bevy_ecs/observer/
runner.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
use crate::{
    component::{ComponentHooks, ComponentId, StorageType},
    observer::{ObserverDescriptor, ObserverTrigger},
    prelude::*,
    query::DebugCheckedUnwrap,
    system::{IntoObserverSystem, ObserverSystem},
    world::DeferredWorld,
};
use bevy_ptr::PtrMut;

/// Contains [`Observer`] information. This defines how a given observer behaves. It is the
/// "source of truth" for a given observer entity's behavior.
pub struct ObserverState {
    pub(crate) descriptor: ObserverDescriptor,
    pub(crate) runner: ObserverRunner,
    pub(crate) last_trigger_id: u32,
    pub(crate) despawned_watched_entities: u32,
}

impl Default for ObserverState {
    fn default() -> Self {
        Self {
            runner: |_, _, _| {},
            last_trigger_id: 0,
            despawned_watched_entities: 0,
            descriptor: Default::default(),
        }
    }
}

impl ObserverState {
    /// Observe the given `event`. This will cause the [`Observer`] to run whenever an event with the given [`ComponentId`]
    /// is triggered.
    pub fn with_event(mut self, event: ComponentId) -> Self {
        self.descriptor.events.push(event);
        self
    }

    /// Observe the given event list. This will cause the [`Observer`] to run whenever an event with any of the given [`ComponentId`]s
    /// is triggered.
    pub fn with_events(mut self, events: impl IntoIterator<Item = ComponentId>) -> Self {
        self.descriptor.events.extend(events);
        self
    }

    /// Observe the given [`Entity`] list. This will cause the [`Observer`] to run whenever the [`Event`] is triggered
    /// for any [`Entity`] target in the list.
    pub fn with_entities(mut self, entities: impl IntoIterator<Item = Entity>) -> Self {
        self.descriptor.entities.extend(entities);
        self
    }

    /// Observe the given [`ComponentId`] list. This will cause the [`Observer`] to run whenever the [`Event`] is triggered
    /// for any [`ComponentId`] target in the list.
    pub fn with_components(mut self, components: impl IntoIterator<Item = ComponentId>) -> Self {
        self.descriptor.components.extend(components);
        self
    }
}

impl Component for ObserverState {
    const STORAGE_TYPE: StorageType = StorageType::SparseSet;

    fn register_component_hooks(hooks: &mut ComponentHooks) {
        hooks.on_add(|mut world, entity, _| {
            world.commands().add(move |world: &mut World| {
                world.register_observer(entity);
            });
        });
        hooks.on_remove(|mut world, entity, _| {
            let descriptor = std::mem::take(
                &mut world
                    .entity_mut(entity)
                    .get_mut::<ObserverState>()
                    .unwrap()
                    .as_mut()
                    .descriptor,
            );
            world.commands().add(move |world: &mut World| {
                world.unregister_observer(entity, descriptor);
            });
        });
    }
}

/// Type for function that is run when an observer is triggered.
/// Typically refers to the default runner that runs the system stored in the associated [`ObserverSystemComponent`],
/// but can be overridden for custom behaviour.
pub type ObserverRunner = fn(DeferredWorld, ObserverTrigger, PtrMut);

/// An [`Observer`] system. Add this [`Component`] to an [`Entity`] to turn it into an "observer".
///
/// Observers listen for a "trigger" of a specific [`Event`]. Events are triggered by calling [`World::trigger`] or [`World::trigger_targets`].
///
/// Note that "buffered" events sent using [`EventReader`] and [`EventWriter`] are _not_ automatically triggered. They must be triggered at a specific
/// point in the schedule.
///
/// # Usage
///
/// The simplest usage
/// of the observer pattern looks like this:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # let mut world = World::default();
/// #[derive(Event)]
/// struct Speak {
///     message: String,
/// }
///
/// world.observe(|trigger: Trigger<Speak>| {
///     println!("{}", trigger.event().message);
/// });
///
/// // Observers currently require a flush() to be registered. In the context of schedules,
/// // this will generally be done for you.
/// world.flush();
///
/// world.trigger(Speak {
///     message: "Hello!".into(),
/// });
/// ```
///
/// Notice that we used [`World::observe`]. This is just a shorthand for spawning an [`Observer`] manually:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # let mut world = World::default();
/// # #[derive(Event)]
/// # struct Speak;
/// // These are functionally the same:
/// world.observe(|trigger: Trigger<Speak>| {});
/// world.spawn(Observer::new(|trigger: Trigger<Speak>| {}));
/// ```
///
/// Observers are systems. They can access arbitrary [`World`] data by adding [`SystemParam`]s:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # let mut world = World::default();
/// # #[derive(Event)]
/// # struct PrintNames;
/// # #[derive(Component, Debug)]
/// # struct Name;
/// world.observe(|trigger: Trigger<PrintNames>, names: Query<&Name>| {
///     for name in &names {
///         println!("{name:?}");
///     }
/// });
/// ```
///
/// Note that [`Trigger`] must always be the first parameter.
///
/// You can also add [`Commands`], which means you can spawn new entities, insert new components, etc:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # let mut world = World::default();
/// # #[derive(Event)]
/// # struct SpawnThing;
/// # #[derive(Component, Debug)]
/// # struct Thing;
/// world.observe(|trigger: Trigger<SpawnThing>, mut commands: Commands| {
///     commands.spawn(Thing);
/// });
/// ```
///
/// Observers can also trigger new events:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # let mut world = World::default();
/// # #[derive(Event)]
/// # struct A;
/// # #[derive(Event)]
/// # struct B;
/// world.observe(|trigger: Trigger<A>, mut commands: Commands| {
///     commands.trigger(B);
/// });
/// ```
///
/// When the commands are flushed (including these "nested triggers") they will be
/// recursively evaluated until there are no commands left, meaning nested triggers all
/// evaluate at the same time!
///
/// Events can be triggered for entities, which will be passed to the [`Observer`]:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # let mut world = World::default();
/// # let entity = world.spawn_empty().id();
/// #[derive(Event)]
/// struct Explode;
///
/// world.observe(|trigger: Trigger<Explode>, mut commands: Commands| {
///     println!("Entity {:?} goes BOOM!", trigger.entity());
///     commands.entity(trigger.entity()).despawn();
/// });
///
/// world.flush();
///
/// world.trigger_targets(Explode, entity);
/// ```
///
/// You can trigger multiple entities at once:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # let mut world = World::default();
/// # let e1 = world.spawn_empty().id();
/// # let e2 = world.spawn_empty().id();
/// # #[derive(Event)]
/// # struct Explode;
/// world.trigger_targets(Explode, [e1, e2]);
/// ```
///
/// Observers can also watch _specific_ entities, which enables you to assign entity-specific logic:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # #[derive(Component, Debug)]
/// # struct Name(String);
/// # let mut world = World::default();
/// # let e1 = world.spawn_empty().id();
/// # let e2 = world.spawn_empty().id();
/// # #[derive(Event)]
/// # struct Explode;
/// world.entity_mut(e1).observe(|trigger: Trigger<Explode>, mut commands: Commands| {
///     println!("Boom!");
///     commands.entity(trigger.entity()).despawn();
/// });
///
/// world.entity_mut(e2).observe(|trigger: Trigger<Explode>, mut commands: Commands| {
///     println!("The explosion fizzles! This entity is immune!");
/// });
/// ```
///
/// If all entities watched by a given [`Observer`] are despawned, the [`Observer`] entity will also be despawned.
/// This protects against observer "garbage" building up over time.
///
/// The examples above calling [`EntityWorldMut::observe`] to add entity-specific observer logic are (once again)
/// just shorthand for spawning an [`Observer`] directly:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # let mut world = World::default();
/// # let entity = world.spawn_empty().id();
/// # #[derive(Event)]
/// # struct Explode;
/// let mut observer = Observer::new(|trigger: Trigger<Explode>| {});
/// observer.watch_entity(entity);
/// world.spawn(observer);
/// ```
///
/// Note that the [`Observer`] component is not added to the entity it is observing. Observers should always be their own entities!
///
/// You can call [`Observer::watch_entity`] more than once, which allows you to watch multiple entities with the same [`Observer`].
///
/// When first added, [`Observer`] will also create an [`ObserverState`] component, which registers the observer with the [`World`] and
/// serves as the "source of truth" of the observer.
///
/// [`SystemParam`]: crate::system::SystemParam
pub struct Observer<T: 'static, B: Bundle> {
    system: BoxedObserverSystem<T, B>,
    descriptor: ObserverDescriptor,
}

impl<E: Event, B: Bundle> Observer<E, B> {
    /// Creates a new [`Observer`], which defaults to a "global" observer. This means it will run whenever the event `E` is triggered
    /// for _any_ entity (or no entity).
    pub fn new<M>(system: impl IntoObserverSystem<E, B, M>) -> Self {
        Self {
            system: Box::new(IntoObserverSystem::into_system(system)),
            descriptor: Default::default(),
        }
    }

    /// Observe the given `entity`. This will cause the [`Observer`] to run whenever the [`Event`] is triggered
    /// for the `entity`.
    pub fn with_entity(mut self, entity: Entity) -> Self {
        self.descriptor.entities.push(entity);
        self
    }

    /// Observe the given `entity`. This will cause the [`Observer`] to run whenever the [`Event`] is triggered
    /// for the `entity`.
    /// Note that if this is called _after_ an [`Observer`] is spawned, it will produce no effects.
    pub fn watch_entity(&mut self, entity: Entity) {
        self.descriptor.entities.push(entity);
    }

    /// Observe the given `component`. This will cause the [`Observer`] to run whenever the [`Event`] is triggered
    /// with the given component target.
    pub fn with_component(mut self, component: ComponentId) -> Self {
        self.descriptor.components.push(component);
        self
    }

    /// Observe the given `event`. This will cause the [`Observer`] to run whenever an event with the given [`ComponentId`]
    /// is triggered.
    /// # Safety
    /// The type of the `event` [`ComponentId`] _must_ match the actual value
    /// of the event passed into the observer system.
    pub unsafe fn with_event(mut self, event: ComponentId) -> Self {
        self.descriptor.events.push(event);
        self
    }
}

impl<E: Event, B: Bundle> Component for Observer<E, B> {
    const STORAGE_TYPE: StorageType = StorageType::SparseSet;
    fn register_component_hooks(hooks: &mut ComponentHooks) {
        hooks.on_add(|mut world, entity, _| {
            world.commands().add(move |world: &mut World| {
                let event_type = world.init_component::<E>();
                let mut components = Vec::new();
                B::component_ids(&mut world.components, &mut world.storages, &mut |id| {
                    components.push(id);
                });
                let mut descriptor = ObserverDescriptor {
                    events: vec![event_type],
                    components,
                    ..Default::default()
                };

                // Initialize System
                let system: *mut dyn ObserverSystem<E, B> =
                    if let Some(mut observe) = world.get_mut::<Self>(entity) {
                        descriptor.merge(&observe.descriptor);
                        &mut *observe.system
                    } else {
                        return;
                    };
                // SAFETY: World reference is exclusive and initialize does not touch system, so references do not alias
                unsafe {
                    (*system).initialize(world);
                }

                {
                    let mut entity = world.entity_mut(entity);
                    if let crate::world::Entry::Vacant(entry) = entity.entry::<ObserverState>() {
                        entry.insert(ObserverState {
                            descriptor,
                            runner: observer_system_runner::<E, B>,
                            ..Default::default()
                        });
                    }
                }
            });
        });
    }
}

/// Equivalent to [`BoxedSystem`](crate::system::BoxedSystem) for [`ObserverSystem`].
pub type BoxedObserverSystem<E = (), B = ()> = Box<dyn ObserverSystem<E, B>>;

fn observer_system_runner<E: Event, B: Bundle>(
    mut world: DeferredWorld,
    observer_trigger: ObserverTrigger,
    ptr: PtrMut,
) {
    let world = world.as_unsafe_world_cell();
    // SAFETY: Observer was triggered so must still exist in world
    let observer_cell = unsafe {
        world
            .get_entity(observer_trigger.observer)
            .debug_checked_unwrap()
    };
    // SAFETY: Observer was triggered so must have an `ObserverState`
    let mut state = unsafe {
        observer_cell
            .get_mut::<ObserverState>()
            .debug_checked_unwrap()
    };

    // TODO: Move this check into the observer cache to avoid dynamic dispatch
    // SAFETY: We only access world metadata
    let last_trigger = unsafe { world.world_metadata() }.last_trigger_id();
    if state.last_trigger_id == last_trigger {
        return;
    }
    state.last_trigger_id = last_trigger;

    // SAFETY: Caller ensures `ptr` is castable to `&mut T`
    let trigger: Trigger<E, B> = Trigger::new(unsafe { ptr.deref_mut() }, observer_trigger);
    // SAFETY: the static lifetime is encapsulated in Trigger / cannot leak out.
    // Additionally, IntoObserverSystem is only implemented for functions starting
    // with for<'a> Trigger<'a>, meaning users cannot specify Trigger<'static> manually,
    // allowing the Trigger<'static> to be moved outside of the context of the system.
    // This transmute is obviously not ideal, but it is safe. Ideally we can remove the
    // static constraint from ObserverSystem, but so far we have not found a way.
    let trigger: Trigger<'static, E, B> = unsafe { std::mem::transmute(trigger) };
    // SAFETY: Observer was triggered so must have an `ObserverSystemComponent`
    let system = unsafe {
        &mut observer_cell
            .get_mut::<Observer<E, B>>()
            .debug_checked_unwrap()
            .system
    };

    system.update_archetype_component_access(world);

    // SAFETY:
    // - `update_archetype_component_access` was just called
    // - there are no outstanding references to world except a private component
    // - system is an `ObserverSystem` so won't mutate world beyond the access of a `DeferredWorld`
    // - system is the same type erased system from above
    unsafe {
        system.run_unsafe(trigger, world);
        system.queue_deferred(world.into_deferred());
    }
}