bevy_ecs/
event.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
//! Event handling types.

use crate as bevy_ecs;
#[cfg(feature = "multi_threaded")]
use crate::batching::BatchingStrategy;
use crate::change_detection::MutUntyped;
use crate::{
    change_detection::{DetectChangesMut, Mut},
    component::{Component, ComponentId, Tick},
    system::{Local, Res, ResMut, Resource, SystemParam},
    world::World,
};
pub use bevy_ecs_macros::Event;
use bevy_ecs_macros::SystemSet;
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::Reflect;
use bevy_utils::detailed_trace;
use std::ops::{Deref, DerefMut};
use std::{
    cmp::Ordering,
    fmt,
    hash::{Hash, Hasher},
    iter::Chain,
    marker::PhantomData,
    slice::Iter,
};

/// Something that "happens" and might be read / observed by app logic.
///
/// Events can be stored in an [`Events<E>`] resource
/// You can conveniently access events using the [`EventReader`] and [`EventWriter`] system parameter.
///
/// Events can also be "triggered" on a [`World`], which will then cause any [`Observer`] of that trigger to run.
///
/// This trait can be derived.
///
/// Events implement the [`Component`] type (and they automatically do when they are derived). Events are (generally)
/// not directly inserted as components. More often, the [`ComponentId`] is used to identify the event type within the
/// context of the ECS.
///
/// Events must be thread-safe.
///
/// [`World`]: crate::world::World
/// [`ComponentId`]: crate::component::ComponentId
/// [`Observer`]: crate::observer::Observer
#[diagnostic::on_unimplemented(
    message = "`{Self}` is not an `Event`",
    label = "invalid `Event`",
    note = "consider annotating `{Self}` with `#[derive(Event)]`"
)]
pub trait Event: Component {}

/// An `EventId` uniquely identifies an event stored in a specific [`World`].
///
/// An `EventId` can among other things be used to trace the flow of an event from the point it was
/// sent to the point it was processed. `EventId`s increase monotonically by send order.
///
/// [`World`]: crate::world::World
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
pub struct EventId<E: Event> {
    /// Uniquely identifies the event associated with this ID.
    // This value corresponds to the order in which each event was added to the world.
    pub id: usize,
    #[cfg_attr(feature = "bevy_reflect", reflect(ignore))]
    _marker: PhantomData<E>,
}

impl<E: Event> Copy for EventId<E> {}

impl<E: Event> Clone for EventId<E> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<E: Event> fmt::Display for EventId<E> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        <Self as fmt::Debug>::fmt(self, f)
    }
}

impl<E: Event> fmt::Debug for EventId<E> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "event<{}>#{}",
            std::any::type_name::<E>().split("::").last().unwrap(),
            self.id,
        )
    }
}

impl<E: Event> PartialEq for EventId<E> {
    fn eq(&self, other: &Self) -> bool {
        self.id == other.id
    }
}

impl<E: Event> Eq for EventId<E> {}

impl<E: Event> PartialOrd for EventId<E> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl<E: Event> Ord for EventId<E> {
    fn cmp(&self, other: &Self) -> Ordering {
        self.id.cmp(&other.id)
    }
}

impl<E: Event> Hash for EventId<E> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        Hash::hash(&self.id, state);
    }
}

#[derive(Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
struct EventInstance<E: Event> {
    pub event_id: EventId<E>,
    pub event: E,
}

/// An event collection that represents the events that occurred within the last two
/// [`Events::update`] calls.
/// Events can be written to using an [`EventWriter`]
/// and are typically cheaply read using an [`EventReader`].
///
/// Each event can be consumed by multiple systems, in parallel,
/// with consumption tracked by the [`EventReader`] on a per-system basis.
///
/// If no [ordering](https://github.com/bevyengine/bevy/blob/main/examples/ecs/ecs_guide.rs)
/// is applied between writing and reading systems, there is a risk of a race condition.
/// This means that whether the events arrive before or after the next [`Events::update`] is unpredictable.
///
/// This collection is meant to be paired with a system that calls
/// [`Events::update`] exactly once per update/frame.
///
/// [`event_update_system`] is a system that does this, typically initialized automatically using
/// [`add_event`](https://docs.rs/bevy/*/bevy/app/struct.App.html#method.add_event).
/// [`EventReader`]s are expected to read events from this collection at least once per loop/frame.
/// Events will persist across a single frame boundary and so ordering of event producers and
/// consumers is not critical (although poorly-planned ordering may cause accumulating lag).
/// If events are not handled by the end of the frame after they are updated, they will be
/// dropped silently.
///
/// # Example
/// ```
/// use bevy_ecs::event::{Event, Events};
///
/// #[derive(Event)]
/// struct MyEvent {
///     value: usize
/// }
///
/// // setup
/// let mut events = Events::<MyEvent>::default();
/// let mut reader = events.get_reader();
///
/// // run this once per update/frame
/// events.update();
///
/// // somewhere else: send an event
/// events.send(MyEvent { value: 1 });
///
/// // somewhere else: read the events
/// for event in reader.read(&events) {
///     assert_eq!(event.value, 1)
/// }
///
/// // events are only processed once per reader
/// assert_eq!(reader.read(&events).count(), 0);
/// ```
///
/// # Details
///
/// [`Events`] is implemented using a variation of a double buffer strategy.
/// Each call to [`update`](Events::update) swaps buffers and clears out the oldest one.
/// - [`EventReader`]s will read events from both buffers.
/// - [`EventReader`]s that read at least once per update will never drop events.
/// - [`EventReader`]s that read once within two updates might still receive some events
/// - [`EventReader`]s that read after two updates are guaranteed to drop all events that occurred
/// before those updates.
///
/// The buffers in [`Events`] will grow indefinitely if [`update`](Events::update) is never called.
///
/// An alternative call pattern would be to call [`update`](Events::update)
/// manually across frames to control when events are cleared.
/// This complicates consumption and risks ever-expanding memory usage if not cleaned up,
/// but can be done by adding your event as a resource instead of using
/// [`add_event`](https://docs.rs/bevy/*/bevy/app/struct.App.html#method.add_event).
///
/// [Example usage.](https://github.com/bevyengine/bevy/blob/latest/examples/ecs/event.rs)
/// [Example usage standalone.](https://github.com/bevyengine/bevy/blob/latest/crates/bevy_ecs/examples/events.rs)
///
#[derive(Debug, Resource)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
pub struct Events<E: Event> {
    /// Holds the oldest still active events.
    /// Note that `a.start_event_count + a.len()` should always be equal to `events_b.start_event_count`.
    events_a: EventSequence<E>,
    /// Holds the newer events.
    events_b: EventSequence<E>,
    event_count: usize,
}

// Derived Default impl would incorrectly require E: Default
impl<E: Event> Default for Events<E> {
    fn default() -> Self {
        Self {
            events_a: Default::default(),
            events_b: Default::default(),
            event_count: Default::default(),
        }
    }
}

impl<E: Event> Events<E> {
    /// Returns the index of the oldest event stored in the event buffer.
    pub fn oldest_event_count(&self) -> usize {
        self.events_a
            .start_event_count
            .min(self.events_b.start_event_count)
    }

    /// "Sends" an `event` by writing it to the current event buffer. [`EventReader`]s can then read
    /// the event.
    /// This method returns the [ID](`EventId`) of the sent `event`.
    pub fn send(&mut self, event: E) -> EventId<E> {
        let event_id = EventId {
            id: self.event_count,
            _marker: PhantomData,
        };
        detailed_trace!("Events::send() -> id: {}", event_id);

        let event_instance = EventInstance { event_id, event };

        self.events_b.push(event_instance);
        self.event_count += 1;

        event_id
    }

    /// Sends a list of `events` all at once, which can later be read by [`EventReader`]s.
    /// This is more efficient than sending each event individually.
    /// This method returns the [IDs](`EventId`) of the sent `events`.
    pub fn send_batch(&mut self, events: impl IntoIterator<Item = E>) -> SendBatchIds<E> {
        let last_count = self.event_count;

        self.extend(events);

        SendBatchIds {
            last_count,
            event_count: self.event_count,
            _marker: PhantomData,
        }
    }

    /// Sends the default value of the event. Useful when the event is an empty struct.
    /// This method returns the [ID](`EventId`) of the sent `event`.
    pub fn send_default(&mut self) -> EventId<E>
    where
        E: Default,
    {
        self.send(Default::default())
    }

    /// Gets a new [`ManualEventReader`]. This will include all events already in the event buffers.
    pub fn get_reader(&self) -> ManualEventReader<E> {
        ManualEventReader::default()
    }

    /// Gets a new [`ManualEventReader`]. This will ignore all events already in the event buffers.
    /// It will read all future events.
    pub fn get_reader_current(&self) -> ManualEventReader<E> {
        ManualEventReader {
            last_event_count: self.event_count,
            ..Default::default()
        }
    }

    /// Swaps the event buffers and clears the oldest event buffer. In general, this should be
    /// called once per frame/update.
    ///
    /// If you need access to the events that were removed, consider using [`Events::update_drain`].
    pub fn update(&mut self) {
        std::mem::swap(&mut self.events_a, &mut self.events_b);
        self.events_b.clear();
        self.events_b.start_event_count = self.event_count;
        debug_assert_eq!(
            self.events_a.start_event_count + self.events_a.len(),
            self.events_b.start_event_count
        );
    }

    /// Swaps the event buffers and drains the oldest event buffer, returning an iterator
    /// of all events that were removed. In general, this should be called once per frame/update.
    ///
    /// If you do not need to take ownership of the removed events, use [`Events::update`] instead.
    #[must_use = "If you do not need the returned events, call .update() instead."]
    pub fn update_drain(&mut self) -> impl Iterator<Item = E> + '_ {
        std::mem::swap(&mut self.events_a, &mut self.events_b);
        let iter = self.events_b.events.drain(..);
        self.events_b.start_event_count = self.event_count;
        debug_assert_eq!(
            self.events_a.start_event_count + self.events_a.len(),
            self.events_b.start_event_count
        );

        iter.map(|e| e.event)
    }

    #[inline]
    fn reset_start_event_count(&mut self) {
        self.events_a.start_event_count = self.event_count;
        self.events_b.start_event_count = self.event_count;
    }

    /// Removes all events.
    #[inline]
    pub fn clear(&mut self) {
        self.reset_start_event_count();
        self.events_a.clear();
        self.events_b.clear();
    }

    /// Returns the number of events currently stored in the event buffer.
    #[inline]
    pub fn len(&self) -> usize {
        self.events_a.len() + self.events_b.len()
    }

    /// Returns true if there are no events currently stored in the event buffer.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Creates a draining iterator that removes all events.
    pub fn drain(&mut self) -> impl Iterator<Item = E> + '_ {
        self.reset_start_event_count();

        // Drain the oldest events first, then the newest
        self.events_a
            .drain(..)
            .chain(self.events_b.drain(..))
            .map(|i| i.event)
    }

    /// Iterates over events that happened since the last "update" call.
    /// WARNING: You probably don't want to use this call. In most cases you should use an
    /// [`EventReader`]. You should only use this if you know you only need to consume events
    /// between the last `update()` call and your call to `iter_current_update_events`.
    /// If events happen outside that window, they will not be handled. For example, any events that
    /// happen after this call and before the next `update()` call will be dropped.
    pub fn iter_current_update_events(&self) -> impl ExactSizeIterator<Item = &E> {
        self.events_b.iter().map(|i| &i.event)
    }

    /// Get a specific event by id if it still exists in the events buffer.
    pub fn get_event(&self, id: usize) -> Option<(&E, EventId<E>)> {
        if id < self.oldest_id() {
            return None;
        }

        let sequence = self.sequence(id);
        let index = id.saturating_sub(sequence.start_event_count);

        sequence
            .get(index)
            .map(|instance| (&instance.event, instance.event_id))
    }

    /// Oldest id still in the events buffer.
    pub fn oldest_id(&self) -> usize {
        self.events_a.start_event_count
    }

    /// Which event buffer is this event id a part of.
    fn sequence(&self, id: usize) -> &EventSequence<E> {
        if id < self.events_b.start_event_count {
            &self.events_a
        } else {
            &self.events_b
        }
    }
}

impl<E: Event> Extend<E> for Events<E> {
    fn extend<I>(&mut self, iter: I)
    where
        I: IntoIterator<Item = E>,
    {
        let old_count = self.event_count;
        let mut event_count = self.event_count;
        let events = iter.into_iter().map(|event| {
            let event_id = EventId {
                id: event_count,
                _marker: PhantomData,
            };
            event_count += 1;
            EventInstance { event_id, event }
        });

        self.events_b.extend(events);

        if old_count != event_count {
            detailed_trace!(
                "Events::extend() -> ids: ({}..{})",
                self.event_count,
                event_count
            );
        }

        self.event_count = event_count;
    }
}

#[derive(Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
struct EventSequence<E: Event> {
    events: Vec<EventInstance<E>>,
    start_event_count: usize,
}

// Derived Default impl would incorrectly require E: Default
impl<E: Event> Default for EventSequence<E> {
    fn default() -> Self {
        Self {
            events: Default::default(),
            start_event_count: Default::default(),
        }
    }
}

impl<E: Event> Deref for EventSequence<E> {
    type Target = Vec<EventInstance<E>>;

    fn deref(&self) -> &Self::Target {
        &self.events
    }
}

impl<E: Event> DerefMut for EventSequence<E> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.events
    }
}

/// Reads events of type `T` in order and tracks which events have already been read.
///
/// # Concurrency
///
/// Unlike [`EventWriter<T>`], systems with `EventReader<T>` param can be executed concurrently
/// (but not concurrently with `EventWriter<T>` systems for the same event type).
#[derive(SystemParam, Debug)]
pub struct EventReader<'w, 's, E: Event> {
    reader: Local<'s, ManualEventReader<E>>,
    events: Res<'w, Events<E>>,
}

impl<'w, 's, E: Event> EventReader<'w, 's, E> {
    /// Iterates over the events this [`EventReader`] has not seen yet. This updates the
    /// [`EventReader`]'s event counter, which means subsequent event reads will not include events
    /// that happened before now.
    pub fn read(&mut self) -> EventIterator<'_, E> {
        self.reader.read(&self.events)
    }

    /// Like [`read`](Self::read), except also returning the [`EventId`] of the events.
    pub fn read_with_id(&mut self) -> EventIteratorWithId<'_, E> {
        self.reader.read_with_id(&self.events)
    }

    /// Returns a parallel iterator over the events this [`EventReader`] has not seen yet.
    /// See also [`for_each`](EventParIter::for_each).
    ///
    /// # Example
    /// ```
    /// # use bevy_ecs::prelude::*;
    /// # use std::sync::atomic::{AtomicUsize, Ordering};
    ///
    /// #[derive(Event)]
    /// struct MyEvent {
    ///     value: usize,
    /// }
    ///
    /// #[derive(Resource, Default)]
    /// struct Counter(AtomicUsize);
    ///
    /// // setup
    /// let mut world = World::new();
    /// world.init_resource::<Events<MyEvent>>();
    /// world.insert_resource(Counter::default());
    ///
    /// let mut schedule = Schedule::default();
    /// schedule.add_systems(|mut events: EventReader<MyEvent>, counter: Res<Counter>| {
    ///     events.par_read().for_each(|MyEvent { value }| {
    ///         counter.0.fetch_add(*value, Ordering::Relaxed);
    ///     });
    /// });
    /// for value in 0..100 {
    ///     world.send_event(MyEvent { value });
    /// }
    /// schedule.run(&mut world);
    /// let Counter(counter) = world.remove_resource::<Counter>().unwrap();
    /// // all events were processed
    /// assert_eq!(counter.into_inner(), 4950);
    /// ```
    ///
    #[cfg(feature = "multi_threaded")]
    pub fn par_read(&mut self) -> EventParIter<'_, E> {
        self.reader.par_read(&self.events)
    }

    /// Determines the number of events available to be read from this [`EventReader`] without consuming any.
    pub fn len(&self) -> usize {
        self.reader.len(&self.events)
    }

    /// Returns `true` if there are no events available to read.
    ///
    /// # Example
    ///
    /// The following example shows a useful pattern where some behavior is triggered if new events are available.
    /// [`EventReader::clear()`] is used so the same events don't re-trigger the behavior the next time the system runs.
    ///
    /// ```
    /// # use bevy_ecs::prelude::*;
    /// #
    /// #[derive(Event)]
    /// struct CollisionEvent;
    ///
    /// fn play_collision_sound(mut events: EventReader<CollisionEvent>) {
    ///     if !events.is_empty() {
    ///         events.clear();
    ///         // Play a sound
    ///     }
    /// }
    /// # bevy_ecs::system::assert_is_system(play_collision_sound);
    /// ```
    pub fn is_empty(&self) -> bool {
        self.reader.is_empty(&self.events)
    }

    /// Consumes all available events.
    ///
    /// This means these events will not appear in calls to [`EventReader::read()`] or
    /// [`EventReader::read_with_id()`] and [`EventReader::is_empty()`] will return `true`.
    ///
    /// For usage, see [`EventReader::is_empty()`].
    pub fn clear(&mut self) {
        self.reader.clear(&self.events);
    }
}

/// Sends events of type `T`.
///
/// # Usage
///
/// `EventWriter`s are usually declared as a [`SystemParam`].
/// ```
/// # use bevy_ecs::prelude::*;
///
/// #[derive(Event)]
/// pub struct MyEvent; // Custom event type.
/// fn my_system(mut writer: EventWriter<MyEvent>) {
///     writer.send(MyEvent);
/// }
///
/// # bevy_ecs::system::assert_is_system(my_system);
/// ```
/// # Observers
///
/// "Buffered" Events, such as those sent directly in [`Events`] or sent using [`EventWriter`], do _not_ automatically
/// trigger any [`Observer`]s watching for that event, as each [`Event`] has different requirements regarding _if_ it will
/// be triggered, and if so, _when_ it will be triggered in the schedule.
///
/// # Concurrency
///
/// `EventWriter` param has [`ResMut<Events<T>>`](Events) inside. So two systems declaring `EventWriter<T>` params
/// for the same event type won't be executed concurrently.
///
/// # Untyped events
///
/// `EventWriter` can only send events of one specific type, which must be known at compile-time.
/// This is not a problem most of the time, but you may find a situation where you cannot know
/// ahead of time every kind of event you'll need to send. In this case, you can use the "type-erased event" pattern.
///
/// ```
/// # use bevy_ecs::{prelude::*, event::Events};
/// # #[derive(Event)]
/// # pub struct MyEvent;
/// fn send_untyped(mut commands: Commands) {
///     // Send an event of a specific type without having to declare that
///     // type as a SystemParam.
///     //
///     // Effectively, we're just moving the type parameter from the /type/ to the /method/,
///     // which allows one to do all kinds of clever things with type erasure, such as sending
///     // custom events to unknown 3rd party plugins (modding API).
///     //
///     // NOTE: the event won't actually be sent until commands get applied during
///     // apply_deferred.
///     commands.add(|w: &mut World| {
///         w.send_event(MyEvent);
///     });
/// }
/// ```
/// Note that this is considered *non-idiomatic*, and should only be used when `EventWriter` will not work.
///
/// [`Observer`]: crate::observer::Observer
#[derive(SystemParam)]
pub struct EventWriter<'w, E: Event> {
    events: ResMut<'w, Events<E>>,
}

impl<'w, E: Event> EventWriter<'w, E> {
    /// Sends an `event`, which can later be read by [`EventReader`]s.
    /// This method returns the [ID](`EventId`) of the sent `event`.
    ///
    /// See [`Events`] for details.
    pub fn send(&mut self, event: E) -> EventId<E> {
        self.events.send(event)
    }

    /// Sends a list of `events` all at once, which can later be read by [`EventReader`]s.
    /// This is more efficient than sending each event individually.
    /// This method returns the [IDs](`EventId`) of the sent `events`.
    ///
    /// See [`Events`] for details.
    pub fn send_batch(&mut self, events: impl IntoIterator<Item = E>) -> SendBatchIds<E> {
        self.events.send_batch(events)
    }

    /// Sends the default value of the event. Useful when the event is an empty struct.
    /// This method returns the [ID](`EventId`) of the sent `event`.
    ///
    /// See [`Events`] for details.
    pub fn send_default(&mut self) -> EventId<E>
    where
        E: Default,
    {
        self.events.send_default()
    }
}

/// Stores the state for an [`EventReader`].
///
/// Access to the [`Events<E>`] resource is required to read any incoming events.
///
/// In almost all cases, you should just use an [`EventReader`],
/// which will automatically manage the state for you.
///
/// However, this type can be useful if you need to manually track events,
/// such as when you're attempting to send and receive events of the same type in the same system.
///
/// # Example
///
/// ```
/// use bevy_ecs::prelude::*;
/// use bevy_ecs::event::{Event, Events, ManualEventReader};
///
/// #[derive(Event, Clone, Debug)]
/// struct MyEvent;
///
/// /// A system that both sends and receives events using a [`Local`] [`ManualEventReader`].
/// fn send_and_receive_manual_event_reader(
///     // The `Local` `SystemParam` stores state inside the system itself, rather than in the world.
///     // `ManualEventReader<T>` is the internal state of `EventReader<T>`, which tracks which events have been seen.
///     mut local_event_reader: Local<ManualEventReader<MyEvent>>,
///     // We can access the `Events` resource mutably, allowing us to both read and write its contents.
///     mut events: ResMut<Events<MyEvent>>,
/// ) {
///     // We must collect the events to resend, because we can't mutate events while we're iterating over the events.
///     let mut events_to_resend = Vec::new();
///
///     for event in local_event_reader.read(&events) {
///          events_to_resend.push(event.clone());
///     }
///
///     for event in events_to_resend {
///         events.send(MyEvent);
///     }
/// }
///
/// # bevy_ecs::system::assert_is_system(send_and_receive_manual_event_reader);
/// ```
#[derive(Debug)]
pub struct ManualEventReader<E: Event> {
    last_event_count: usize,
    _marker: PhantomData<E>,
}

impl<E: Event> Default for ManualEventReader<E> {
    fn default() -> Self {
        ManualEventReader {
            last_event_count: 0,
            _marker: Default::default(),
        }
    }
}

impl<E: Event> Clone for ManualEventReader<E> {
    fn clone(&self) -> Self {
        ManualEventReader {
            last_event_count: self.last_event_count,
            _marker: PhantomData,
        }
    }
}

#[allow(clippy::len_without_is_empty)] // Check fails since the is_empty implementation has a signature other than `(&self) -> bool`
impl<E: Event> ManualEventReader<E> {
    /// See [`EventReader::read`]
    pub fn read<'a>(&'a mut self, events: &'a Events<E>) -> EventIterator<'a, E> {
        self.read_with_id(events).without_id()
    }

    /// See [`EventReader::read_with_id`]
    pub fn read_with_id<'a>(&'a mut self, events: &'a Events<E>) -> EventIteratorWithId<'a, E> {
        EventIteratorWithId::new(self, events)
    }

    /// See [`EventReader::par_read`]
    #[cfg(feature = "multi_threaded")]
    pub fn par_read<'a>(&'a mut self, events: &'a Events<E>) -> EventParIter<'a, E> {
        EventParIter::new(self, events)
    }

    /// See [`EventReader::len`]
    pub fn len(&self, events: &Events<E>) -> usize {
        // The number of events in this reader is the difference between the most recent event
        // and the last event seen by it. This will be at most the number of events contained
        // with the events (any others have already been dropped)
        // TODO: Warn when there are dropped events, or return e.g. a `Result<usize, (usize, usize)>`
        events
            .event_count
            .saturating_sub(self.last_event_count)
            .min(events.len())
    }

    /// Amount of events we missed.
    pub fn missed_events(&self, events: &Events<E>) -> usize {
        events
            .oldest_event_count()
            .saturating_sub(self.last_event_count)
    }

    /// See [`EventReader::is_empty()`]
    pub fn is_empty(&self, events: &Events<E>) -> bool {
        self.len(events) == 0
    }

    /// See [`EventReader::clear()`]
    pub fn clear(&mut self, events: &Events<E>) {
        self.last_event_count = events.event_count;
    }
}

/// An iterator that yields any unread events from an [`EventReader`] or [`ManualEventReader`].
#[derive(Debug)]
pub struct EventIterator<'a, E: Event> {
    iter: EventIteratorWithId<'a, E>,
}

impl<'a, E: Event> Iterator for EventIterator<'a, E> {
    type Item = &'a E;
    fn next(&mut self) -> Option<Self::Item> {
        self.iter.next().map(|(event, _)| event)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }

    fn count(self) -> usize {
        self.iter.count()
    }

    fn last(self) -> Option<Self::Item>
    where
        Self: Sized,
    {
        self.iter.last().map(|(event, _)| event)
    }

    fn nth(&mut self, n: usize) -> Option<Self::Item> {
        self.iter.nth(n).map(|(event, _)| event)
    }
}

impl<'a, E: Event> ExactSizeIterator for EventIterator<'a, E> {
    fn len(&self) -> usize {
        self.iter.len()
    }
}

/// An iterator that yields any unread events (and their IDs) from an [`EventReader`] or [`ManualEventReader`].
#[derive(Debug)]
pub struct EventIteratorWithId<'a, E: Event> {
    reader: &'a mut ManualEventReader<E>,
    chain: Chain<Iter<'a, EventInstance<E>>, Iter<'a, EventInstance<E>>>,
    unread: usize,
}

impl<'a, E: Event> EventIteratorWithId<'a, E> {
    /// Creates a new iterator that yields any `events` that have not yet been seen by `reader`.
    pub fn new(reader: &'a mut ManualEventReader<E>, events: &'a Events<E>) -> Self {
        let a_index = reader
            .last_event_count
            .saturating_sub(events.events_a.start_event_count);
        let b_index = reader
            .last_event_count
            .saturating_sub(events.events_b.start_event_count);
        let a = events.events_a.get(a_index..).unwrap_or_default();
        let b = events.events_b.get(b_index..).unwrap_or_default();

        let unread_count = a.len() + b.len();
        // Ensure `len` is implemented correctly
        debug_assert_eq!(unread_count, reader.len(events));
        reader.last_event_count = events.event_count - unread_count;
        // Iterate the oldest first, then the newer events
        let chain = a.iter().chain(b.iter());

        Self {
            reader,
            chain,
            unread: unread_count,
        }
    }

    /// Iterate over only the events.
    pub fn without_id(self) -> EventIterator<'a, E> {
        EventIterator { iter: self }
    }
}

impl<'a, E: Event> Iterator for EventIteratorWithId<'a, E> {
    type Item = (&'a E, EventId<E>);
    fn next(&mut self) -> Option<Self::Item> {
        match self
            .chain
            .next()
            .map(|instance| (&instance.event, instance.event_id))
        {
            Some(item) => {
                detailed_trace!("EventReader::iter() -> {}", item.1);
                self.reader.last_event_count += 1;
                self.unread -= 1;
                Some(item)
            }
            None => None,
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.chain.size_hint()
    }

    fn count(self) -> usize {
        self.reader.last_event_count += self.unread;
        self.unread
    }

    fn last(self) -> Option<Self::Item>
    where
        Self: Sized,
    {
        let EventInstance { event_id, event } = self.chain.last()?;
        self.reader.last_event_count += self.unread;
        Some((event, *event_id))
    }

    fn nth(&mut self, n: usize) -> Option<Self::Item> {
        if let Some(EventInstance { event_id, event }) = self.chain.nth(n) {
            self.reader.last_event_count += n + 1;
            self.unread -= n + 1;
            Some((event, *event_id))
        } else {
            self.reader.last_event_count += self.unread;
            self.unread = 0;
            None
        }
    }
}

impl<'a, E: Event> ExactSizeIterator for EventIteratorWithId<'a, E> {
    fn len(&self) -> usize {
        self.unread
    }
}

/// A parallel iterator over `Event`s.
#[cfg(feature = "multi_threaded")]
#[derive(Debug)]
pub struct EventParIter<'a, E: Event> {
    reader: &'a mut ManualEventReader<E>,
    slices: [&'a [EventInstance<E>]; 2],
    batching_strategy: BatchingStrategy,
    unread: usize,
}

#[cfg(feature = "multi_threaded")]
impl<'a, E: Event> EventParIter<'a, E> {
    /// Creates a new parallel iterator over `events` that have not yet been seen by `reader`.
    pub fn new(reader: &'a mut ManualEventReader<E>, events: &'a Events<E>) -> Self {
        let a_index = reader
            .last_event_count
            .saturating_sub(events.events_a.start_event_count);
        let b_index = reader
            .last_event_count
            .saturating_sub(events.events_b.start_event_count);
        let a = events.events_a.get(a_index..).unwrap_or_default();
        let b = events.events_b.get(b_index..).unwrap_or_default();

        let unread_count = a.len() + b.len();
        // Ensure `len` is implemented correctly
        debug_assert_eq!(unread_count, reader.len(events));
        reader.last_event_count = events.event_count - unread_count;

        Self {
            reader,
            slices: [a, b],
            batching_strategy: BatchingStrategy::default(),
            unread: unread_count,
        }
    }

    /// Changes the batching strategy used when iterating.
    ///
    /// For more information on how this affects the resultant iteration, see
    /// [`BatchingStrategy`].
    pub fn batching_strategy(mut self, strategy: BatchingStrategy) -> Self {
        self.batching_strategy = strategy;
        self
    }

    /// Runs the provided closure for each unread event in parallel.
    ///
    /// Unlike normal iteration, the event order is not guaranteed in any form.
    ///
    /// # Panics
    /// If the [`ComputeTaskPool`] is not initialized. If using this from an event reader that is being
    /// initialized and run from the ECS scheduler, this should never panic.
    ///
    /// [`ComputeTaskPool`]: bevy_tasks::ComputeTaskPool
    pub fn for_each<FN: Fn(&'a E) + Send + Sync + Clone>(self, func: FN) {
        self.for_each_with_id(move |e, _| func(e));
    }

    /// Runs the provided closure for each unread event in parallel, like [`for_each`](Self::for_each),
    /// but additionally provides the `EventId` to the closure.
    ///
    /// Note that the order of iteration is not guaranteed, but `EventId`s are ordered by send order.
    ///
    /// # Panics
    /// If the [`ComputeTaskPool`] is not initialized. If using this from an event reader that is being
    /// initialized and run from the ECS scheduler, this should never panic.
    ///
    /// [`ComputeTaskPool`]: bevy_tasks::ComputeTaskPool
    pub fn for_each_with_id<FN: Fn(&'a E, EventId<E>) + Send + Sync + Clone>(mut self, func: FN) {
        #[cfg(any(target_arch = "wasm32", not(feature = "multi_threaded")))]
        {
            self.into_iter().for_each(|(e, i)| func(e, i));
        }

        #[cfg(all(not(target_arch = "wasm32"), feature = "multi_threaded"))]
        {
            let pool = bevy_tasks::ComputeTaskPool::get();
            let thread_count = pool.thread_num();
            if thread_count <= 1 {
                return self.into_iter().for_each(|(e, i)| func(e, i));
            }

            let batch_size = self
                .batching_strategy
                .calc_batch_size(|| self.len(), thread_count);
            let chunks = self.slices.map(|s| s.chunks_exact(batch_size));
            let remainders = chunks.each_ref().map(|c| c.remainder());

            pool.scope(|scope| {
                for batch in chunks.into_iter().flatten().chain(remainders) {
                    let func = func.clone();
                    scope.spawn(async move {
                        for event in batch {
                            func(&event.event, event.event_id);
                        }
                    });
                }
            });

            // Events are guaranteed to be read at this point.
            self.reader.last_event_count += self.unread;
            self.unread = 0;
        }
    }

    /// Returns the number of [`Event`]s to be iterated.
    pub fn len(&self) -> usize {
        self.slices.iter().map(|s| s.len()).sum()
    }

    /// Returns [`true`] if there are no events remaining in this iterator.
    pub fn is_empty(&self) -> bool {
        self.slices.iter().all(|x| x.is_empty())
    }
}

#[cfg(feature = "multi_threaded")]
impl<'a, E: Event> IntoIterator for EventParIter<'a, E> {
    type IntoIter = EventIteratorWithId<'a, E>;
    type Item = <Self::IntoIter as Iterator>::Item;

    fn into_iter(self) -> Self::IntoIter {
        let EventParIter {
            reader,
            slices: [a, b],
            ..
        } = self;
        let unread = a.len() + b.len();
        let chain = a.iter().chain(b);
        EventIteratorWithId {
            reader,
            chain,
            unread,
        }
    }
}

#[doc(hidden)]
struct RegisteredEvent {
    component_id: ComponentId,
    // Required to flush the secondary buffer and drop events even if left unchanged.
    previously_updated: bool,
    // SAFETY: The component ID and the function must be used to fetch the Events<T> resource
    // of the same type initialized in `register_event`, or improper type casts will occur.
    update: unsafe fn(MutUntyped),
}

/// A registry of all of the [`Events`] in the [`World`], used by [`event_update_system`]
/// to update all of the events.
#[derive(Resource, Default)]
pub struct EventRegistry {
    /// Should the events be updated?
    ///
    /// This field is generally automatically updated by the [`signal_event_update_system`](crate::event::update::signal_event_update_system).
    pub should_update: ShouldUpdateEvents,
    event_updates: Vec<RegisteredEvent>,
}

/// Controls whether or not the events in an [`EventRegistry`] should be updated.
#[derive(Default, Debug, Clone, Copy, PartialEq, Eq)]
pub enum ShouldUpdateEvents {
    /// Without any fixed timestep, events should always be updated each frame.
    #[default]
    Always,
    /// We need to wait until at least one pass of the fixed update schedules to update the events.
    Waiting,
    /// At least one pass of the fixed update schedules has occurred, and the events are ready to be updated.
    Ready,
}

impl EventRegistry {
    /// Registers an event type to be updated in a given [`World`]
    ///
    /// If no instance of the [`EventRegistry`] exists in the world, this will add one - otherwise it will use
    /// the existing instance.
    pub fn register_event<T: Event>(world: &mut World) {
        // By initializing the resource here, we can be sure that it is present,
        // and receive the correct, up-to-date `ComponentId` even if it was previously removed.
        let component_id = world.init_resource::<Events<T>>();
        let mut registry = world.get_resource_or_insert_with(Self::default);
        registry.event_updates.push(RegisteredEvent {
            component_id,
            previously_updated: false,
            update: |ptr| {
                // SAFETY: The resource was initialized with the type Events<T>.
                unsafe { ptr.with_type::<Events<T>>() }
                    .bypass_change_detection()
                    .update();
            },
        });
    }

    /// Removes an event from the world and it's associated [`EventRegistry`].
    pub fn deregister_events<T: Event>(world: &mut World) {
        let component_id = world.init_resource::<Events<T>>();
        let mut registry = world.get_resource_or_insert_with(Self::default);
        registry
            .event_updates
            .retain(|e| e.component_id != component_id);
        world.remove_resource::<Events<T>>();
    }

    /// Updates all of the registered events in the World.
    pub fn run_updates(&mut self, world: &mut World, last_change_tick: Tick) {
        for registered_event in &mut self.event_updates {
            // Bypass the type ID -> Component ID lookup with the cached component ID.
            if let Some(events) = world.get_resource_mut_by_id(registered_event.component_id) {
                let has_changed = events.has_changed_since(last_change_tick);
                if registered_event.previously_updated || has_changed {
                    // SAFETY: The update function pointer is called with the resource
                    // fetched from the same component ID.
                    unsafe { (registered_event.update)(events) };
                    // Always set to true if the events have changed, otherwise disable running on the second invocation
                    // to wait for more changes.
                    registered_event.previously_updated =
                        has_changed || !registered_event.previously_updated;
                }
            }
        }
    }
}

#[doc(hidden)]
#[derive(SystemSet, Clone, Debug, PartialEq, Eq, Hash)]
pub struct EventUpdates;

/// Signals the [`event_update_system`] to run after `FixedUpdate` systems.
///
/// This will change the behavior of the [`EventRegistry`] to only run after a fixed update cycle has passed.
/// Normally, this will simply run every frame.
pub fn signal_event_update_system(signal: Option<ResMut<EventRegistry>>) {
    if let Some(mut registry) = signal {
        registry.should_update = ShouldUpdateEvents::Ready;
    }
}

/// A system that calls [`Events::update`] on all registered [`Events`] in the world.
pub fn event_update_system(world: &mut World, mut last_change_tick: Local<Tick>) {
    if world.contains_resource::<EventRegistry>() {
        world.resource_scope(|world, mut registry: Mut<EventRegistry>| {
            registry.run_updates(world, *last_change_tick);

            registry.should_update = match registry.should_update {
                // If we're always updating, keep doing so.
                ShouldUpdateEvents::Always => ShouldUpdateEvents::Always,
                // Disable the system until signal_event_update_system runs again.
                ShouldUpdateEvents::Waiting | ShouldUpdateEvents::Ready => {
                    ShouldUpdateEvents::Waiting
                }
            };
        });
    }
    *last_change_tick = world.change_tick();
}

/// A run condition for [`event_update_system`].
///
/// If [`signal_event_update_system`] has been run at least once,
/// we will wait for it to be run again before updating the events.
///
/// Otherwise, we will always update the events.
pub fn event_update_condition(maybe_signal: Option<Res<EventRegistry>>) -> bool {
    match maybe_signal {
        Some(signal) => match signal.should_update {
            ShouldUpdateEvents::Always | ShouldUpdateEvents::Ready => true,
            ShouldUpdateEvents::Waiting => false,
        },
        None => true,
    }
}

/// [`Iterator`] over sent [`EventIds`](`EventId`) from a batch.
pub struct SendBatchIds<E> {
    last_count: usize,
    event_count: usize,
    _marker: PhantomData<E>,
}

impl<E: Event> Iterator for SendBatchIds<E> {
    type Item = EventId<E>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.last_count >= self.event_count {
            return None;
        }

        let result = Some(EventId {
            id: self.last_count,
            _marker: PhantomData,
        });

        self.last_count += 1;

        result
    }
}

impl<E: Event> ExactSizeIterator for SendBatchIds<E> {
    fn len(&self) -> usize {
        self.event_count.saturating_sub(self.last_count)
    }
}

#[cfg(test)]
mod tests {
    use crate::system::assert_is_read_only_system;

    use super::*;

    #[derive(Event, Copy, Clone, PartialEq, Eq, Debug)]
    struct TestEvent {
        i: usize,
    }

    #[test]
    fn test_events() {
        let mut events = Events::<TestEvent>::default();
        let event_0 = TestEvent { i: 0 };
        let event_1 = TestEvent { i: 1 };
        let event_2 = TestEvent { i: 2 };

        // this reader will miss event_0 and event_1 because it wont read them over the course of
        // two updates
        let mut reader_missed = events.get_reader();

        let mut reader_a = events.get_reader();

        events.send(event_0);

        assert_eq!(
            get_events(&events, &mut reader_a),
            vec![event_0],
            "reader_a created before event receives event"
        );
        assert_eq!(
            get_events(&events, &mut reader_a),
            vec![],
            "second iteration of reader_a created before event results in zero events"
        );

        let mut reader_b = events.get_reader();

        assert_eq!(
            get_events(&events, &mut reader_b),
            vec![event_0],
            "reader_b created after event receives event"
        );
        assert_eq!(
            get_events(&events, &mut reader_b),
            vec![],
            "second iteration of reader_b created after event results in zero events"
        );

        events.send(event_1);

        let mut reader_c = events.get_reader();

        assert_eq!(
            get_events(&events, &mut reader_c),
            vec![event_0, event_1],
            "reader_c created after two events receives both events"
        );
        assert_eq!(
            get_events(&events, &mut reader_c),
            vec![],
            "second iteration of reader_c created after two event results in zero events"
        );

        assert_eq!(
            get_events(&events, &mut reader_a),
            vec![event_1],
            "reader_a receives next unread event"
        );

        events.update();

        let mut reader_d = events.get_reader();

        events.send(event_2);

        assert_eq!(
            get_events(&events, &mut reader_a),
            vec![event_2],
            "reader_a receives event created after update"
        );
        assert_eq!(
            get_events(&events, &mut reader_b),
            vec![event_1, event_2],
            "reader_b receives events created before and after update"
        );
        assert_eq!(
            get_events(&events, &mut reader_d),
            vec![event_0, event_1, event_2],
            "reader_d receives all events created before and after update"
        );

        events.update();

        assert_eq!(
            get_events(&events, &mut reader_missed),
            vec![event_2],
            "reader_missed missed events unread after two update() calls"
        );
    }

    fn get_events<E: Event + Clone>(
        events: &Events<E>,
        reader: &mut ManualEventReader<E>,
    ) -> Vec<E> {
        reader.read(events).cloned().collect::<Vec<E>>()
    }

    #[derive(Event, PartialEq, Eq, Debug)]
    struct E(usize);

    fn events_clear_and_read_impl(clear_func: impl FnOnce(&mut Events<E>)) {
        let mut events = Events::<E>::default();
        let mut reader = events.get_reader();

        assert!(reader.read(&events).next().is_none());

        events.send(E(0));
        assert_eq!(*reader.read(&events).next().unwrap(), E(0));
        assert_eq!(reader.read(&events).next(), None);

        events.send(E(1));
        clear_func(&mut events);
        assert!(reader.read(&events).next().is_none());

        events.send(E(2));
        events.update();
        events.send(E(3));

        assert!(reader.read(&events).eq([E(2), E(3)].iter()));
    }

    #[test]
    fn test_events_clear_and_read() {
        events_clear_and_read_impl(|events| events.clear());
    }

    #[test]
    fn test_events_drain_and_read() {
        events_clear_and_read_impl(|events| {
            assert!(events.drain().eq(vec![E(0), E(1)].into_iter()));
        });
    }

    #[test]
    fn test_events_extend_impl() {
        let mut events = Events::<TestEvent>::default();
        let mut reader = events.get_reader();

        events.extend(vec![TestEvent { i: 0 }, TestEvent { i: 1 }]);
        assert!(reader
            .read(&events)
            .eq([TestEvent { i: 0 }, TestEvent { i: 1 }].iter()));
    }

    #[test]
    fn test_events_empty() {
        let mut events = Events::<TestEvent>::default();
        assert!(events.is_empty());

        events.send(TestEvent { i: 0 });
        assert!(!events.is_empty());

        events.update();
        assert!(!events.is_empty());

        // events are only empty after the second call to update
        // due to double buffering.
        events.update();
        assert!(events.is_empty());
    }

    #[test]
    fn test_event_reader_len_empty() {
        let events = Events::<TestEvent>::default();
        assert_eq!(events.get_reader().len(&events), 0);
        assert!(events.get_reader().is_empty(&events));
    }

    #[test]
    fn test_event_reader_len_filled() {
        let mut events = Events::<TestEvent>::default();
        events.send(TestEvent { i: 0 });
        assert_eq!(events.get_reader().len(&events), 1);
        assert!(!events.get_reader().is_empty(&events));
    }

    #[test]
    fn test_event_iter_len_updated() {
        let mut events = Events::<TestEvent>::default();
        events.send(TestEvent { i: 0 });
        events.send(TestEvent { i: 1 });
        events.send(TestEvent { i: 2 });
        let mut reader = events.get_reader();
        let mut iter = reader.read(&events);
        assert_eq!(iter.len(), 3);
        iter.next();
        assert_eq!(iter.len(), 2);
        iter.next();
        assert_eq!(iter.len(), 1);
        iter.next();
        assert_eq!(iter.len(), 0);
    }

    #[test]
    fn test_event_reader_len_current() {
        let mut events = Events::<TestEvent>::default();
        events.send(TestEvent { i: 0 });
        let reader = events.get_reader_current();
        dbg!(&reader);
        dbg!(&events);
        assert!(reader.is_empty(&events));
        events.send(TestEvent { i: 0 });
        assert_eq!(reader.len(&events), 1);
        assert!(!reader.is_empty(&events));
    }

    #[test]
    fn test_event_reader_len_update() {
        let mut events = Events::<TestEvent>::default();
        events.send(TestEvent { i: 0 });
        events.send(TestEvent { i: 0 });
        let reader = events.get_reader();
        assert_eq!(reader.len(&events), 2);
        events.update();
        events.send(TestEvent { i: 0 });
        assert_eq!(reader.len(&events), 3);
        events.update();
        assert_eq!(reader.len(&events), 1);
        events.update();
        assert!(reader.is_empty(&events));
    }

    #[test]
    fn test_event_reader_clear() {
        use bevy_ecs::prelude::*;

        let mut world = World::new();
        let mut events = Events::<TestEvent>::default();
        events.send(TestEvent { i: 0 });
        world.insert_resource(events);

        let mut reader = IntoSystem::into_system(|mut events: EventReader<TestEvent>| -> bool {
            if !events.is_empty() {
                events.clear();
                false
            } else {
                true
            }
        });
        reader.initialize(&mut world);

        let is_empty = reader.run((), &mut world);
        assert!(!is_empty, "EventReader should not be empty");
        let is_empty = reader.run((), &mut world);
        assert!(is_empty, "EventReader should be empty");
    }

    #[test]
    fn test_update_drain() {
        let mut events = Events::<TestEvent>::default();
        let mut reader = events.get_reader();

        events.send(TestEvent { i: 0 });
        events.send(TestEvent { i: 1 });
        assert_eq!(reader.read(&events).count(), 2);

        let mut old_events = Vec::from_iter(events.update_drain());
        assert!(old_events.is_empty());

        events.send(TestEvent { i: 2 });
        assert_eq!(reader.read(&events).count(), 1);

        old_events.extend(events.update_drain());
        assert_eq!(old_events.len(), 2);

        old_events.extend(events.update_drain());
        assert_eq!(
            old_events,
            &[TestEvent { i: 0 }, TestEvent { i: 1 }, TestEvent { i: 2 }]
        );
    }

    #[allow(clippy::iter_nth_zero)]
    #[test]
    fn test_event_iter_nth() {
        use bevy_ecs::prelude::*;

        let mut world = World::new();
        world.init_resource::<Events<TestEvent>>();

        world.send_event(TestEvent { i: 0 });
        world.send_event(TestEvent { i: 1 });
        world.send_event(TestEvent { i: 2 });
        world.send_event(TestEvent { i: 3 });
        world.send_event(TestEvent { i: 4 });

        let mut schedule = Schedule::default();
        schedule.add_systems(|mut events: EventReader<TestEvent>| {
            let mut iter = events.read();

            assert_eq!(iter.next(), Some(&TestEvent { i: 0 }));
            assert_eq!(iter.nth(2), Some(&TestEvent { i: 3 }));
            assert_eq!(iter.nth(1), None);

            assert!(events.is_empty());
        });
        schedule.run(&mut world);
    }

    #[test]
    fn test_event_iter_last() {
        use bevy_ecs::prelude::*;

        let mut world = World::new();
        world.init_resource::<Events<TestEvent>>();

        let mut reader =
            IntoSystem::into_system(|mut events: EventReader<TestEvent>| -> Option<TestEvent> {
                events.read().last().copied()
            });
        reader.initialize(&mut world);

        let last = reader.run((), &mut world);
        assert!(last.is_none(), "EventReader should be empty");

        world.send_event(TestEvent { i: 0 });
        let last = reader.run((), &mut world);
        assert_eq!(last, Some(TestEvent { i: 0 }));

        world.send_event(TestEvent { i: 1 });
        world.send_event(TestEvent { i: 2 });
        world.send_event(TestEvent { i: 3 });
        let last = reader.run((), &mut world);
        assert_eq!(last, Some(TestEvent { i: 3 }));

        let last = reader.run((), &mut world);
        assert!(last.is_none(), "EventReader should be empty");
    }

    #[derive(Event, Clone, PartialEq, Debug, Default)]
    struct EmptyTestEvent;

    #[test]
    fn test_firing_empty_event() {
        let mut events = Events::<EmptyTestEvent>::default();
        events.send_default();

        let mut reader = events.get_reader();
        assert_eq!(get_events(&events, &mut reader), vec![EmptyTestEvent]);
    }

    #[test]
    fn ensure_reader_readonly() {
        fn reader_system(_: EventReader<EmptyTestEvent>) {}

        assert_is_read_only_system(reader_system);
    }

    #[test]
    fn test_send_events_ids() {
        let mut events = Events::<TestEvent>::default();
        let event_0 = TestEvent { i: 0 };
        let event_1 = TestEvent { i: 1 };
        let event_2 = TestEvent { i: 2 };

        let event_0_id = events.send(event_0);

        assert_eq!(
            events.get_event(event_0_id.id),
            Some((&event_0, event_0_id)),
            "Getting a sent event by ID should return the original event"
        );

        let mut event_ids = events.send_batch([event_1, event_2]);

        let event_id = event_ids.next().expect("Event 1 must have been sent");

        assert_eq!(
            events.get_event(event_id.id),
            Some((&event_1, event_id)),
            "Getting a sent event by ID should return the original event"
        );

        let event_id = event_ids.next().expect("Event 2 must have been sent");

        assert_eq!(
            events.get_event(event_id.id),
            Some((&event_2, event_id)),
            "Getting a sent event by ID should return the original event"
        );

        assert!(
            event_ids.next().is_none(),
            "Only sent two events; got more than two IDs"
        );
    }

    #[cfg(feature = "multi_threaded")]
    #[test]
    fn test_events_par_iter() {
        use crate::prelude::*;
        use std::sync::atomic::{AtomicUsize, Ordering};

        #[derive(Resource)]
        struct Counter(AtomicUsize);

        let mut world = World::new();
        world.init_resource::<Events<TestEvent>>();
        for _ in 0..100 {
            world.send_event(TestEvent { i: 1 });
        }
        let mut schedule = Schedule::default();
        schedule.add_systems(
            |mut events: EventReader<TestEvent>, counter: ResMut<Counter>| {
                events.par_read().for_each(|event| {
                    counter.0.fetch_add(event.i, Ordering::Relaxed);
                });
            },
        );
        world.insert_resource(Counter(AtomicUsize::new(0)));
        schedule.run(&mut world);
        let counter = world.remove_resource::<Counter>().unwrap();
        assert_eq!(counter.0.into_inner(), 100);

        world.insert_resource(Counter(AtomicUsize::new(0)));
        schedule.run(&mut world);
        let counter = world.remove_resource::<Counter>().unwrap();
        assert_eq!(counter.0.into_inner(), 0);
    }

    #[test]
    fn iter_current_update_events_iterates_over_current_events() {
        #[derive(Event, Clone)]
        struct TestEvent;

        let mut test_events = Events::<TestEvent>::default();

        // Starting empty
        assert_eq!(test_events.len(), 0);
        assert_eq!(test_events.iter_current_update_events().count(), 0);
        test_events.update();

        // Sending one event
        test_events.send(TestEvent);

        assert_eq!(test_events.len(), 1);
        assert_eq!(test_events.iter_current_update_events().count(), 1);
        test_events.update();

        // Sending two events on the next frame
        test_events.send(TestEvent);
        test_events.send(TestEvent);

        assert_eq!(test_events.len(), 3); // Events are double-buffered, so we see 1 + 2 = 3
        assert_eq!(test_events.iter_current_update_events().count(), 2);
        test_events.update();

        // Sending zero events
        assert_eq!(test_events.len(), 2); // Events are double-buffered, so we see 2 + 0 = 2
        assert_eq!(test_events.iter_current_update_events().count(), 0);
    }

    #[test]
    fn test_event_registry_can_add_and_remove_events_to_world() {
        use bevy_ecs::prelude::*;

        let mut world = World::new();
        EventRegistry::register_event::<TestEvent>(&mut world);

        let has_events = world.get_resource::<Events<TestEvent>>().is_some();

        assert!(has_events, "Should have the events resource");

        EventRegistry::deregister_events::<TestEvent>(&mut world);

        let has_events = world.get_resource::<Events<TestEvent>>().is_some();

        assert!(!has_events, "Should not have the events resource");
    }
}