bevy_ecs/identifier/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
//! A module for the unified [`Identifier`] ID struct, for use as a representation
//! of multiple types of IDs in a single, packed type. Allows for describing an [`crate::entity::Entity`],
//! or other IDs that can be packed and expressed within a `u64` sized type.
//! [`Identifier`]s cannot be created directly, only able to be converted from other
//! compatible IDs.
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::Reflect;
use self::{error::IdentifierError, kinds::IdKind, masks::IdentifierMask};
use std::{hash::Hash, num::NonZeroU32};
pub mod error;
pub(crate) mod kinds;
pub(crate) mod masks;
/// A unified identifier for all entity and similar IDs.
/// Has the same size as a `u64` integer, but the layout is split between a 32-bit low
/// segment, a 31-bit high segment, and the significant bit reserved as type flags to denote
/// entity kinds.
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
#[cfg_attr(feature = "bevy_reflect", reflect_value(Debug, Hash, PartialEq))]
// Alignment repr necessary to allow LLVM to better output
// optimised codegen for `to_bits`, `PartialEq` and `Ord`.
#[repr(C, align(8))]
pub struct Identifier {
// Do not reorder the fields here. The ordering is explicitly used by repr(C)
// to make this struct equivalent to a u64.
#[cfg(target_endian = "little")]
low: u32,
high: NonZeroU32,
#[cfg(target_endian = "big")]
low: u32,
}
impl Identifier {
/// Construct a new [`Identifier`]. The `high` parameter is masked with the
/// `kind` so to pack the high value and bit flags into the same field.
#[inline(always)]
pub const fn new(low: u32, high: u32, kind: IdKind) -> Result<Self, IdentifierError> {
// the high bits are masked to cut off the most significant bit
// as these are used for the type flags. This means that the high
// portion is only 31 bits, but this still provides 2^31
// values/kinds/ids that can be stored in this segment.
let masked_value = IdentifierMask::extract_value_from_high(high);
let packed_high = IdentifierMask::pack_kind_into_high(masked_value, kind);
// If the packed high component ends up being zero, that means that we tried
// to initialise an Identifier into an invalid state.
if packed_high == 0 {
Err(IdentifierError::InvalidIdentifier)
} else {
// SAFETY: The high value has been checked to ensure it is never
// zero.
unsafe {
Ok(Self {
low,
high: NonZeroU32::new_unchecked(packed_high),
})
}
}
}
/// Returns the value of the low segment of the [`Identifier`].
#[inline(always)]
pub const fn low(self) -> u32 {
self.low
}
/// Returns the value of the high segment of the [`Identifier`]. This
/// does not apply any masking.
#[inline(always)]
pub const fn high(self) -> NonZeroU32 {
self.high
}
/// Returns the masked value of the high segment of the [`Identifier`].
/// Does not include the flag bits.
#[inline(always)]
pub const fn masked_high(self) -> u32 {
IdentifierMask::extract_value_from_high(self.high.get())
}
/// Returns the kind of [`Identifier`] from the high segment.
#[inline(always)]
pub const fn kind(self) -> IdKind {
IdentifierMask::extract_kind_from_high(self.high.get())
}
/// Convert the [`Identifier`] into a `u64`.
#[inline(always)]
pub const fn to_bits(self) -> u64 {
IdentifierMask::pack_into_u64(self.low, self.high.get())
}
/// Convert a `u64` into an [`Identifier`].
///
/// # Panics
///
/// This method will likely panic if given `u64` values that did not come from [`Identifier::to_bits`].
#[inline(always)]
pub const fn from_bits(value: u64) -> Self {
let id = Self::try_from_bits(value);
match id {
Ok(id) => id,
Err(_) => panic!("Attempted to initialise invalid bits as an id"),
}
}
/// Convert a `u64` into an [`Identifier`].
///
/// This method is the fallible counterpart to [`Identifier::from_bits`].
#[inline(always)]
pub const fn try_from_bits(value: u64) -> Result<Self, IdentifierError> {
let high = NonZeroU32::new(IdentifierMask::get_high(value));
match high {
Some(high) => Ok(Self {
low: IdentifierMask::get_low(value),
high,
}),
None => Err(IdentifierError::InvalidIdentifier),
}
}
}
// By not short-circuiting in comparisons, we get better codegen.
// See <https://github.com/rust-lang/rust/issues/117800>
impl PartialEq for Identifier {
#[inline]
fn eq(&self, other: &Self) -> bool {
// By using `to_bits`, the codegen can be optimised out even
// further potentially. Relies on the correct alignment/field
// order of `Entity`.
self.to_bits() == other.to_bits()
}
}
impl Eq for Identifier {}
// The derive macro codegen output is not optimal and can't be optimised as well
// by the compiler. This impl resolves the issue of non-optimal codegen by relying
// on comparing against the bit representation of `Entity` instead of comparing
// the fields. The result is then LLVM is able to optimise the codegen for Entity
// far beyond what the derive macro can.
// See <https://github.com/rust-lang/rust/issues/106107>
impl PartialOrd for Identifier {
#[inline]
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
// Make use of our `Ord` impl to ensure optimal codegen output
Some(self.cmp(other))
}
}
// The derive macro codegen output is not optimal and can't be optimised as well
// by the compiler. This impl resolves the issue of non-optimal codegen by relying
// on comparing against the bit representation of `Entity` instead of comparing
// the fields. The result is then LLVM is able to optimise the codegen for Entity
// far beyond what the derive macro can.
// See <https://github.com/rust-lang/rust/issues/106107>
impl Ord for Identifier {
#[inline]
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
// This will result in better codegen for ordering comparisons, plus
// avoids pitfalls with regards to macro codegen relying on property
// position when we want to compare against the bit representation.
self.to_bits().cmp(&other.to_bits())
}
}
impl Hash for Identifier {
#[inline]
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.to_bits().hash(state);
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn id_construction() {
let id = Identifier::new(12, 55, IdKind::Entity).unwrap();
assert_eq!(id.low(), 12);
assert_eq!(id.high().get(), 55);
assert_eq!(
IdentifierMask::extract_kind_from_high(id.high().get()),
IdKind::Entity
);
}
#[test]
fn from_bits() {
// This high value should correspond to the max high() value
// and also Entity flag.
let high = 0x7FFFFFFF;
let low = 0xC;
let bits: u64 = high << u32::BITS | low;
let id = Identifier::try_from_bits(bits).unwrap();
assert_eq!(id.to_bits(), 0x7FFFFFFF0000000C);
assert_eq!(id.low(), low as u32);
assert_eq!(id.high().get(), 0x7FFFFFFF);
assert_eq!(
IdentifierMask::extract_kind_from_high(id.high().get()),
IdKind::Entity
);
}
#[rustfmt::skip]
#[test]
#[allow(clippy::nonminimal_bool)] // This is intentionally testing `lt` and `ge` as separate functions.
fn id_comparison() {
assert!(Identifier::new(123, 456, IdKind::Entity).unwrap() == Identifier::new(123, 456, IdKind::Entity).unwrap());
assert!(Identifier::new(123, 456, IdKind::Placeholder).unwrap() == Identifier::new(123, 456, IdKind::Placeholder).unwrap());
assert!(Identifier::new(123, 789, IdKind::Entity).unwrap() != Identifier::new(123, 456, IdKind::Entity).unwrap());
assert!(Identifier::new(123, 456, IdKind::Entity).unwrap() != Identifier::new(123, 789, IdKind::Entity).unwrap());
assert!(Identifier::new(123, 456, IdKind::Entity).unwrap() != Identifier::new(456, 123, IdKind::Entity).unwrap());
assert!(Identifier::new(123, 456, IdKind::Entity).unwrap() != Identifier::new(123, 456, IdKind::Placeholder).unwrap());
// ordering is by flag then high then by low
assert!(Identifier::new(123, 456, IdKind::Entity).unwrap() >= Identifier::new(123, 456, IdKind::Entity).unwrap());
assert!(Identifier::new(123, 456, IdKind::Entity).unwrap() <= Identifier::new(123, 456, IdKind::Entity).unwrap());
assert!(!(Identifier::new(123, 456, IdKind::Entity).unwrap() < Identifier::new(123, 456, IdKind::Entity).unwrap()));
assert!(!(Identifier::new(123, 456, IdKind::Entity).unwrap() > Identifier::new(123, 456, IdKind::Entity).unwrap()));
assert!(Identifier::new(9, 1, IdKind::Entity).unwrap() < Identifier::new(1, 9, IdKind::Entity).unwrap());
assert!(Identifier::new(1, 9, IdKind::Entity).unwrap() > Identifier::new(9, 1, IdKind::Entity).unwrap());
assert!(Identifier::new(9, 1, IdKind::Entity).unwrap() < Identifier::new(9, 1, IdKind::Placeholder).unwrap());
assert!(Identifier::new(1, 9, IdKind::Placeholder).unwrap() > Identifier::new(1, 9, IdKind::Entity).unwrap());
assert!(Identifier::new(1, 1, IdKind::Entity).unwrap() < Identifier::new(2, 1, IdKind::Entity).unwrap());
assert!(Identifier::new(1, 1, IdKind::Entity).unwrap() <= Identifier::new(2, 1, IdKind::Entity).unwrap());
assert!(Identifier::new(2, 2, IdKind::Entity).unwrap() > Identifier::new(1, 2, IdKind::Entity).unwrap());
assert!(Identifier::new(2, 2, IdKind::Entity).unwrap() >= Identifier::new(1, 2, IdKind::Entity).unwrap());
}
}