bevy_ecs/component.rs
1//! Types for declaring and storing [`Component`]s.
2
3use crate::{
4 self as bevy_ecs,
5 archetype::ArchetypeFlags,
6 bundle::BundleInfo,
7 change_detection::MAX_CHANGE_AGE,
8 entity::Entity,
9 query::DebugCheckedUnwrap,
10 storage::{SparseSetIndex, SparseSets, Storages, Table, TableRow},
11 system::{Local, Resource, SystemParam},
12 world::{DeferredWorld, FromWorld, World},
13};
14use alloc::{borrow::Cow, sync::Arc};
15pub use bevy_ecs_macros::Component;
16use bevy_ptr::{OwningPtr, UnsafeCellDeref};
17#[cfg(feature = "bevy_reflect")]
18use bevy_reflect::Reflect;
19use bevy_utils::{HashMap, HashSet, TypeIdMap};
20#[cfg(feature = "track_change_detection")]
21use core::panic::Location;
22use core::{
23 alloc::Layout,
24 any::{Any, TypeId},
25 cell::UnsafeCell,
26 fmt::Debug,
27 marker::PhantomData,
28 mem::needs_drop,
29};
30use derive_more::derive::{Display, Error};
31
32/// A data type that can be used to store data for an [entity].
33///
34/// `Component` is a [derivable trait]: this means that a data type can implement it by applying a `#[derive(Component)]` attribute to it.
35/// However, components must always satisfy the `Send + Sync + 'static` trait bounds.
36///
37/// [entity]: crate::entity
38/// [derivable trait]: https://doc.rust-lang.org/book/appendix-03-derivable-traits.html
39///
40/// # Examples
41///
42/// Components can take many forms: they are usually structs, but can also be of every other kind of data type, like enums or zero sized types.
43/// The following examples show how components are laid out in code.
44///
45/// ```
46/// # use bevy_ecs::component::Component;
47/// # struct Color;
48/// #
49/// // A component can contain data...
50/// #[derive(Component)]
51/// struct LicensePlate(String);
52///
53/// // ... but it can also be a zero-sized marker.
54/// #[derive(Component)]
55/// struct Car;
56///
57/// // Components can also be structs with named fields...
58/// #[derive(Component)]
59/// struct VehiclePerformance {
60/// acceleration: f32,
61/// top_speed: f32,
62/// handling: f32,
63/// }
64///
65/// // ... or enums.
66/// #[derive(Component)]
67/// enum WheelCount {
68/// Two,
69/// Three,
70/// Four,
71/// }
72/// ```
73///
74/// # Component and data access
75///
76/// See the [`entity`] module level documentation to learn how to add or remove components from an entity.
77///
78/// See the documentation for [`Query`] to learn how to access component data from a system.
79///
80/// [`entity`]: crate::entity#usage
81/// [`Query`]: crate::system::Query
82///
83/// # Choosing a storage type
84///
85/// Components can be stored in the world using different strategies with their own performance implications.
86/// By default, components are added to the [`Table`] storage, which is optimized for query iteration.
87///
88/// Alternatively, components can be added to the [`SparseSet`] storage, which is optimized for component insertion and removal.
89/// This is achieved by adding an additional `#[component(storage = "SparseSet")]` attribute to the derive one:
90///
91/// ```
92/// # use bevy_ecs::component::Component;
93/// #
94/// #[derive(Component)]
95/// #[component(storage = "SparseSet")]
96/// struct ComponentA;
97/// ```
98///
99/// [`Table`]: crate::storage::Table
100/// [`SparseSet`]: crate::storage::SparseSet
101///
102/// # Required Components
103///
104/// Components can specify Required Components. If some [`Component`] `A` requires [`Component`] `B`, then when `A` is inserted,
105/// `B` will _also_ be initialized and inserted (if it was not manually specified).
106///
107/// The [`Default`] constructor will be used to initialize the component, by default:
108///
109/// ```
110/// # use bevy_ecs::prelude::*;
111/// #[derive(Component)]
112/// #[require(B)]
113/// struct A;
114///
115/// #[derive(Component, Default, PartialEq, Eq, Debug)]
116/// struct B(usize);
117///
118/// # let mut world = World::default();
119/// // This will implicitly also insert B with the Default constructor
120/// let id = world.spawn(A).id();
121/// assert_eq!(&B(0), world.entity(id).get::<B>().unwrap());
122///
123/// // This will _not_ implicitly insert B, because it was already provided
124/// world.spawn((A, B(11)));
125/// ```
126///
127/// Components can have more than one required component:
128///
129/// ```
130/// # use bevy_ecs::prelude::*;
131/// #[derive(Component)]
132/// #[require(B, C)]
133/// struct A;
134///
135/// #[derive(Component, Default, PartialEq, Eq, Debug)]
136/// #[require(C)]
137/// struct B(usize);
138///
139/// #[derive(Component, Default, PartialEq, Eq, Debug)]
140/// struct C(u32);
141///
142/// # let mut world = World::default();
143/// // This will implicitly also insert B and C with their Default constructors
144/// let id = world.spawn(A).id();
145/// assert_eq!(&B(0), world.entity(id).get::<B>().unwrap());
146/// assert_eq!(&C(0), world.entity(id).get::<C>().unwrap());
147/// ```
148///
149/// You can also define a custom constructor function or closure:
150///
151/// ```
152/// # use bevy_ecs::prelude::*;
153/// #[derive(Component)]
154/// #[require(C(init_c))]
155/// struct A;
156///
157/// #[derive(Component, PartialEq, Eq, Debug)]
158/// #[require(C(|| C(20)))]
159/// struct B;
160///
161/// #[derive(Component, PartialEq, Eq, Debug)]
162/// struct C(usize);
163///
164/// fn init_c() -> C {
165/// C(10)
166/// }
167///
168/// # let mut world = World::default();
169/// // This will implicitly also insert C with the init_c() constructor
170/// let id = world.spawn(A).id();
171/// assert_eq!(&C(10), world.entity(id).get::<C>().unwrap());
172///
173/// // This will implicitly also insert C with the `|| C(20)` constructor closure
174/// let id = world.spawn(B).id();
175/// assert_eq!(&C(20), world.entity(id).get::<C>().unwrap());
176/// ```
177///
178/// Required components are _recursive_. This means, if a Required Component has required components,
179/// those components will _also_ be inserted if they are missing:
180///
181/// ```
182/// # use bevy_ecs::prelude::*;
183/// #[derive(Component)]
184/// #[require(B)]
185/// struct A;
186///
187/// #[derive(Component, Default, PartialEq, Eq, Debug)]
188/// #[require(C)]
189/// struct B(usize);
190///
191/// #[derive(Component, Default, PartialEq, Eq, Debug)]
192/// struct C(u32);
193///
194/// # let mut world = World::default();
195/// // This will implicitly also insert B and C with their Default constructors
196/// let id = world.spawn(A).id();
197/// assert_eq!(&B(0), world.entity(id).get::<B>().unwrap());
198/// assert_eq!(&C(0), world.entity(id).get::<C>().unwrap());
199/// ```
200///
201/// Note that cycles in the "component require tree" will result in stack overflows when attempting to
202/// insert a component.
203///
204/// This "multiple inheritance" pattern does mean that it is possible to have duplicate requires for a given type
205/// at different levels of the inheritance tree:
206///
207/// ```
208/// # use bevy_ecs::prelude::*;
209/// #[derive(Component)]
210/// struct X(usize);
211///
212/// #[derive(Component, Default)]
213/// #[require(X(|| X(1)))]
214/// struct Y;
215///
216/// #[derive(Component)]
217/// #[require(
218/// Y,
219/// X(|| X(2)),
220/// )]
221/// struct Z;
222///
223/// # let mut world = World::default();
224/// // In this case, the x2 constructor is used for X
225/// let id = world.spawn(Z).id();
226/// assert_eq!(2, world.entity(id).get::<X>().unwrap().0);
227/// ```
228///
229/// In general, this shouldn't happen often, but when it does the algorithm for choosing the constructor from the tree is simple and predictable:
230/// 1. A constructor from a direct `#[require()]`, if one exists, is selected with priority.
231/// 2. Otherwise, perform a Depth First Search on the tree of requirements and select the first one found.
232///
233/// From a user perspective, just think about this as the following:
234/// 1. Specifying a required component constructor for Foo directly on a spawned component Bar will result in that constructor being used (and overriding existing constructors lower in the inheritance tree). This is the classic "inheritance override" behavior people expect.
235/// 2. For cases where "multiple inheritance" results in constructor clashes, Components should be listed in "importance order". List a component earlier in the requirement list to initialize its inheritance tree earlier.
236///
237/// ## Registering required components at runtime
238///
239/// In most cases, required components should be registered using the `require` attribute as shown above.
240/// However, in some cases, it may be useful to register required components at runtime.
241///
242/// This can be done through [`World::register_required_components`] or [`World::register_required_components_with`]
243/// for the [`Default`] and custom constructors respectively:
244///
245/// ```
246/// # use bevy_ecs::prelude::*;
247/// #[derive(Component)]
248/// struct A;
249///
250/// #[derive(Component, Default, PartialEq, Eq, Debug)]
251/// struct B(usize);
252///
253/// #[derive(Component, PartialEq, Eq, Debug)]
254/// struct C(u32);
255///
256/// # let mut world = World::default();
257/// // Register B as required by A and C as required by B.
258/// world.register_required_components::<A, B>();
259/// world.register_required_components_with::<B, C>(|| C(2));
260///
261/// // This will implicitly also insert B with its Default constructor
262/// // and C with the custom constructor defined by B.
263/// let id = world.spawn(A).id();
264/// assert_eq!(&B(0), world.entity(id).get::<B>().unwrap());
265/// assert_eq!(&C(2), world.entity(id).get::<C>().unwrap());
266/// ```
267///
268/// Similar rules as before apply to duplicate requires fer a given type at different levels
269/// of the inheritance tree. `A` requiring `C` directly would take precedence over indirectly
270/// requiring it through `A` requiring `B` and `B` requiring `C`.
271///
272/// Unlike with the `require` attribute, directly requiring the same component multiple times
273/// for the same component will result in a panic. This is done to prevent conflicting constructors
274/// and confusing ordering dependencies.
275///
276/// Note that requirements must currently be registered before the requiring component is inserted
277/// into the world for the first time. Registering requirements after this will lead to a panic.
278///
279/// # Adding component's hooks
280///
281/// See [`ComponentHooks`] for a detailed explanation of component's hooks.
282///
283/// Alternatively to the example shown in [`ComponentHooks`]' documentation, hooks can be configured using following attributes:
284/// - `#[component(on_add = on_add_function)]`
285/// - `#[component(on_insert = on_insert_function)]`
286/// - `#[component(on_replace = on_replace_function)]`
287/// - `#[component(on_remove = on_remove_function)]`
288///
289/// ```
290/// # use bevy_ecs::component::Component;
291/// # use bevy_ecs::world::DeferredWorld;
292/// # use bevy_ecs::entity::Entity;
293/// # use bevy_ecs::component::ComponentId;
294/// #
295/// #[derive(Component)]
296/// #[component(on_add = my_on_add_hook)]
297/// #[component(on_insert = my_on_insert_hook)]
298/// // Another possible way of configuring hooks:
299/// // #[component(on_add = my_on_add_hook, on_insert = my_on_insert_hook)]
300/// //
301/// // We don't have a replace or remove hook, so we can leave them out:
302/// // #[component(on_replace = my_on_replace_hook, on_remove = my_on_remove_hook)]
303/// struct ComponentA;
304///
305/// fn my_on_add_hook(world: DeferredWorld, entity: Entity, id: ComponentId) {
306/// // ...
307/// }
308///
309/// // You can also omit writing some types using generics.
310/// fn my_on_insert_hook<T1, T2>(world: DeferredWorld, _: T1, _: T2) {
311/// // ...
312/// }
313/// ```
314///
315/// # Implementing the trait for foreign types
316///
317/// As a consequence of the [orphan rule], it is not possible to separate into two different crates the implementation of `Component` from the definition of a type.
318/// This means that it is not possible to directly have a type defined in a third party library as a component.
319/// This important limitation can be easily worked around using the [newtype pattern]:
320/// this makes it possible to locally define and implement `Component` for a tuple struct that wraps the foreign type.
321/// The following example gives a demonstration of this pattern.
322///
323/// ```
324/// // `Component` is defined in the `bevy_ecs` crate.
325/// use bevy_ecs::component::Component;
326///
327/// // `Duration` is defined in the `std` crate.
328/// use std::time::Duration;
329///
330/// // It is not possible to implement `Component` for `Duration` from this position, as they are
331/// // both foreign items, defined in an external crate. However, nothing prevents to define a new
332/// // `Cooldown` type that wraps `Duration`. As `Cooldown` is defined in a local crate, it is
333/// // possible to implement `Component` for it.
334/// #[derive(Component)]
335/// struct Cooldown(Duration);
336/// ```
337///
338/// [orphan rule]: https://doc.rust-lang.org/book/ch10-02-traits.html#implementing-a-trait-on-a-type
339/// [newtype pattern]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#using-the-newtype-pattern-to-implement-external-traits-on-external-types
340///
341/// # `!Sync` Components
342/// A `!Sync` type cannot implement `Component`. However, it is possible to wrap a `Send` but not `Sync`
343/// type in [`SyncCell`] or the currently unstable [`Exclusive`] to make it `Sync`. This forces only
344/// having mutable access (`&mut T` only, never `&T`), but makes it safe to reference across multiple
345/// threads.
346///
347/// This will fail to compile since `RefCell` is `!Sync`.
348/// ```compile_fail
349/// # use std::cell::RefCell;
350/// # use bevy_ecs::component::Component;
351/// #[derive(Component)]
352/// struct NotSync {
353/// counter: RefCell<usize>,
354/// }
355/// ```
356///
357/// This will compile since the `RefCell` is wrapped with `SyncCell`.
358/// ```
359/// # use std::cell::RefCell;
360/// # use bevy_ecs::component::Component;
361/// use bevy_utils::synccell::SyncCell;
362///
363/// // This will compile.
364/// #[derive(Component)]
365/// struct ActuallySync {
366/// counter: SyncCell<RefCell<usize>>,
367/// }
368/// ```
369///
370/// [`SyncCell`]: bevy_utils::synccell::SyncCell
371/// [`Exclusive`]: https://doc.rust-lang.org/nightly/std/sync/struct.Exclusive.html
372#[diagnostic::on_unimplemented(
373 message = "`{Self}` is not a `Component`",
374 label = "invalid `Component`",
375 note = "consider annotating `{Self}` with `#[derive(Component)]`"
376)]
377pub trait Component: Send + Sync + 'static {
378 /// A constant indicating the storage type used for this component.
379 const STORAGE_TYPE: StorageType;
380
381 /// Called when registering this component, allowing mutable access to its [`ComponentHooks`].
382 fn register_component_hooks(_hooks: &mut ComponentHooks) {}
383
384 /// Registers required components.
385 fn register_required_components(
386 _component_id: ComponentId,
387 _components: &mut Components,
388 _storages: &mut Storages,
389 _required_components: &mut RequiredComponents,
390 _inheritance_depth: u16,
391 ) {
392 }
393}
394
395/// The storage used for a specific component type.
396///
397/// # Examples
398/// The [`StorageType`] for a component is configured via the derive attribute
399///
400/// ```
401/// # use bevy_ecs::{prelude::*, component::*};
402/// #[derive(Component)]
403/// #[component(storage = "SparseSet")]
404/// struct A;
405/// ```
406#[derive(Debug, Copy, Clone, Default, Eq, PartialEq)]
407pub enum StorageType {
408 /// Provides fast and cache-friendly iteration, but slower addition and removal of components.
409 /// This is the default storage type.
410 #[default]
411 Table,
412 /// Provides fast addition and removal of components, but slower iteration.
413 SparseSet,
414}
415
416/// The type used for [`Component`] lifecycle hooks such as `on_add`, `on_insert` or `on_remove`
417pub type ComponentHook = for<'w> fn(DeferredWorld<'w>, Entity, ComponentId);
418
419/// [`World`]-mutating functions that run as part of lifecycle events of a [`Component`].
420///
421/// Hooks are functions that run when a component is added, overwritten, or removed from an entity.
422/// These are intended to be used for structural side effects that need to happen when a component is added or removed,
423/// and are not intended for general-purpose logic.
424///
425/// For example, you might use a hook to update a cached index when a component is added,
426/// to clean up resources when a component is removed,
427/// or to keep hierarchical data structures across entities in sync.
428///
429/// This information is stored in the [`ComponentInfo`] of the associated component.
430///
431/// There is two ways of configuring hooks for a component:
432/// 1. Defining the [`Component::register_component_hooks`] method (see [`Component`])
433/// 2. Using the [`World::register_component_hooks`] method
434///
435/// # Example 2
436///
437/// ```
438/// use bevy_ecs::prelude::*;
439/// use bevy_utils::HashSet;
440///
441/// #[derive(Component)]
442/// struct MyTrackedComponent;
443///
444/// #[derive(Resource, Default)]
445/// struct TrackedEntities(HashSet<Entity>);
446///
447/// let mut world = World::new();
448/// world.init_resource::<TrackedEntities>();
449///
450/// // No entities with `MyTrackedComponent` have been added yet, so we can safely add component hooks
451/// let mut tracked_component_query = world.query::<&MyTrackedComponent>();
452/// assert!(tracked_component_query.iter(&world).next().is_none());
453///
454/// world.register_component_hooks::<MyTrackedComponent>().on_add(|mut world, entity, _component_id| {
455/// let mut tracked_entities = world.resource_mut::<TrackedEntities>();
456/// tracked_entities.0.insert(entity);
457/// });
458///
459/// world.register_component_hooks::<MyTrackedComponent>().on_remove(|mut world, entity, _component_id| {
460/// let mut tracked_entities = world.resource_mut::<TrackedEntities>();
461/// tracked_entities.0.remove(&entity);
462/// });
463///
464/// let entity = world.spawn(MyTrackedComponent).id();
465/// let tracked_entities = world.resource::<TrackedEntities>();
466/// assert!(tracked_entities.0.contains(&entity));
467///
468/// world.despawn(entity);
469/// let tracked_entities = world.resource::<TrackedEntities>();
470/// assert!(!tracked_entities.0.contains(&entity));
471/// ```
472#[derive(Debug, Clone, Default)]
473pub struct ComponentHooks {
474 pub(crate) on_add: Option<ComponentHook>,
475 pub(crate) on_insert: Option<ComponentHook>,
476 pub(crate) on_replace: Option<ComponentHook>,
477 pub(crate) on_remove: Option<ComponentHook>,
478}
479
480impl ComponentHooks {
481 /// Register a [`ComponentHook`] that will be run when this component is added to an entity.
482 /// An `on_add` hook will always run before `on_insert` hooks. Spawning an entity counts as
483 /// adding all of its components.
484 ///
485 /// # Panics
486 ///
487 /// Will panic if the component already has an `on_add` hook
488 pub fn on_add(&mut self, hook: ComponentHook) -> &mut Self {
489 self.try_on_add(hook)
490 .expect("Component already has an on_add hook")
491 }
492
493 /// Register a [`ComponentHook`] that will be run when this component is added (with `.insert`)
494 /// or replaced.
495 ///
496 /// An `on_insert` hook always runs after any `on_add` hooks (if the entity didn't already have the component).
497 ///
498 /// # Warning
499 ///
500 /// The hook won't run if the component is already present and is only mutated, such as in a system via a query.
501 /// As a result, this is *not* an appropriate mechanism for reliably updating indexes and other caches.
502 ///
503 /// # Panics
504 ///
505 /// Will panic if the component already has an `on_insert` hook
506 pub fn on_insert(&mut self, hook: ComponentHook) -> &mut Self {
507 self.try_on_insert(hook)
508 .expect("Component already has an on_insert hook")
509 }
510
511 /// Register a [`ComponentHook`] that will be run when this component is about to be dropped,
512 /// such as being replaced (with `.insert`) or removed.
513 ///
514 /// If this component is inserted onto an entity that already has it, this hook will run before the value is replaced,
515 /// allowing access to the previous data just before it is dropped.
516 /// This hook does *not* run if the entity did not already have this component.
517 ///
518 /// An `on_replace` hook always runs before any `on_remove` hooks (if the component is being removed from the entity).
519 ///
520 /// # Warning
521 ///
522 /// The hook won't run if the component is already present and is only mutated, such as in a system via a query.
523 /// As a result, this is *not* an appropriate mechanism for reliably updating indexes and other caches.
524 ///
525 /// # Panics
526 ///
527 /// Will panic if the component already has an `on_replace` hook
528 pub fn on_replace(&mut self, hook: ComponentHook) -> &mut Self {
529 self.try_on_replace(hook)
530 .expect("Component already has an on_replace hook")
531 }
532
533 /// Register a [`ComponentHook`] that will be run when this component is removed from an entity.
534 /// Despawning an entity counts as removing all of its components.
535 ///
536 /// # Panics
537 ///
538 /// Will panic if the component already has an `on_remove` hook
539 pub fn on_remove(&mut self, hook: ComponentHook) -> &mut Self {
540 self.try_on_remove(hook)
541 .expect("Component already has an on_remove hook")
542 }
543
544 /// Attempt to register a [`ComponentHook`] that will be run when this component is added to an entity.
545 ///
546 /// This is a fallible version of [`Self::on_add`].
547 ///
548 /// Returns `None` if the component already has an `on_add` hook.
549 pub fn try_on_add(&mut self, hook: ComponentHook) -> Option<&mut Self> {
550 if self.on_add.is_some() {
551 return None;
552 }
553 self.on_add = Some(hook);
554 Some(self)
555 }
556
557 /// Attempt to register a [`ComponentHook`] that will be run when this component is added (with `.insert`)
558 ///
559 /// This is a fallible version of [`Self::on_insert`].
560 ///
561 /// Returns `None` if the component already has an `on_insert` hook.
562 pub fn try_on_insert(&mut self, hook: ComponentHook) -> Option<&mut Self> {
563 if self.on_insert.is_some() {
564 return None;
565 }
566 self.on_insert = Some(hook);
567 Some(self)
568 }
569
570 /// Attempt to register a [`ComponentHook`] that will be run when this component is replaced (with `.insert`) or removed
571 ///
572 /// This is a fallible version of [`Self::on_replace`].
573 ///
574 /// Returns `None` if the component already has an `on_replace` hook.
575 pub fn try_on_replace(&mut self, hook: ComponentHook) -> Option<&mut Self> {
576 if self.on_replace.is_some() {
577 return None;
578 }
579 self.on_replace = Some(hook);
580 Some(self)
581 }
582
583 /// Attempt to register a [`ComponentHook`] that will be run when this component is removed from an entity.
584 ///
585 /// This is a fallible version of [`Self::on_remove`].
586 ///
587 /// Returns `None` if the component already has an `on_remove` hook.
588 pub fn try_on_remove(&mut self, hook: ComponentHook) -> Option<&mut Self> {
589 if self.on_remove.is_some() {
590 return None;
591 }
592 self.on_remove = Some(hook);
593 Some(self)
594 }
595}
596
597/// Stores metadata for a type of component or resource stored in a specific [`World`].
598#[derive(Debug, Clone)]
599pub struct ComponentInfo {
600 id: ComponentId,
601 descriptor: ComponentDescriptor,
602 hooks: ComponentHooks,
603 required_components: RequiredComponents,
604 required_by: HashSet<ComponentId>,
605}
606
607impl ComponentInfo {
608 /// Returns a value uniquely identifying the current component.
609 #[inline]
610 pub fn id(&self) -> ComponentId {
611 self.id
612 }
613
614 /// Returns the name of the current component.
615 #[inline]
616 pub fn name(&self) -> &str {
617 &self.descriptor.name
618 }
619
620 /// Returns the [`TypeId`] of the underlying component type.
621 /// Returns `None` if the component does not correspond to a Rust type.
622 #[inline]
623 pub fn type_id(&self) -> Option<TypeId> {
624 self.descriptor.type_id
625 }
626
627 /// Returns the layout used to store values of this component in memory.
628 #[inline]
629 pub fn layout(&self) -> Layout {
630 self.descriptor.layout
631 }
632
633 #[inline]
634 /// Get the function which should be called to clean up values of
635 /// the underlying component type. This maps to the
636 /// [`Drop`] implementation for 'normal' Rust components
637 ///
638 /// Returns `None` if values of the underlying component type don't
639 /// need to be dropped, e.g. as reported by [`needs_drop`].
640 pub fn drop(&self) -> Option<unsafe fn(OwningPtr<'_>)> {
641 self.descriptor.drop
642 }
643
644 /// Returns a value indicating the storage strategy for the current component.
645 #[inline]
646 pub fn storage_type(&self) -> StorageType {
647 self.descriptor.storage_type
648 }
649
650 /// Returns `true` if the underlying component type can be freely shared between threads.
651 /// If this returns `false`, then extra care must be taken to ensure that components
652 /// are not accessed from the wrong thread.
653 #[inline]
654 pub fn is_send_and_sync(&self) -> bool {
655 self.descriptor.is_send_and_sync
656 }
657
658 /// Create a new [`ComponentInfo`].
659 pub(crate) fn new(id: ComponentId, descriptor: ComponentDescriptor) -> Self {
660 ComponentInfo {
661 id,
662 descriptor,
663 hooks: Default::default(),
664 required_components: Default::default(),
665 required_by: Default::default(),
666 }
667 }
668
669 /// Update the given flags to include any [`ComponentHook`] registered to self
670 #[inline]
671 pub(crate) fn update_archetype_flags(&self, flags: &mut ArchetypeFlags) {
672 if self.hooks().on_add.is_some() {
673 flags.insert(ArchetypeFlags::ON_ADD_HOOK);
674 }
675 if self.hooks().on_insert.is_some() {
676 flags.insert(ArchetypeFlags::ON_INSERT_HOOK);
677 }
678 if self.hooks().on_replace.is_some() {
679 flags.insert(ArchetypeFlags::ON_REPLACE_HOOK);
680 }
681 if self.hooks().on_remove.is_some() {
682 flags.insert(ArchetypeFlags::ON_REMOVE_HOOK);
683 }
684 }
685
686 /// Provides a reference to the collection of hooks associated with this [`Component`]
687 pub fn hooks(&self) -> &ComponentHooks {
688 &self.hooks
689 }
690
691 /// Retrieves the [`RequiredComponents`] collection, which contains all required components (and their constructors)
692 /// needed by this component. This includes _recursive_ required components.
693 pub fn required_components(&self) -> &RequiredComponents {
694 &self.required_components
695 }
696}
697
698/// A value which uniquely identifies the type of a [`Component`] or [`Resource`] within a
699/// [`World`].
700///
701/// Each time a new `Component` type is registered within a `World` using
702/// e.g. [`World::register_component`] or [`World::register_component_with_descriptor`]
703/// or a Resource with e.g. [`World::init_resource`],
704/// a corresponding `ComponentId` is created to track it.
705///
706/// While the distinction between `ComponentId` and [`TypeId`] may seem superficial, breaking them
707/// into two separate but related concepts allows components to exist outside of Rust's type system.
708/// Each Rust type registered as a `Component` will have a corresponding `ComponentId`, but additional
709/// `ComponentId`s may exist in a `World` to track components which cannot be
710/// represented as Rust types for scripting or other advanced use-cases.
711///
712/// A `ComponentId` is tightly coupled to its parent `World`. Attempting to use a `ComponentId` from
713/// one `World` to access the metadata of a `Component` in a different `World` is undefined behavior
714/// and must not be attempted.
715///
716/// Given a type `T` which implements [`Component`], the `ComponentId` for `T` can be retrieved
717/// from a `World` using [`World::component_id()`] or via [`Components::component_id()`]. Access
718/// to the `ComponentId` for a [`Resource`] is available via [`Components::resource_id()`].
719#[derive(Debug, Copy, Clone, Hash, Ord, PartialOrd, Eq, PartialEq)]
720#[cfg_attr(
721 feature = "bevy_reflect",
722 derive(Reflect),
723 reflect(Debug, Hash, PartialEq)
724)]
725pub struct ComponentId(usize);
726
727impl ComponentId {
728 /// Creates a new [`ComponentId`].
729 ///
730 /// The `index` is a unique value associated with each type of component in a given world.
731 /// Usually, this value is taken from a counter incremented for each type of component registered with the world.
732 #[inline]
733 pub const fn new(index: usize) -> ComponentId {
734 ComponentId(index)
735 }
736
737 /// Returns the index of the current component.
738 #[inline]
739 pub fn index(self) -> usize {
740 self.0
741 }
742}
743
744impl SparseSetIndex for ComponentId {
745 #[inline]
746 fn sparse_set_index(&self) -> usize {
747 self.index()
748 }
749
750 #[inline]
751 fn get_sparse_set_index(value: usize) -> Self {
752 Self(value)
753 }
754}
755
756/// A value describing a component or resource, which may or may not correspond to a Rust type.
757#[derive(Clone)]
758pub struct ComponentDescriptor {
759 name: Cow<'static, str>,
760 // SAFETY: This must remain private. It must match the statically known StorageType of the
761 // associated rust component type if one exists.
762 storage_type: StorageType,
763 // SAFETY: This must remain private. It must only be set to "true" if this component is
764 // actually Send + Sync
765 is_send_and_sync: bool,
766 type_id: Option<TypeId>,
767 layout: Layout,
768 // SAFETY: this function must be safe to call with pointers pointing to items of the type
769 // this descriptor describes.
770 // None if the underlying type doesn't need to be dropped
771 drop: Option<for<'a> unsafe fn(OwningPtr<'a>)>,
772}
773
774// We need to ignore the `drop` field in our `Debug` impl
775impl Debug for ComponentDescriptor {
776 fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
777 f.debug_struct("ComponentDescriptor")
778 .field("name", &self.name)
779 .field("storage_type", &self.storage_type)
780 .field("is_send_and_sync", &self.is_send_and_sync)
781 .field("type_id", &self.type_id)
782 .field("layout", &self.layout)
783 .finish()
784 }
785}
786
787impl ComponentDescriptor {
788 /// # Safety
789 ///
790 /// `x` must point to a valid value of type `T`.
791 unsafe fn drop_ptr<T>(x: OwningPtr<'_>) {
792 // SAFETY: Contract is required to be upheld by the caller.
793 unsafe {
794 x.drop_as::<T>();
795 }
796 }
797
798 /// Create a new `ComponentDescriptor` for the type `T`.
799 pub fn new<T: Component>() -> Self {
800 Self {
801 name: Cow::Borrowed(core::any::type_name::<T>()),
802 storage_type: T::STORAGE_TYPE,
803 is_send_and_sync: true,
804 type_id: Some(TypeId::of::<T>()),
805 layout: Layout::new::<T>(),
806 drop: needs_drop::<T>().then_some(Self::drop_ptr::<T> as _),
807 }
808 }
809
810 /// Create a new `ComponentDescriptor`.
811 ///
812 /// # Safety
813 /// - the `drop` fn must be usable on a pointer with a value of the layout `layout`
814 /// - the component type must be safe to access from any thread (Send + Sync in rust terms)
815 pub unsafe fn new_with_layout(
816 name: impl Into<Cow<'static, str>>,
817 storage_type: StorageType,
818 layout: Layout,
819 drop: Option<for<'a> unsafe fn(OwningPtr<'a>)>,
820 ) -> Self {
821 Self {
822 name: name.into(),
823 storage_type,
824 is_send_and_sync: true,
825 type_id: None,
826 layout,
827 drop,
828 }
829 }
830
831 /// Create a new `ComponentDescriptor` for a resource.
832 ///
833 /// The [`StorageType`] for resources is always [`StorageType::Table`].
834 pub fn new_resource<T: Resource>() -> Self {
835 Self {
836 name: Cow::Borrowed(core::any::type_name::<T>()),
837 // PERF: `SparseStorage` may actually be a more
838 // reasonable choice as `storage_type` for resources.
839 storage_type: StorageType::Table,
840 is_send_and_sync: true,
841 type_id: Some(TypeId::of::<T>()),
842 layout: Layout::new::<T>(),
843 drop: needs_drop::<T>().then_some(Self::drop_ptr::<T> as _),
844 }
845 }
846
847 fn new_non_send<T: Any>(storage_type: StorageType) -> Self {
848 Self {
849 name: Cow::Borrowed(core::any::type_name::<T>()),
850 storage_type,
851 is_send_and_sync: false,
852 type_id: Some(TypeId::of::<T>()),
853 layout: Layout::new::<T>(),
854 drop: needs_drop::<T>().then_some(Self::drop_ptr::<T> as _),
855 }
856 }
857
858 /// Returns a value indicating the storage strategy for the current component.
859 #[inline]
860 pub fn storage_type(&self) -> StorageType {
861 self.storage_type
862 }
863
864 /// Returns the [`TypeId`] of the underlying component type.
865 /// Returns `None` if the component does not correspond to a Rust type.
866 #[inline]
867 pub fn type_id(&self) -> Option<TypeId> {
868 self.type_id
869 }
870
871 /// Returns the name of the current component.
872 #[inline]
873 pub fn name(&self) -> &str {
874 self.name.as_ref()
875 }
876}
877
878/// Stores metadata associated with each kind of [`Component`] in a given [`World`].
879#[derive(Debug, Default)]
880pub struct Components {
881 components: Vec<ComponentInfo>,
882 indices: TypeIdMap<ComponentId>,
883 resource_indices: TypeIdMap<ComponentId>,
884}
885
886impl Components {
887 /// Registers a [`Component`] of type `T` with this instance.
888 /// If a component of this type has already been registered, this will return
889 /// the ID of the pre-existing component.
890 ///
891 /// # See also
892 ///
893 /// * [`Components::component_id()`]
894 /// * [`Components::register_component_with_descriptor()`]
895 #[inline]
896 pub fn register_component<T: Component>(&mut self, storages: &mut Storages) -> ComponentId {
897 let mut registered = false;
898 let id = {
899 let Components {
900 indices,
901 components,
902 ..
903 } = self;
904 let type_id = TypeId::of::<T>();
905 *indices.entry(type_id).or_insert_with(|| {
906 let id = Components::register_component_inner(
907 components,
908 storages,
909 ComponentDescriptor::new::<T>(),
910 );
911 registered = true;
912 id
913 })
914 };
915 if registered {
916 let mut required_components = RequiredComponents::default();
917 T::register_required_components(id, self, storages, &mut required_components, 0);
918 let info = &mut self.components[id.index()];
919 T::register_component_hooks(&mut info.hooks);
920 info.required_components = required_components;
921 }
922 id
923 }
924
925 /// Registers a component described by `descriptor`.
926 ///
927 /// # Note
928 ///
929 /// If this method is called multiple times with identical descriptors, a distinct [`ComponentId`]
930 /// will be created for each one.
931 ///
932 /// # See also
933 ///
934 /// * [`Components::component_id()`]
935 /// * [`Components::register_component()`]
936 pub fn register_component_with_descriptor(
937 &mut self,
938 storages: &mut Storages,
939 descriptor: ComponentDescriptor,
940 ) -> ComponentId {
941 Components::register_component_inner(&mut self.components, storages, descriptor)
942 }
943
944 #[inline]
945 fn register_component_inner(
946 components: &mut Vec<ComponentInfo>,
947 storages: &mut Storages,
948 descriptor: ComponentDescriptor,
949 ) -> ComponentId {
950 let component_id = ComponentId(components.len());
951 let info = ComponentInfo::new(component_id, descriptor);
952 if info.descriptor.storage_type == StorageType::SparseSet {
953 storages.sparse_sets.get_or_insert(&info);
954 }
955 components.push(info);
956 component_id
957 }
958
959 /// Returns the number of components registered with this instance.
960 #[inline]
961 pub fn len(&self) -> usize {
962 self.components.len()
963 }
964
965 /// Returns `true` if there are no components registered with this instance. Otherwise, this returns `false`.
966 #[inline]
967 pub fn is_empty(&self) -> bool {
968 self.components.len() == 0
969 }
970
971 /// Gets the metadata associated with the given component.
972 ///
973 /// This will return an incorrect result if `id` did not come from the same world as `self`. It may return `None` or a garbage value.
974 #[inline]
975 pub fn get_info(&self, id: ComponentId) -> Option<&ComponentInfo> {
976 self.components.get(id.0)
977 }
978
979 /// Returns the name associated with the given component.
980 ///
981 /// This will return an incorrect result if `id` did not come from the same world as `self`. It may return `None` or a garbage value.
982 #[inline]
983 pub fn get_name(&self, id: ComponentId) -> Option<&str> {
984 self.get_info(id).map(ComponentInfo::name)
985 }
986
987 /// Gets the metadata associated with the given component.
988 /// # Safety
989 ///
990 /// `id` must be a valid [`ComponentId`]
991 #[inline]
992 pub unsafe fn get_info_unchecked(&self, id: ComponentId) -> &ComponentInfo {
993 debug_assert!(id.index() < self.components.len());
994 // SAFETY: The caller ensures `id` is valid.
995 unsafe { self.components.get_unchecked(id.0) }
996 }
997
998 #[inline]
999 pub(crate) fn get_hooks_mut(&mut self, id: ComponentId) -> Option<&mut ComponentHooks> {
1000 self.components.get_mut(id.0).map(|info| &mut info.hooks)
1001 }
1002
1003 #[inline]
1004 pub(crate) fn get_required_components_mut(
1005 &mut self,
1006 id: ComponentId,
1007 ) -> Option<&mut RequiredComponents> {
1008 self.components
1009 .get_mut(id.0)
1010 .map(|info| &mut info.required_components)
1011 }
1012
1013 /// Registers the given component `R` and [required components] inherited from it as required by `T`.
1014 ///
1015 /// When `T` is added to an entity, `R` will also be added if it was not already provided.
1016 /// The given `constructor` will be used for the creation of `R`.
1017 ///
1018 /// [required components]: Component#required-components
1019 ///
1020 /// # Safety
1021 ///
1022 /// The given component IDs `required` and `requiree` must be valid.
1023 ///
1024 /// # Errors
1025 ///
1026 /// Returns a [`RequiredComponentsError`] if the `required` component is already a directly required component for the `requiree`.
1027 ///
1028 /// Indirect requirements through other components are allowed. In those cases, the more specific
1029 /// registration will be used.
1030 pub(crate) unsafe fn register_required_components<R: Component>(
1031 &mut self,
1032 requiree: ComponentId,
1033 required: ComponentId,
1034 constructor: fn() -> R,
1035 ) -> Result<(), RequiredComponentsError> {
1036 // SAFETY: The caller ensures that the `requiree` is valid.
1037 let required_components = unsafe {
1038 self.get_required_components_mut(requiree)
1039 .debug_checked_unwrap()
1040 };
1041
1042 // Cannot directly require the same component twice.
1043 if required_components
1044 .0
1045 .get(&required)
1046 .is_some_and(|c| c.inheritance_depth == 0)
1047 {
1048 return Err(RequiredComponentsError::DuplicateRegistration(
1049 requiree, required,
1050 ));
1051 }
1052
1053 // Register the required component for the requiree.
1054 // This is a direct requirement with a depth of `0`.
1055 required_components.register_by_id(required, constructor, 0);
1056
1057 // Add the requiree to the list of components that require the required component.
1058 // SAFETY: The component is in the list of required components, so it must exist already.
1059 let required_by = unsafe { self.get_required_by_mut(required).debug_checked_unwrap() };
1060 required_by.insert(requiree);
1061
1062 // SAFETY: The caller ensures that the `requiree` and `required` components are valid.
1063 let inherited_requirements =
1064 unsafe { self.register_inherited_required_components(requiree, required) };
1065
1066 // Propagate the new required components up the chain to all components that require the requiree.
1067 if let Some(required_by) = self.get_required_by(requiree).cloned() {
1068 // `required` is now required by anything that `requiree` was required by.
1069 self.get_required_by_mut(required)
1070 .unwrap()
1071 .extend(required_by.iter().copied());
1072 for &required_by_id in required_by.iter() {
1073 // SAFETY: The component is in the list of required components, so it must exist already.
1074 let required_components = unsafe {
1075 self.get_required_components_mut(required_by_id)
1076 .debug_checked_unwrap()
1077 };
1078
1079 // Register the original required component in the "parent" of the requiree.
1080 // The inheritance depth is 1 deeper than the `requiree` wrt `required_by_id`.
1081 let depth = required_components.0.get(&requiree).expect("requiree is required by required_by_id, so its required_components must include requiree").inheritance_depth;
1082 required_components.register_by_id(required, constructor, depth + 1);
1083
1084 for (component_id, component) in inherited_requirements.iter() {
1085 // Register the required component.
1086 // The inheritance depth of inherited components is whatever the requiree's
1087 // depth is relative to `required_by_id`, plus the inheritance depth of the
1088 // inherited component relative to the requiree, plus 1 to account for the
1089 // requiree in between.
1090 // SAFETY: Component ID and constructor match the ones on the original requiree.
1091 // The original requiree is responsible for making sure the registration is safe.
1092 unsafe {
1093 required_components.register_dynamic(
1094 *component_id,
1095 component.constructor.clone(),
1096 component.inheritance_depth + depth + 1,
1097 );
1098 };
1099 }
1100 }
1101 }
1102
1103 Ok(())
1104 }
1105
1106 /// Registers the components inherited from `required` for the given `requiree`,
1107 /// returning the requirements in a list.
1108 ///
1109 /// # Safety
1110 ///
1111 /// The given component IDs `requiree` and `required` must be valid.
1112 unsafe fn register_inherited_required_components(
1113 &mut self,
1114 requiree: ComponentId,
1115 required: ComponentId,
1116 ) -> Vec<(ComponentId, RequiredComponent)> {
1117 // Get required components inherited from the `required` component.
1118 // SAFETY: The caller ensures that the `required` component is valid.
1119 let required_component_info = unsafe { self.get_info(required).debug_checked_unwrap() };
1120 let inherited_requirements: Vec<(ComponentId, RequiredComponent)> = required_component_info
1121 .required_components()
1122 .0
1123 .iter()
1124 .map(|(component_id, required_component)| {
1125 (
1126 *component_id,
1127 RequiredComponent {
1128 constructor: required_component.constructor.clone(),
1129 // Add `1` to the inheritance depth since this will be registered
1130 // for the component that requires `required`.
1131 inheritance_depth: required_component.inheritance_depth + 1,
1132 },
1133 )
1134 })
1135 .collect();
1136
1137 // Register the new required components.
1138 for (component_id, component) in inherited_requirements.iter().cloned() {
1139 // SAFETY: The caller ensures that the `requiree` is valid.
1140 let required_components = unsafe {
1141 self.get_required_components_mut(requiree)
1142 .debug_checked_unwrap()
1143 };
1144
1145 // Register the required component for the requiree.
1146 // SAFETY: Component ID and constructor match the ones on the original requiree.
1147 unsafe {
1148 required_components.register_dynamic(
1149 component_id,
1150 component.constructor,
1151 component.inheritance_depth,
1152 );
1153 };
1154
1155 // Add the requiree to the list of components that require the required component.
1156 // SAFETY: The caller ensures that the required components are valid.
1157 let required_by = unsafe {
1158 self.get_required_by_mut(component_id)
1159 .debug_checked_unwrap()
1160 };
1161 required_by.insert(requiree);
1162 }
1163
1164 inherited_requirements
1165 }
1166
1167 // NOTE: This should maybe be private, but it is currently public so that `bevy_ecs_macros` can use it.
1168 // We can't directly move this there either, because this uses `Components::get_required_by_mut`,
1169 // which is private, and could be equally risky to expose to users.
1170 /// Registers the given component `R` and [required components] inherited from it as required by `T`,
1171 /// and adds `T` to their lists of requirees.
1172 ///
1173 /// The given `inheritance_depth` determines how many levels of inheritance deep the requirement is.
1174 /// A direct requirement has a depth of `0`, and each level of inheritance increases the depth by `1`.
1175 /// Lower depths are more specific requirements, and can override existing less specific registrations.
1176 ///
1177 /// This method does *not* register any components as required by components that require `T`.
1178 ///
1179 /// Only use this method if you know what you are doing. In most cases, you should instead use [`World::register_required_components`],
1180 /// or the equivalent method in `bevy_app::App`.
1181 ///
1182 /// [required component]: Component#required-components
1183 #[doc(hidden)]
1184 pub fn register_required_components_manual<T: Component, R: Component>(
1185 &mut self,
1186 storages: &mut Storages,
1187 required_components: &mut RequiredComponents,
1188 constructor: fn() -> R,
1189 inheritance_depth: u16,
1190 ) {
1191 let requiree = self.register_component::<T>(storages);
1192 let required = self.register_component::<R>(storages);
1193
1194 // SAFETY: We just created the components.
1195 unsafe {
1196 self.register_required_components_manual_unchecked::<R>(
1197 requiree,
1198 required,
1199 required_components,
1200 constructor,
1201 inheritance_depth,
1202 );
1203 }
1204 }
1205
1206 /// Registers the given component `R` and [required components] inherited from it as required by `T`,
1207 /// and adds `T` to their lists of requirees.
1208 ///
1209 /// The given `inheritance_depth` determines how many levels of inheritance deep the requirement is.
1210 /// A direct requirement has a depth of `0`, and each level of inheritance increases the depth by `1`.
1211 /// Lower depths are more specific requirements, and can override existing less specific registrations.
1212 ///
1213 /// This method does *not* register any components as required by components that require `T`.
1214 ///
1215 /// [required component]: Component#required-components
1216 ///
1217 /// # Safety
1218 ///
1219 /// The given component IDs `required` and `requiree` must be valid.
1220 pub(crate) unsafe fn register_required_components_manual_unchecked<R: Component>(
1221 &mut self,
1222 requiree: ComponentId,
1223 required: ComponentId,
1224 required_components: &mut RequiredComponents,
1225 constructor: fn() -> R,
1226 inheritance_depth: u16,
1227 ) {
1228 // Components cannot require themselves.
1229 if required == requiree {
1230 return;
1231 }
1232
1233 // Register the required component `R` for the requiree.
1234 required_components.register_by_id(required, constructor, inheritance_depth);
1235
1236 // Add the requiree to the list of components that require `R`.
1237 // SAFETY: The caller ensures that the component ID is valid.
1238 // Assuming it is valid, the component is in the list of required components, so it must exist already.
1239 let required_by = unsafe { self.get_required_by_mut(required).debug_checked_unwrap() };
1240 required_by.insert(requiree);
1241
1242 // Register the inherited required components for the requiree.
1243 let required: Vec<(ComponentId, RequiredComponent)> = self
1244 .get_info(required)
1245 .unwrap()
1246 .required_components()
1247 .0
1248 .iter()
1249 .map(|(id, component)| (*id, component.clone()))
1250 .collect();
1251
1252 for (id, component) in required {
1253 // Register the inherited required components for the requiree.
1254 // The inheritance depth is increased by `1` since this is a component required by the original required component.
1255 required_components.register_dynamic(
1256 id,
1257 component.constructor.clone(),
1258 component.inheritance_depth + 1,
1259 );
1260 self.get_required_by_mut(id).unwrap().insert(requiree);
1261 }
1262 }
1263
1264 #[inline]
1265 pub(crate) fn get_required_by(&self, id: ComponentId) -> Option<&HashSet<ComponentId>> {
1266 self.components.get(id.0).map(|info| &info.required_by)
1267 }
1268
1269 #[inline]
1270 pub(crate) fn get_required_by_mut(
1271 &mut self,
1272 id: ComponentId,
1273 ) -> Option<&mut HashSet<ComponentId>> {
1274 self.components
1275 .get_mut(id.0)
1276 .map(|info| &mut info.required_by)
1277 }
1278
1279 /// Type-erased equivalent of [`Components::component_id()`].
1280 #[inline]
1281 pub fn get_id(&self, type_id: TypeId) -> Option<ComponentId> {
1282 self.indices.get(&type_id).copied()
1283 }
1284
1285 /// Returns the [`ComponentId`] of the given [`Component`] type `T`.
1286 ///
1287 /// The returned `ComponentId` is specific to the `Components` instance
1288 /// it was retrieved from and should not be used with another `Components`
1289 /// instance.
1290 ///
1291 /// Returns [`None`] if the `Component` type has not
1292 /// yet been initialized using [`Components::register_component()`].
1293 ///
1294 /// ```
1295 /// use bevy_ecs::prelude::*;
1296 ///
1297 /// let mut world = World::new();
1298 ///
1299 /// #[derive(Component)]
1300 /// struct ComponentA;
1301 ///
1302 /// let component_a_id = world.register_component::<ComponentA>();
1303 ///
1304 /// assert_eq!(component_a_id, world.components().component_id::<ComponentA>().unwrap())
1305 /// ```
1306 ///
1307 /// # See also
1308 ///
1309 /// * [`Components::get_id()`]
1310 /// * [`Components::resource_id()`]
1311 /// * [`World::component_id()`]
1312 #[inline]
1313 pub fn component_id<T: Component>(&self) -> Option<ComponentId> {
1314 self.get_id(TypeId::of::<T>())
1315 }
1316
1317 /// Type-erased equivalent of [`Components::resource_id()`].
1318 #[inline]
1319 pub fn get_resource_id(&self, type_id: TypeId) -> Option<ComponentId> {
1320 self.resource_indices.get(&type_id).copied()
1321 }
1322
1323 /// Returns the [`ComponentId`] of the given [`Resource`] type `T`.
1324 ///
1325 /// The returned `ComponentId` is specific to the `Components` instance
1326 /// it was retrieved from and should not be used with another `Components`
1327 /// instance.
1328 ///
1329 /// Returns [`None`] if the `Resource` type has not
1330 /// yet been initialized using [`Components::register_resource()`].
1331 ///
1332 /// ```
1333 /// use bevy_ecs::prelude::*;
1334 ///
1335 /// let mut world = World::new();
1336 ///
1337 /// #[derive(Resource, Default)]
1338 /// struct ResourceA;
1339 ///
1340 /// let resource_a_id = world.init_resource::<ResourceA>();
1341 ///
1342 /// assert_eq!(resource_a_id, world.components().resource_id::<ResourceA>().unwrap())
1343 /// ```
1344 ///
1345 /// # See also
1346 ///
1347 /// * [`Components::component_id()`]
1348 /// * [`Components::get_resource_id()`]
1349 #[inline]
1350 pub fn resource_id<T: Resource>(&self) -> Option<ComponentId> {
1351 self.get_resource_id(TypeId::of::<T>())
1352 }
1353
1354 /// Registers a [`Resource`] of type `T` with this instance.
1355 /// If a resource of this type has already been registered, this will return
1356 /// the ID of the pre-existing resource.
1357 ///
1358 /// # See also
1359 ///
1360 /// * [`Components::resource_id()`]
1361 /// * [`Components::register_resource_with_descriptor()`]
1362 #[inline]
1363 pub fn register_resource<T: Resource>(&mut self) -> ComponentId {
1364 // SAFETY: The [`ComponentDescriptor`] matches the [`TypeId`]
1365 unsafe {
1366 self.get_or_register_resource_with(TypeId::of::<T>(), || {
1367 ComponentDescriptor::new_resource::<T>()
1368 })
1369 }
1370 }
1371
1372 /// Registers a [`Resource`] described by `descriptor`.
1373 ///
1374 /// # Note
1375 ///
1376 /// If this method is called multiple times with identical descriptors, a distinct [`ComponentId`]
1377 /// will be created for each one.
1378 ///
1379 /// # See also
1380 ///
1381 /// * [`Components::resource_id()`]
1382 /// * [`Components::register_resource()`]
1383 pub fn register_resource_with_descriptor(
1384 &mut self,
1385 descriptor: ComponentDescriptor,
1386 ) -> ComponentId {
1387 Components::register_resource_inner(&mut self.components, descriptor)
1388 }
1389
1390 /// Registers a [non-send resource](crate::system::NonSend) of type `T` with this instance.
1391 /// If a resource of this type has already been registered, this will return
1392 /// the ID of the pre-existing resource.
1393 #[inline]
1394 pub fn register_non_send<T: Any>(&mut self) -> ComponentId {
1395 // SAFETY: The [`ComponentDescriptor`] matches the [`TypeId`]
1396 unsafe {
1397 self.get_or_register_resource_with(TypeId::of::<T>(), || {
1398 ComponentDescriptor::new_non_send::<T>(StorageType::default())
1399 })
1400 }
1401 }
1402
1403 /// # Safety
1404 ///
1405 /// The [`ComponentDescriptor`] must match the [`TypeId`]
1406 #[inline]
1407 unsafe fn get_or_register_resource_with(
1408 &mut self,
1409 type_id: TypeId,
1410 func: impl FnOnce() -> ComponentDescriptor,
1411 ) -> ComponentId {
1412 let components = &mut self.components;
1413 *self.resource_indices.entry(type_id).or_insert_with(|| {
1414 let descriptor = func();
1415 Components::register_resource_inner(components, descriptor)
1416 })
1417 }
1418
1419 #[inline]
1420 fn register_resource_inner(
1421 components: &mut Vec<ComponentInfo>,
1422 descriptor: ComponentDescriptor,
1423 ) -> ComponentId {
1424 let component_id = ComponentId(components.len());
1425 components.push(ComponentInfo::new(component_id, descriptor));
1426 component_id
1427 }
1428
1429 /// Gets an iterator over all components registered with this instance.
1430 pub fn iter(&self) -> impl Iterator<Item = &ComponentInfo> + '_ {
1431 self.components.iter()
1432 }
1433}
1434
1435/// A value that tracks when a system ran relative to other systems.
1436/// This is used to power change detection.
1437///
1438/// *Note* that a system that hasn't been run yet has a `Tick` of 0.
1439#[derive(Copy, Clone, Default, Debug, Eq, Hash, PartialEq)]
1440#[cfg_attr(
1441 feature = "bevy_reflect",
1442 derive(Reflect),
1443 reflect(Debug, Hash, PartialEq)
1444)]
1445pub struct Tick {
1446 tick: u32,
1447}
1448
1449impl Tick {
1450 /// The maximum relative age for a change tick.
1451 /// The value of this is equal to [`MAX_CHANGE_AGE`].
1452 ///
1453 /// Since change detection will not work for any ticks older than this,
1454 /// ticks are periodically scanned to ensure their relative values are below this.
1455 pub const MAX: Self = Self::new(MAX_CHANGE_AGE);
1456
1457 /// Creates a new [`Tick`] wrapping the given value.
1458 #[inline]
1459 pub const fn new(tick: u32) -> Self {
1460 Self { tick }
1461 }
1462
1463 /// Gets the value of this change tick.
1464 #[inline]
1465 pub const fn get(self) -> u32 {
1466 self.tick
1467 }
1468
1469 /// Sets the value of this change tick.
1470 #[inline]
1471 pub fn set(&mut self, tick: u32) {
1472 self.tick = tick;
1473 }
1474
1475 /// Returns `true` if this `Tick` occurred since the system's `last_run`.
1476 ///
1477 /// `this_run` is the current tick of the system, used as a reference to help deal with wraparound.
1478 #[inline]
1479 pub fn is_newer_than(self, last_run: Tick, this_run: Tick) -> bool {
1480 // This works even with wraparound because the world tick (`this_run`) is always "newer" than
1481 // `last_run` and `self.tick`, and we scan periodically to clamp `ComponentTicks` values
1482 // so they never get older than `u32::MAX` (the difference would overflow).
1483 //
1484 // The clamp here ensures determinism (since scans could differ between app runs).
1485 let ticks_since_insert = this_run.relative_to(self).tick.min(MAX_CHANGE_AGE);
1486 let ticks_since_system = this_run.relative_to(last_run).tick.min(MAX_CHANGE_AGE);
1487
1488 ticks_since_system > ticks_since_insert
1489 }
1490
1491 /// Returns a change tick representing the relationship between `self` and `other`.
1492 #[inline]
1493 pub(crate) fn relative_to(self, other: Self) -> Self {
1494 let tick = self.tick.wrapping_sub(other.tick);
1495 Self { tick }
1496 }
1497
1498 /// Wraps this change tick's value if it exceeds [`Tick::MAX`].
1499 ///
1500 /// Returns `true` if wrapping was performed. Otherwise, returns `false`.
1501 #[inline]
1502 pub(crate) fn check_tick(&mut self, tick: Tick) -> bool {
1503 let age = tick.relative_to(*self);
1504 // This comparison assumes that `age` has not overflowed `u32::MAX` before, which will be true
1505 // so long as this check always runs before that can happen.
1506 if age.get() > Self::MAX.get() {
1507 *self = tick.relative_to(Self::MAX);
1508 true
1509 } else {
1510 false
1511 }
1512 }
1513}
1514
1515/// Interior-mutable access to the [`Tick`]s for a single component or resource.
1516#[derive(Copy, Clone, Debug)]
1517pub struct TickCells<'a> {
1518 /// The tick indicating when the value was added to the world.
1519 pub added: &'a UnsafeCell<Tick>,
1520 /// The tick indicating the last time the value was modified.
1521 pub changed: &'a UnsafeCell<Tick>,
1522}
1523
1524impl<'a> TickCells<'a> {
1525 /// # Safety
1526 /// All cells contained within must uphold the safety invariants of [`UnsafeCellDeref::read`].
1527 #[inline]
1528 pub(crate) unsafe fn read(&self) -> ComponentTicks {
1529 ComponentTicks {
1530 // SAFETY: The callers uphold the invariants for `read`.
1531 added: unsafe { self.added.read() },
1532 // SAFETY: The callers uphold the invariants for `read`.
1533 changed: unsafe { self.changed.read() },
1534 }
1535 }
1536}
1537
1538/// Records when a component or resource was added and when it was last mutably dereferenced (or added).
1539#[derive(Copy, Clone, Debug)]
1540#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug))]
1541pub struct ComponentTicks {
1542 /// Tick recording the time this component or resource was added.
1543 pub added: Tick,
1544
1545 /// Tick recording the time this component or resource was most recently changed.
1546 pub changed: Tick,
1547}
1548
1549impl ComponentTicks {
1550 /// Returns `true` if the component or resource was added after the system last ran
1551 /// (or the system is running for the first time).
1552 #[inline]
1553 pub fn is_added(&self, last_run: Tick, this_run: Tick) -> bool {
1554 self.added.is_newer_than(last_run, this_run)
1555 }
1556
1557 /// Returns `true` if the component or resource was added or mutably dereferenced after the system last ran
1558 /// (or the system is running for the first time).
1559 #[inline]
1560 pub fn is_changed(&self, last_run: Tick, this_run: Tick) -> bool {
1561 self.changed.is_newer_than(last_run, this_run)
1562 }
1563
1564 /// Creates a new instance with the same change tick for `added` and `changed`.
1565 pub fn new(change_tick: Tick) -> Self {
1566 Self {
1567 added: change_tick,
1568 changed: change_tick,
1569 }
1570 }
1571
1572 /// Manually sets the change tick.
1573 ///
1574 /// This is normally done automatically via the [`DerefMut`](std::ops::DerefMut) implementation
1575 /// on [`Mut<T>`](crate::change_detection::Mut), [`ResMut<T>`](crate::change_detection::ResMut), etc.
1576 /// However, components and resources that make use of interior mutability might require manual updates.
1577 ///
1578 /// # Example
1579 /// ```no_run
1580 /// # use bevy_ecs::{world::World, component::ComponentTicks};
1581 /// let world: World = unimplemented!();
1582 /// let component_ticks: ComponentTicks = unimplemented!();
1583 ///
1584 /// component_ticks.set_changed(world.read_change_tick());
1585 /// ```
1586 #[inline]
1587 pub fn set_changed(&mut self, change_tick: Tick) {
1588 self.changed = change_tick;
1589 }
1590}
1591
1592/// A [`SystemParam`] that provides access to the [`ComponentId`] for a specific component type.
1593///
1594/// # Example
1595/// ```
1596/// # use bevy_ecs::{system::Local, component::{Component, ComponentId, ComponentIdFor}};
1597/// #[derive(Component)]
1598/// struct Player;
1599/// fn my_system(component_id: ComponentIdFor<Player>) {
1600/// let component_id: ComponentId = component_id.get();
1601/// // ...
1602/// }
1603/// ```
1604#[derive(SystemParam)]
1605pub struct ComponentIdFor<'s, T: Component>(Local<'s, InitComponentId<T>>);
1606
1607impl<T: Component> ComponentIdFor<'_, T> {
1608 /// Gets the [`ComponentId`] for the type `T`.
1609 #[inline]
1610 pub fn get(&self) -> ComponentId {
1611 **self
1612 }
1613}
1614
1615impl<T: Component> core::ops::Deref for ComponentIdFor<'_, T> {
1616 type Target = ComponentId;
1617 fn deref(&self) -> &Self::Target {
1618 &self.0.component_id
1619 }
1620}
1621
1622impl<T: Component> From<ComponentIdFor<'_, T>> for ComponentId {
1623 #[inline]
1624 fn from(to_component_id: ComponentIdFor<T>) -> ComponentId {
1625 *to_component_id
1626 }
1627}
1628
1629/// Initializes the [`ComponentId`] for a specific type when used with [`FromWorld`].
1630struct InitComponentId<T: Component> {
1631 component_id: ComponentId,
1632 marker: PhantomData<T>,
1633}
1634
1635impl<T: Component> FromWorld for InitComponentId<T> {
1636 fn from_world(world: &mut World) -> Self {
1637 Self {
1638 component_id: world.register_component::<T>(),
1639 marker: PhantomData,
1640 }
1641 }
1642}
1643
1644/// An error returned when the registration of a required component fails.
1645#[derive(Error, Display, Debug)]
1646#[non_exhaustive]
1647pub enum RequiredComponentsError {
1648 /// The component is already a directly required component for the requiree.
1649 #[display("Component {0:?} already directly requires component {_1:?}")]
1650 #[error(ignore)]
1651 DuplicateRegistration(ComponentId, ComponentId),
1652 /// An archetype with the component that requires other components already exists
1653 #[display(
1654 "An archetype with the component {_0:?} that requires other components already exists"
1655 )]
1656 #[error(ignore)]
1657 ArchetypeExists(ComponentId),
1658}
1659
1660/// A Required Component constructor. See [`Component`] for details.
1661#[cfg(feature = "track_change_detection")]
1662#[derive(Clone)]
1663pub struct RequiredComponentConstructor(
1664 pub Arc<dyn Fn(&mut Table, &mut SparseSets, Tick, TableRow, Entity, &'static Location<'static>)>,
1665);
1666
1667/// A Required Component constructor. See [`Component`] for details.
1668#[cfg(not(feature = "track_change_detection"))]
1669#[derive(Clone)]
1670pub struct RequiredComponentConstructor(
1671 pub Arc<dyn Fn(&mut Table, &mut SparseSets, Tick, TableRow, Entity)>,
1672);
1673
1674impl RequiredComponentConstructor {
1675 /// # Safety
1676 /// This is intended to only be called in the context of [`BundleInfo::write_components`] to initialized required components.
1677 /// Calling it _anywhere else_ should be considered unsafe.
1678 ///
1679 /// `table_row` and `entity` must correspond to a valid entity that currently needs a component initialized via the constructor stored
1680 /// on this [`RequiredComponentConstructor`]. The stored constructor must correspond to a component on `entity` that needs initialization.
1681 /// `table` and `sparse_sets` must correspond to storages on a world where `entity` needs this required component initialized.
1682 ///
1683 /// Again, don't call this anywhere but [`BundleInfo::write_components`].
1684 pub(crate) unsafe fn initialize(
1685 &self,
1686 table: &mut Table,
1687 sparse_sets: &mut SparseSets,
1688 change_tick: Tick,
1689 table_row: TableRow,
1690 entity: Entity,
1691 #[cfg(feature = "track_change_detection")] caller: &'static Location<'static>,
1692 ) {
1693 (self.0)(
1694 table,
1695 sparse_sets,
1696 change_tick,
1697 table_row,
1698 entity,
1699 #[cfg(feature = "track_change_detection")]
1700 caller,
1701 );
1702 }
1703}
1704
1705/// Metadata associated with a required component. See [`Component`] for details.
1706#[derive(Clone)]
1707pub struct RequiredComponent {
1708 /// The constructor used for the required component.
1709 pub constructor: RequiredComponentConstructor,
1710
1711 /// The depth of the component requirement in the requirement hierarchy for this component.
1712 /// This is used for determining which constructor is used in cases where there are duplicate requires.
1713 ///
1714 /// For example, consider the inheritance tree `X -> Y -> Z`, where `->` indicates a requirement.
1715 /// `X -> Y` and `Y -> Z` are direct requirements with a depth of 0, while `Z` is only indirectly
1716 /// required for `X` with a depth of `1`.
1717 ///
1718 /// In cases where there are multiple conflicting requirements with the same depth, a higher priority
1719 /// will be given to components listed earlier in the `require` attribute, or to the latest added requirement
1720 /// if registered at runtime.
1721 pub inheritance_depth: u16,
1722}
1723
1724/// The collection of metadata for components that are required for a given component.
1725///
1726/// For more information, see the "Required Components" section of [`Component`].
1727#[derive(Default, Clone)]
1728pub struct RequiredComponents(pub(crate) HashMap<ComponentId, RequiredComponent>);
1729
1730impl Debug for RequiredComponents {
1731 fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
1732 f.debug_tuple("RequiredComponents")
1733 .field(&self.0.keys())
1734 .finish()
1735 }
1736}
1737
1738impl RequiredComponents {
1739 /// Registers a required component.
1740 ///
1741 /// If the component is already registered, it will be overwritten if the given inheritance depth
1742 /// is smaller than the depth of the existing registration. Otherwise, the new registration will be ignored.
1743 ///
1744 /// # Safety
1745 ///
1746 /// `component_id` must match the type initialized by `constructor`.
1747 /// `constructor` _must_ initialize a component for `component_id` in such a way that
1748 /// matches the storage type of the component. It must only use the given `table_row` or `Entity` to
1749 /// initialize the storage for `component_id` corresponding to the given entity.
1750 pub unsafe fn register_dynamic(
1751 &mut self,
1752 component_id: ComponentId,
1753 constructor: RequiredComponentConstructor,
1754 inheritance_depth: u16,
1755 ) {
1756 self.0
1757 .entry(component_id)
1758 .and_modify(|component| {
1759 if component.inheritance_depth > inheritance_depth {
1760 // New registration is more specific than existing requirement
1761 component.constructor = constructor.clone();
1762 component.inheritance_depth = inheritance_depth;
1763 }
1764 })
1765 .or_insert(RequiredComponent {
1766 constructor,
1767 inheritance_depth,
1768 });
1769 }
1770
1771 /// Registers a required component.
1772 ///
1773 /// If the component is already registered, it will be overwritten if the given inheritance depth
1774 /// is smaller than the depth of the existing registration. Otherwise, the new registration will be ignored.
1775 pub fn register<C: Component>(
1776 &mut self,
1777 components: &mut Components,
1778 storages: &mut Storages,
1779 constructor: fn() -> C,
1780 inheritance_depth: u16,
1781 ) {
1782 let component_id = components.register_component::<C>(storages);
1783 self.register_by_id(component_id, constructor, inheritance_depth);
1784 }
1785
1786 /// Registers the [`Component`] with the given ID as required if it exists.
1787 ///
1788 /// If the component is already registered, it will be overwritten if the given inheritance depth
1789 /// is smaller than the depth of the existing registration. Otherwise, the new registration will be ignored.
1790 pub fn register_by_id<C: Component>(
1791 &mut self,
1792 component_id: ComponentId,
1793 constructor: fn() -> C,
1794 inheritance_depth: u16,
1795 ) {
1796 let erased: RequiredComponentConstructor = RequiredComponentConstructor(Arc::new(
1797 move |table,
1798 sparse_sets,
1799 change_tick,
1800 table_row,
1801 entity,
1802 #[cfg(feature = "track_change_detection")] caller| {
1803 OwningPtr::make(constructor(), |ptr| {
1804 // SAFETY: This will only be called in the context of `BundleInfo::write_components`, which will
1805 // pass in a valid table_row and entity requiring a C constructor
1806 // C::STORAGE_TYPE is the storage type associated with `component_id` / `C`
1807 // `ptr` points to valid `C` data, which matches the type associated with `component_id`
1808 unsafe {
1809 BundleInfo::initialize_required_component(
1810 table,
1811 sparse_sets,
1812 change_tick,
1813 table_row,
1814 entity,
1815 component_id,
1816 C::STORAGE_TYPE,
1817 ptr,
1818 #[cfg(feature = "track_change_detection")]
1819 caller,
1820 );
1821 }
1822 });
1823 },
1824 ));
1825 // SAFETY:
1826 // `component_id` matches the type initialized by the `erased` constructor above.
1827 // `erased` initializes a component for `component_id` in such a way that
1828 // matches the storage type of the component. It only uses the given `table_row` or `Entity` to
1829 // initialize the storage corresponding to the given entity.
1830 unsafe { self.register_dynamic(component_id, erased, inheritance_depth) };
1831 }
1832
1833 /// Iterates the ids of all required components. This includes recursive required components.
1834 pub fn iter_ids(&self) -> impl Iterator<Item = ComponentId> + '_ {
1835 self.0.keys().copied()
1836 }
1837
1838 /// Removes components that are explicitly provided in a given [`Bundle`]. These components should
1839 /// be logically treated as normal components, not "required components".
1840 ///
1841 /// [`Bundle`]: crate::bundle::Bundle
1842 pub(crate) fn remove_explicit_components(&mut self, components: &[ComponentId]) {
1843 for component in components {
1844 self.0.remove(component);
1845 }
1846 }
1847
1848 // Merges `required_components` into this collection. This only inserts a required component
1849 // if it _did not already exist_.
1850 pub(crate) fn merge(&mut self, required_components: &RequiredComponents) {
1851 for (id, constructor) in &required_components.0 {
1852 self.0.entry(*id).or_insert_with(|| constructor.clone());
1853 }
1854 }
1855}