponentA;
///
/// let component_a_id = world.register_component::<ComponentA>();
///
/// assert_eq!(component_a_id, world.components().component_id::<ComponentA>().unwrap())
/// ```
///
/// # See also
///
/// * [`Components::get_id()`]
/// * [`Components::resource_id()`]
/// * [`World::component_id()`]
#[inline]
pub fn component_id<T: Component>(&self) -> Option<ComponentId> {
self.get_id(TypeId::of::<T>())
}
/// Type-erased equivalent of [`Components::resource_id()`].
#[inline]
pub fn get_resource_id(&self, type_id: TypeId) -> Option<ComponentId> {
self.resource_indices.get(&type_id).copied()
}
/// Returns the [`ComponentId`] of the given [`Resource`] type `T`.
///
/// The returned `ComponentId` is specific to the `Components` instance
/// it was retrieved from and should not be used with another `Components`
/// instance.
///
/// Returns [`None`] if the `Resource` type has not
/// yet been initialized using [`Components::register_resource()`].
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// let mut world = World::new();
///
/// #[derive(Resource, Default)]
/// struct ResourceA;
///
/// let resource_a_id = world.init_resource::<ResourceA>();
///
/// assert_eq!(resource_a_id, world.components().resource_id::<ResourceA>().unwrap())
/// ```
///
/// # See also
///
/// * [`Components::component_id()`]
/// * [`Components::get_resource_id()`]
#[inline]
pub fn resource_id<T: Resource>(&self) -> Option<ComponentId> {
self.get_resource_id(TypeId::of::<T>())
}
/// Registers a [`Resource`] of type `T` with this instance.
/// If a resource of this type has already been registered, this will return
/// the ID of the pre-existing resource.
///
/// # See also
///
/// * [`Components::resource_id()`]
/// * [`Components::register_resource_with_descriptor()`]
#[inline]
pub fn register_resource<T: Resource>(&mut self) -> ComponentId {
// SAFETY: The [`ComponentDescriptor`] matches the [`TypeId`]
unsafe {
self.get_or_register_resource_with(TypeId::of::<T>(), || {
ComponentDescriptor::new_resource::<T>()
})
}
}
/// Registers a [`Resource`] described by `descriptor`.
///
/// # Note
///
/// If this method is called multiple times with identical descriptors, a distinct [`ComponentId`]
/// will be created for each one.
///
/// # See also
///
/// * [`Components::resource_id()`]
/// * [`Components::register_resource()`]
pub fn register_resource_with_descriptor(
&mut self,
descriptor: ComponentDescriptor,
) -> ComponentId {
Components::register_resource_inner(&mut self.components, descriptor)
}
/// Registers a [non-send resource](crate::system::NonSend) of type `T` with this instance.
/// If a resource of this type has already been registered, this will return
/// the ID of the pre-existing resource.
#[inline]
pub fn register_non_send<T: Any>(&mut self) -> ComponentId {
// SAFETY: The [`ComponentDescriptor`] matches the [`TypeId`]
unsafe {
self.get_or_register_resource_with(TypeId::of::<T>(), || {
ComponentDescriptor::new_non_send::<T>(StorageType::default())
})
}
}
/// # Safety
///
/// The [`ComponentDescriptor`] must match the [`TypeId`]
#[inline]
unsafe fn get_or_register_resource_with(
&mut self,
type_id: TypeId,
func: impl FnOnce() -> ComponentDescriptor,
) -> ComponentId {
let components = &mut self.components;
*self.resource_indices.entry(type_id).or_insert_with(|| {
let descriptor = func();
Components::register_resource_inner(components, descriptor)
})
}
#[inline]
fn register_resource_inner(
components: &mut Vec<ComponentInfo>,
descriptor: ComponentDescriptor,
) -> ComponentId {
let component_id = ComponentId(components.len());
components.push(ComponentInfo::new(component_id, descriptor));
component_id
}
/// Gets an iterator over all components registered with this instance.
pub fn iter(&self) -> impl Iterator<Item = &ComponentInfo> + '_ {
self.components.iter()
}
}
/// A value that tracks when a system ran relative to other systems.
/// This is used to power change detection.
///
/// *Note* that a system that hasn't been run yet has a `Tick` of 0.
#[derive(Copy, Clone, Default, Debug, Eq, Hash, PartialEq)]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, Hash, PartialEq)
)]
pub struct Tick {
tick: u32,
}
impl Tick {
/// The maximum relative age for a change tick.
/// The value of this is equal to [`MAX_CHANGE_AGE`].
///
/// Since change detection will not work for any ticks older than this,
/// ticks are periodically scanned to ensure their relative values are below this.
pub const MAX: Self = Self::new(MAX_CHANGE_AGE);
/// Creates a new [`Tick`] wrapping the given value.
#[inline]
pub const fn new(tick: u32) -> Self {
Self { tick }
}
/// Gets the value of this change tick.
#[inline]
pub const fn get(self) -> u32 {
self.tick
}
/// Sets the value of this change tick.
#[inline]
pub fn set(&mut self, tick: u32) {
self.tick = tick;
}
/// Returns `true` if this `Tick` occurred since the system's `last_run`.
///
/// `this_run` is the current tick of the system, used as a reference to help deal with wraparound.
#[inline]
pub fn is_newer_than(self, last_run: Tick, this_run: Tick) -> bool {
// This works even with wraparound because the world tick (`this_run`) is always "newer" than
// `last_run` and `self.tick`, and we scan periodically to clamp `ComponentTicks` values
// so they never get older than `u32::MAX` (the difference would overflow).
//
// The clamp here ensures determinism (since scans could differ between app runs).
let ticks_since_insert = this_run.relative_to(self).tick.min(MAX_CHANGE_AGE);
let ticks_since_system = this_run.relative_to(last_run).tick.min(MAX_CHANGE_AGE);
ticks_since_system > ticks_since_insert
}
/// Returns a change tick representing the relationship between `self` and `other`.
#[inline]
pub(crate) fn relative_to(self, other: Self) -> Self {
let tick = self.tick.wrapping_sub(other.tick);
Self { tick }
}
/// Wraps this change tick's value if it exceeds [`Tick::MAX`].
///
/// Returns `true` if wrapping was performed. Otherwise, returns `false`.
#[inline]
pub(crate) fn check_tick(&mut self, tick: Tick) -> bool {
let age = tick.relative_to(*self);
// This comparison assumes that `age` has not overflowed `u32::MAX` before, which will be true
// so long as this check always runs before that can happen.
if age.get() > Self::MAX.get() {
*self = tick.relative_to(Self::MAX);
true
} else {
false
}
}
}
/// Interior-mutable access to the [`Tick`]s for a single component or resource.
#[derive(Copy, Clone, Debug)]
pub struct TickCells<'a> {
/// The tick indicating when the value was added to the world.
pub added: &'a UnsafeCell<Tick>,
/// The tick indicating the last time the value was modified.
pub changed: &'a UnsafeCell<Tick>,
}
impl<'a> TickCells<'a> {
/// # Safety
/// All cells contained within must uphold the safety invariants of [`UnsafeCellDeref::read`].
#[inline]
pub(crate) unsafe fn read(&self) -> ComponentTicks {
ComponentTicks {
// SAFETY: The callers uphold the invariants for `read`.
added: unsafe { self.added.read() },
// SAFETY: The callers uphold the invariants for `read`.
changed: unsafe { self.changed.read() },
}
}
}
/// Records when a component or resource was added and when it was last mutably dereferenced (or added).
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug))]
pub struct ComponentTicks {
/// Tick recording the time this component or resource was added.
pub added: Tick,
/// Tick recording the time this component or resource was most recently changed.
pub changed: Tick,
}
impl ComponentTicks {
/// Returns `true` if the component or resource was added after the system last ran
/// (or the system is running for the first time).
#[inline]
pub fn is_added(&self, last_run: Tick, this_run: Tick) -> bool {
self.added.is_newer_than(last_run, this_run)
}
/// Returns `true` if the component or resource was added or mutably dereferenced after the system last ran
/// (or the system is running for the first time).
#[inline]
pub fn is_changed(&self, last_run: Tick, this_run: Tick) -> bool {
self.changed.is_newer_than(last_run, this_run)
}
/// Creates a new instance with the same change tick for `added` and `changed`.
pub fn new(change_tick: Tick) -> Self {
Self {
added: change_tick,
changed: change_tick,
}
}
/// Manually sets the change tick.
///
/// This is normally done automatically via the [`DerefMut`](std::ops::DerefMut) implementation
/// on [`Mut<T>`](crate::change_detection::Mut), [`ResMut<T>`](crate::change_detection::ResMut), etc.
/// However, components and resources that make use of interior mutability might require manual updates.
///
/// # Example
/// ```no_run
/// # use bevy_ecs::{world::World, component::ComponentTicks};
/// let world: World = unimplemented!();
/// let component_ticks: ComponentTicks = unimplemented!();
///
/// component_ticks.set_changed(world.read_change_tick());
/// ```
#[inline]
pub fn set_changed(&mut self, change_tick: Tick) {
self.changed = change_tick;
}
}
/// A [`SystemParam`] that provides access to the [`ComponentId`] for a specific component type.
///
/// # Example
/// ```
/// # use bevy_ecs::{system::Local, component::{Component, ComponentId, ComponentIdFor}};
/// #[derive(Component)]
/// struct Player;
/// fn my_system(component_id: ComponentIdFor<Player>) {
/// let component_id: ComponentId = component_id.get();
/// // ...
/// }
/// ```
#[derive(SystemParam)]
pub struct ComponentIdFor<'s, T: Component>(Local<'s, InitComponentId<T>>);
impl<T: Component> ComponentIdFor<'_, T> {
/// Gets the [`ComponentId`] for the type `T`.
#[inline]
pub fn get(&self) -> ComponentId {
**self
}
}
impl<T: Component> core::ops::Deref for ComponentIdFor<'_, T> {
type Target = ComponentId;
fn deref(&self) -> &Self::Target {
&self.0.component_id
}
}
impl<T: Component> From<ComponentIdFor<'_, T>> for ComponentId {
#[inline]
fn from(to_component_id: ComponentIdFor<T>) -> ComponentId {
*to_component_id
}
}
/// Initializes the [`ComponentId`] for a specific type when used with [`FromWorld`].
struct InitComponentId<T: Component> {
component_id: ComponentId,
marker: PhantomData<T>,
}
impl<T: Component> FromWorld for InitComponentId<T> {
fn from_world(world: &mut World) -> Self {
Self {
component_id: world.register_component::<T>(),
marker: PhantomData,
}
}
}
/// An error returned when the registration of a required component fails.
#[derive(Error, Display, Debug)]
#[non_exhaustive]
pub enum RequiredComponentsError {
/// The component is already a directly required component for the requiree.
#[display("Component {0:?} already directly requires component {_1:?}")]
#[error(ignore)]
DuplicateRegistration(ComponentId, ComponentId),
/// An archetype with the component that requires other components already exists
#[display(
"An archetype with the component {_0:?} that requires other components already exists"
)]
#[error(ignore)]
ArchetypeExists(ComponentId),
}
/// A Required Component constructor. See [`Component`] for details.
#[cfg(feature = "track_change_detection")]
#[derive(Clone)]
pub struct RequiredComponentConstructor(
pub Arc<dyn Fn(&mut Table, &mut SparseSets, Tick, TableRow, Entity, &'static Location<'static>)>,
);
/// A Required Component constructor. See [`Component`] for details.
#[cfg(not(feature = "track_change_detection"))]
#[derive(Clone)]
pub struct RequiredComponentConstructor(
pub Arc<dyn Fn(&mut Table, &mut SparseSets, Tick, TableRow, Entity)>,
);
impl RequiredComponentConstructor {
/// # Safety
/// This is intended to only be called in the context of [`BundleInfo::write_components`] to initialized required components.
/// Calling it _anywhere else_ should be considered unsafe.
///
/// `table_row` and `entity` must correspond to a valid entity that currently needs a component initialized via the constructor stored
/// on this [`RequiredComponentConstructor`]. The stored constructor must correspond to a component on `entity` that needs initialization.
/// `table` and `sparse_sets` must correspond to storages on a world where `entity` needs this required component initialized.
///
/// Again, don't call this anywhere but [`BundleInfo::write_components`].
pub(crate) unsafe fn initialize(
&self,
table: &mut Table,
sparse_sets: &mut SparseSets,
change_tick: Tick,
table_row: TableRow,
entity: Entity,
#[cfg(feature = "track_change_detection")] caller: &'static Location<'static>,
) {
(self.0)(
table,
sparse_sets,
change_tick,
table_row,
entity,
#[cfg(feature = "track_change_detection")]
caller,
);
}
}
/// Metadata associated with a required component. See [`Component`] for details.
#[derive(Clone)]
pub struct RequiredComponent {
/// The constructor used for the required component.
pub constructor: RequiredComponentConstructor,
/// The depth of the component requirement in the requirement hierarchy for this component.
/// This is used for determining which constructor is used in cases where there are duplicate requires.
///
/// For example, consider the inheritance tree `X -> Y -> Z`, where `->` indicates a requirement.
/// `X -> Y` and `Y -> Z` are direct requirements with a depth of 0, while `Z` is only indirectly
/// required for `X` with a depth of `1`.
///
/// In cases where there are multiple conflicting requirements with the same depth, a higher priority
/// will be given to components listed earlier in the `require` attribute, or to the latest added requirement
/// if registered at runtime.
pub inheritance_depth: u16,
}
/// The collection of metadata for components that are required for a given component.
///
/// For more information, see the "Required Components" section of [`Component`].
#[derive(Default, Clone)]
pub struct RequiredComponents(pub(crate) HashMap<ComponentId, RequiredComponent>);
impl Debug for RequiredComponents {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.debug_tuple("RequiredComponents")
.field(&self.0.keys())
.finish()
}
}
impl RequiredComponents {
/// Registers a required component.
///
/// If the component is already registered, it will be overwritten if the given inheritance depth
/// is smaller than the depth of the existing registration. Otherwise, the new registration will be ignored.
///
/// # Safety
///
/// `component_id` must match the type initialized by `constructor`.
/// `constructor` _must_ initialize a component for `component_id` in such a way that
/// matches the storage type of the component. It must only use the given `table_row` or `Entity` to
/// initialize the storage for `component_id` corresponding to the given entity.
pub unsafe fn register_dynamic(
&mut self,
component_id: ComponentId,
constructor: RequiredComponentConstructor,
inheritance_depth: u16,
) {
self.0
.entry(component_id)
.and_modify(|component| {
if component.inheritance_depth > inheritance_depth {
// New registration is more specific than existing requirement
component.constructor = constructor.clone();
component.inheritance_depth = inheritance_depth;
}
})
.or_insert(RequiredComponent {
constructor,
inheritance_depth,
});
}
/// Registers a required component.
///
/// If the component is already registered, it will be overwritten if the given inheritance depth
/// is smaller than the depth of the existing registration. Otherwise, the new registration will be ignored.
pub fn register<C: Component>(
&mut self,
components: &mut Components,
storages: &mut Storages,
constructor: fn() -> C,
inheritance_depth: u16,
) {
let component_id = components.register_component::<C>(storages);
self.register_by_id(component_id, constructor, inheritance_depth);
}
/// Registers the [`Component`] with the given ID as required if it exists.
///
/// If the component is already registered, it will be overwritten if the given inheritance depth
/// is smaller than the depth of the existing registration. Otherwise, the new registration will be ignored.
pub fn register_by_id<C: Component>(
&mut self,
component_id: ComponentId,
constructor: fn() -> C,
inheritance_depth: u16,
) {
let erased: RequiredComponentConstructor = RequiredComponentConstructor(Arc::new(
move |table,
sparse_sets,
change_tick,
table_row,
entity,
#[cfg(feature = "track_change_detection")] caller| {
OwningPtr::make(constructor(), |ptr| {
// SAFETY: This will only be called in the context of `BundleInfo::write_components`, which will
// pass in a valid table_row and entity requiring a C constructor
// C::STORAGE_TYPE is the storage type associated with `component_id` / `C`
// `ptr` points to valid `C` data, which matches the type associated with `component_id`
unsafe {
BundleInfo::initialize_required_component(
table,
sparse_sets,
change_tick,
table_row,
entity,
component_id,
C::STORAGE_TYPE,
ptr,
#[cfg(feature = "track_change_detection")]
caller,
);
}
});
},
));
// SAFETY:
// `component_id` matches the type initialized by the `erased` constructor above.
// `erased` initializes a component for `component_id` in such a way that
// matches the storage type of the component. It only uses the given `table_row` or `Entity` to
// initialize the storage corresponding to the given entity.
unsafe { self.register_dynamic(component_id, erased, inheritance_depth) };
}
/// Iterates the ids of all required components. This includes recursive required components.
pub fn iter_ids(&self) -> impl Iterator<Item = ComponentId> + '_ {
self.0.keys().copied()
}
/// Removes components that are explicitly provided in a given [`Bundle`]. These components should
/// be logically treated as normal components, not "required components".
///
/// [`Bundle`]: crate::bundle::Bundle
pub(crate) fn remove_explicit_components(&mut self, components: &[ComponentId]) {
for component in components {
self.0.remove(component);
}
}
// Merges `required_components` into this collection. This only inserts a required component
// if it _did not already exist_.
pub(crate) fn merge(&mut self, required_components: &RequiredComponents) {
for (id, constructor) in &required_components.0 {
self.0.entry(*id).or_insert_with(|| constructor.clone());
}
}
}