bevy_ecs/identifier/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
//! A module for the unified [`Identifier`] ID struct, for use as a representation
//! of multiple types of IDs in a single, packed type. Allows for describing an [`crate::entity::Entity`],
//! or other IDs that can be packed and expressed within a `u64` sized type.
//! [`Identifier`]s cannot be created directly, only able to be converted from other
//! compatible IDs.
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::Reflect;

use self::{error::IdentifierError, kinds::IdKind, masks::IdentifierMask};
use std::{hash::Hash, num::NonZeroU32};

pub mod error;
pub(crate) mod kinds;
pub(crate) mod masks;

/// A unified identifier for all entity and similar IDs.
/// Has the same size as a `u64` integer, but the layout is split between a 32-bit low
/// segment, a 31-bit high segment, and the significant bit reserved as type flags to denote
/// entity kinds.
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
#[cfg_attr(feature = "bevy_reflect", reflect_value(Debug, Hash, PartialEq))]
// Alignment repr necessary to allow LLVM to better output
// optimised codegen for `to_bits`, `PartialEq` and `Ord`.
#[repr(C, align(8))]
pub struct Identifier {
    // Do not reorder the fields here. The ordering is explicitly used by repr(C)
    // to make this struct equivalent to a u64.
    #[cfg(target_endian = "little")]
    low: u32,
    high: NonZeroU32,
    #[cfg(target_endian = "big")]
    low: u32,
}

impl Identifier {
    /// Construct a new [`Identifier`]. The `high` parameter is masked with the
    /// `kind` so to pack the high value and bit flags into the same field.
    #[inline(always)]
    pub const fn new(low: u32, high: u32, kind: IdKind) -> Result<Self, IdentifierError> {
        // the high bits are masked to cut off the most significant bit
        // as these are used for the type flags. This means that the high
        // portion is only 31 bits, but this still provides 2^31
        // values/kinds/ids that can be stored in this segment.
        let masked_value = IdentifierMask::extract_value_from_high(high);

        let packed_high = IdentifierMask::pack_kind_into_high(masked_value, kind);

        // If the packed high component ends up being zero, that means that we tried
        // to initialise an Identifier into an invalid state.
        if packed_high == 0 {
            Err(IdentifierError::InvalidIdentifier)
        } else {
            // SAFETY: The high value has been checked to ensure it is never
            // zero.
            unsafe {
                Ok(Self {
                    low,
                    high: NonZeroU32::new_unchecked(packed_high),
                })
            }
        }
    }

    /// Returns the value of the low segment of the [`Identifier`].
    #[inline(always)]
    pub const fn low(self) -> u32 {
        self.low
    }

    /// Returns the value of the high segment of the [`Identifier`]. This
    /// does not apply any masking.
    #[inline(always)]
    pub const fn high(self) -> NonZeroU32 {
        self.high
    }

    /// Returns the masked value of the high segment of the [`Identifier`].
    /// Does not include the flag bits.
    #[inline(always)]
    pub const fn masked_high(self) -> u32 {
        IdentifierMask::extract_value_from_high(self.high.get())
    }

    /// Returns the kind of [`Identifier`] from the high segment.
    #[inline(always)]
    pub const fn kind(self) -> IdKind {
        IdentifierMask::extract_kind_from_high(self.high.get())
    }

    /// Convert the [`Identifier`] into a `u64`.
    #[inline(always)]
    pub const fn to_bits(self) -> u64 {
        IdentifierMask::pack_into_u64(self.low, self.high.get())
    }

    /// Convert a `u64` into an [`Identifier`].
    ///
    /// # Panics
    ///
    /// This method will likely panic if given `u64` values that did not come from [`Identifier::to_bits`].
    #[inline(always)]
    pub const fn from_bits(value: u64) -> Self {
        let id = Self::try_from_bits(value);

        match id {
            Ok(id) => id,
            Err(_) => panic!("Attempted to initialise invalid bits as an id"),
        }
    }

    /// Convert a `u64` into an [`Identifier`].
    ///
    /// This method is the fallible counterpart to [`Identifier::from_bits`].
    #[inline(always)]
    pub const fn try_from_bits(value: u64) -> Result<Self, IdentifierError> {
        let high = NonZeroU32::new(IdentifierMask::get_high(value));

        match high {
            Some(high) => Ok(Self {
                low: IdentifierMask::get_low(value),
                high,
            }),
            None => Err(IdentifierError::InvalidIdentifier),
        }
    }
}

// By not short-circuiting in comparisons, we get better codegen.
// See <https://github.com/rust-lang/rust/issues/117800>
impl PartialEq for Identifier {
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        // By using `to_bits`, the codegen can be optimised out even
        // further potentially. Relies on the correct alignment/field
        // order of `Entity`.
        self.to_bits() == other.to_bits()
    }
}

impl Eq for Identifier {}

// The derive macro codegen output is not optimal and can't be optimised as well
// by the compiler. This impl resolves the issue of non-optimal codegen by relying
// on comparing against the bit representation of `Entity` instead of comparing
// the fields. The result is then LLVM is able to optimise the codegen for Entity
// far beyond what the derive macro can.
// See <https://github.com/rust-lang/rust/issues/106107>
impl PartialOrd for Identifier {
    #[inline]
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        // Make use of our `Ord` impl to ensure optimal codegen output
        Some(self.cmp(other))
    }
}

// The derive macro codegen output is not optimal and can't be optimised as well
// by the compiler. This impl resolves the issue of non-optimal codegen by relying
// on comparing against the bit representation of `Entity` instead of comparing
// the fields. The result is then LLVM is able to optimise the codegen for Entity
// far beyond what the derive macro can.
// See <https://github.com/rust-lang/rust/issues/106107>
impl Ord for Identifier {
    #[inline]
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        // This will result in better codegen for ordering comparisons, plus
        // avoids pitfalls with regards to macro codegen relying on property
        // position when we want to compare against the bit representation.
        self.to_bits().cmp(&other.to_bits())
    }
}

impl Hash for Identifier {
    #[inline]
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        self.to_bits().hash(state);
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn id_construction() {
        let id = Identifier::new(12, 55, IdKind::Entity).unwrap();

        assert_eq!(id.low(), 12);
        assert_eq!(id.high().get(), 55);
        assert_eq!(
            IdentifierMask::extract_kind_from_high(id.high().get()),
            IdKind::Entity
        );
    }

    #[test]
    fn from_bits() {
        // This high value should correspond to the max high() value
        // and also Entity flag.
        let high = 0x7FFFFFFF;
        let low = 0xC;
        let bits: u64 = high << u32::BITS | low;

        let id = Identifier::try_from_bits(bits).unwrap();

        assert_eq!(id.to_bits(), 0x7FFFFFFF0000000C);
        assert_eq!(id.low(), low as u32);
        assert_eq!(id.high().get(), 0x7FFFFFFF);
        assert_eq!(
            IdentifierMask::extract_kind_from_high(id.high().get()),
            IdKind::Entity
        );
    }

    #[rustfmt::skip]
    #[test]
    #[allow(clippy::nonminimal_bool)] // This is intentionally testing `lt` and `ge` as separate functions.
    fn id_comparison() {
        assert!(Identifier::new(123, 456, IdKind::Entity).unwrap() == Identifier::new(123, 456, IdKind::Entity).unwrap());
        assert!(Identifier::new(123, 456, IdKind::Placeholder).unwrap() == Identifier::new(123, 456, IdKind::Placeholder).unwrap());
        assert!(Identifier::new(123, 789, IdKind::Entity).unwrap() != Identifier::new(123, 456, IdKind::Entity).unwrap());
        assert!(Identifier::new(123, 456, IdKind::Entity).unwrap() != Identifier::new(123, 789, IdKind::Entity).unwrap());
        assert!(Identifier::new(123, 456, IdKind::Entity).unwrap() != Identifier::new(456, 123, IdKind::Entity).unwrap());
        assert!(Identifier::new(123, 456, IdKind::Entity).unwrap() != Identifier::new(123, 456, IdKind::Placeholder).unwrap());

        // ordering is by flag then high then by low

        assert!(Identifier::new(123, 456, IdKind::Entity).unwrap() >= Identifier::new(123, 456, IdKind::Entity).unwrap());
        assert!(Identifier::new(123, 456, IdKind::Entity).unwrap() <= Identifier::new(123, 456, IdKind::Entity).unwrap());
        assert!(!(Identifier::new(123, 456, IdKind::Entity).unwrap() < Identifier::new(123, 456, IdKind::Entity).unwrap()));
        assert!(!(Identifier::new(123, 456, IdKind::Entity).unwrap() > Identifier::new(123, 456, IdKind::Entity).unwrap()));

        assert!(Identifier::new(9, 1, IdKind::Entity).unwrap() < Identifier::new(1, 9, IdKind::Entity).unwrap());
        assert!(Identifier::new(1, 9, IdKind::Entity).unwrap() > Identifier::new(9, 1, IdKind::Entity).unwrap());

        assert!(Identifier::new(9, 1, IdKind::Entity).unwrap() < Identifier::new(9, 1, IdKind::Placeholder).unwrap());
        assert!(Identifier::new(1, 9, IdKind::Placeholder).unwrap() > Identifier::new(1, 9, IdKind::Entity).unwrap());

        assert!(Identifier::new(1, 1, IdKind::Entity).unwrap() < Identifier::new(2, 1, IdKind::Entity).unwrap());
        assert!(Identifier::new(1, 1, IdKind::Entity).unwrap() <= Identifier::new(2, 1, IdKind::Entity).unwrap());
        assert!(Identifier::new(2, 2, IdKind::Entity).unwrap() > Identifier::new(1, 2, IdKind::Entity).unwrap());
        assert!(Identifier::new(2, 2, IdKind::Entity).unwrap() >= Identifier::new(1, 2, IdKind::Entity).unwrap());
    }
}