bevy_ecs/query/
builder.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
use core::marker::PhantomData;

use crate::{
    component::{ComponentId, StorageType},
    prelude::*,
};

use super::{FilteredAccess, QueryData, QueryFilter};

/// Builder struct to create [`QueryState`] instances at runtime.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #
/// # #[derive(Component)]
/// # struct A;
/// #
/// # #[derive(Component)]
/// # struct B;
/// #
/// # #[derive(Component)]
/// # struct C;
/// #
/// let mut world = World::new();
/// let entity_a = world.spawn((A, B)).id();
/// let entity_b = world.spawn((A, C)).id();
///
/// // Instantiate the builder using the type signature of the iterator you will consume
/// let mut query = QueryBuilder::<(Entity, &B)>::new(&mut world)
/// // Add additional terms through builder methods
///     .with::<A>()
///     .without::<C>()
///     .build();
///
/// // Consume the QueryState
/// let (entity, b) = query.single(&world);
/// ```
pub struct QueryBuilder<'w, D: QueryData = (), F: QueryFilter = ()> {
    access: FilteredAccess<ComponentId>,
    world: &'w mut World,
    or: bool,
    first: bool,
    _marker: PhantomData<(D, F)>,
}

impl<'w, D: QueryData, F: QueryFilter> QueryBuilder<'w, D, F> {
    /// Creates a new builder with the accesses required for `Q` and `F`
    pub fn new(world: &'w mut World) -> Self {
        let fetch_state = D::init_state(world);
        let filter_state = F::init_state(world);

        let mut access = FilteredAccess::default();
        D::update_component_access(&fetch_state, &mut access);

        // Use a temporary empty FilteredAccess for filters. This prevents them from conflicting with the
        // main Query's `fetch_state` access. Filters are allowed to conflict with the main query fetch
        // because they are evaluated *before* a specific reference is constructed.
        let mut filter_access = FilteredAccess::default();
        F::update_component_access(&filter_state, &mut filter_access);

        // Merge the temporary filter access with the main access. This ensures that filter access is
        // properly considered in a global "cross-query" context (both within systems and across systems).
        access.extend(&filter_access);

        Self {
            access,
            world,
            or: false,
            first: false,
            _marker: PhantomData,
        }
    }

    pub(super) fn is_dense(&self) -> bool {
        // Note: `component_id` comes from the user in safe code, so we cannot trust it to
        // exist. If it doesn't exist we pessimistically assume it's sparse.
        let is_dense = |component_id| {
            self.world()
                .components()
                .get_info(component_id)
                .map_or(false, |info| info.storage_type() == StorageType::Table)
        };

        #[allow(deprecated)]
        let (mut component_reads_and_writes, component_reads_and_writes_inverted) =
            self.access.access().component_reads_and_writes();
        if component_reads_and_writes_inverted {
            return false;
        }

        component_reads_and_writes.all(is_dense)
            && self.access.access().archetypal().all(is_dense)
            && !self.access.access().has_read_all_components()
            && self.access.with_filters().all(is_dense)
            && self.access.without_filters().all(is_dense)
    }

    /// Returns a reference to the world passed to [`Self::new`].
    pub fn world(&self) -> &World {
        self.world
    }

    /// Returns a mutable reference to the world passed to [`Self::new`].
    pub fn world_mut(&mut self) -> &mut World {
        self.world
    }

    /// Adds access to self's underlying [`FilteredAccess`] respecting [`Self::or`] and [`Self::and`]
    pub fn extend_access(&mut self, mut access: FilteredAccess<ComponentId>) {
        if self.or {
            if self.first {
                access.required.clear();
                self.access.extend(&access);
                self.first = false;
            } else {
                self.access.append_or(&access);
            }
        } else {
            self.access.extend(&access);
        }
    }

    /// Adds accesses required for `T` to self.
    pub fn data<T: QueryData>(&mut self) -> &mut Self {
        let state = T::init_state(self.world);
        let mut access = FilteredAccess::default();
        T::update_component_access(&state, &mut access);
        self.extend_access(access);
        self
    }

    /// Adds filter from `T` to self.
    pub fn filter<T: QueryFilter>(&mut self) -> &mut Self {
        let state = T::init_state(self.world);
        let mut access = FilteredAccess::default();
        T::update_component_access(&state, &mut access);
        self.extend_access(access);
        self
    }

    /// Adds [`With<T>`] to the [`FilteredAccess`] of self.
    pub fn with<T: Component>(&mut self) -> &mut Self {
        self.filter::<With<T>>();
        self
    }

    /// Adds [`With<T>`] to the [`FilteredAccess`] of self from a runtime [`ComponentId`].
    pub fn with_id(&mut self, id: ComponentId) -> &mut Self {
        let mut access = FilteredAccess::default();
        access.and_with(id);
        self.extend_access(access);
        self
    }

    /// Adds [`Without<T>`] to the [`FilteredAccess`] of self.
    pub fn without<T: Component>(&mut self) -> &mut Self {
        self.filter::<Without<T>>();
        self
    }

    /// Adds [`Without<T>`] to the [`FilteredAccess`] of self from a runtime [`ComponentId`].
    pub fn without_id(&mut self, id: ComponentId) -> &mut Self {
        let mut access = FilteredAccess::default();
        access.and_without(id);
        self.extend_access(access);
        self
    }

    /// Adds `&T` to the [`FilteredAccess`] of self.
    pub fn ref_id(&mut self, id: ComponentId) -> &mut Self {
        self.with_id(id);
        self.access.add_component_read(id);
        self
    }

    /// Adds `&mut T` to the [`FilteredAccess`] of self.
    pub fn mut_id(&mut self, id: ComponentId) -> &mut Self {
        self.with_id(id);
        self.access.add_component_write(id);
        self
    }

    /// Takes a function over mutable access to a [`QueryBuilder`], calls that function
    /// on an empty builder and then adds all accesses from that builder to self as optional.
    pub fn optional(&mut self, f: impl Fn(&mut QueryBuilder)) -> &mut Self {
        let mut builder = QueryBuilder::new(self.world);
        f(&mut builder);
        self.access.extend_access(builder.access());
        self
    }

    /// Takes a function over mutable access to a [`QueryBuilder`], calls that function
    /// on an empty builder and then adds all accesses from that builder to self.
    ///
    /// Primarily used when inside a [`Self::or`] closure to group several terms.
    pub fn and(&mut self, f: impl Fn(&mut QueryBuilder)) -> &mut Self {
        let mut builder = QueryBuilder::new(self.world);
        f(&mut builder);
        let access = builder.access().clone();
        self.extend_access(access);
        self
    }

    /// Takes a function over mutable access to a [`QueryBuilder`], calls that function
    /// on an empty builder, all accesses added to that builder will become terms in an or expression.
    ///
    /// ```
    /// # use bevy_ecs::prelude::*;
    /// #
    /// # #[derive(Component)]
    /// # struct A;
    /// #
    /// # #[derive(Component)]
    /// # struct B;
    /// #
    /// # let mut world = World::new();
    /// #
    /// QueryBuilder::<Entity>::new(&mut world).or(|builder| {
    ///     builder.with::<A>();
    ///     builder.with::<B>();
    /// });
    /// // is equivalent to
    /// QueryBuilder::<Entity>::new(&mut world).filter::<Or<(With<A>, With<B>)>>();
    /// ```
    pub fn or(&mut self, f: impl Fn(&mut QueryBuilder)) -> &mut Self {
        let mut builder = QueryBuilder::new(self.world);
        builder.or = true;
        builder.first = true;
        f(&mut builder);
        self.access.extend(builder.access());
        self
    }

    /// Returns a reference to the [`FilteredAccess`] that will be provided to the built [`Query`].
    pub fn access(&self) -> &FilteredAccess<ComponentId> {
        &self.access
    }

    /// Transmute the existing builder adding required accesses.
    /// This will maintain all existing accesses.
    ///
    /// If including a filter type see [`Self::transmute_filtered`]
    pub fn transmute<NewD: QueryData>(&mut self) -> &mut QueryBuilder<'w, NewD> {
        self.transmute_filtered::<NewD, ()>()
    }

    /// Transmute the existing builder adding required accesses.
    /// This will maintain all existing accesses.
    pub fn transmute_filtered<NewD: QueryData, NewF: QueryFilter>(
        &mut self,
    ) -> &mut QueryBuilder<'w, NewD, NewF> {
        let mut fetch_state = NewD::init_state(self.world);
        let filter_state = NewF::init_state(self.world);

        NewD::set_access(&mut fetch_state, &self.access);

        let mut access = FilteredAccess::default();
        NewD::update_component_access(&fetch_state, &mut access);
        NewF::update_component_access(&filter_state, &mut access);

        self.extend_access(access);
        // SAFETY:
        // - We have included all required accesses for NewQ and NewF
        // - The layout of all QueryBuilder instances is the same
        unsafe { core::mem::transmute(self) }
    }

    /// Create a [`QueryState`] with the accesses of the builder.
    ///
    /// Takes `&mut self` to access the inner world reference while initializing
    /// state for the new [`QueryState`]
    pub fn build(&mut self) -> QueryState<D, F> {
        QueryState::<D, F>::from_builder(self)
    }
}

#[cfg(test)]
mod tests {
    use crate as bevy_ecs;
    use crate::{prelude::*, world::FilteredEntityRef};

    #[derive(Component, PartialEq, Debug)]
    struct A(usize);

    #[derive(Component, PartialEq, Debug)]
    struct B(usize);

    #[derive(Component, PartialEq, Debug)]
    struct C(usize);

    #[test]
    fn builder_with_without_static() {
        let mut world = World::new();
        let entity_a = world.spawn((A(0), B(0))).id();
        let entity_b = world.spawn((A(0), C(0))).id();

        let mut query_a = QueryBuilder::<Entity>::new(&mut world)
            .with::<A>()
            .without::<C>()
            .build();
        assert_eq!(entity_a, query_a.single(&world));

        let mut query_b = QueryBuilder::<Entity>::new(&mut world)
            .with::<A>()
            .without::<B>()
            .build();
        assert_eq!(entity_b, query_b.single(&world));
    }

    #[test]
    fn builder_with_without_dynamic() {
        let mut world = World::new();
        let entity_a = world.spawn((A(0), B(0))).id();
        let entity_b = world.spawn((A(0), C(0))).id();
        let component_id_a = world.register_component::<A>();
        let component_id_b = world.register_component::<B>();
        let component_id_c = world.register_component::<C>();

        let mut query_a = QueryBuilder::<Entity>::new(&mut world)
            .with_id(component_id_a)
            .without_id(component_id_c)
            .build();
        assert_eq!(entity_a, query_a.single(&world));

        let mut query_b = QueryBuilder::<Entity>::new(&mut world)
            .with_id(component_id_a)
            .without_id(component_id_b)
            .build();
        assert_eq!(entity_b, query_b.single(&world));
    }

    #[test]
    fn builder_or() {
        let mut world = World::new();
        world.spawn((A(0), B(0)));
        world.spawn(B(0));
        world.spawn(C(0));

        let mut query_a = QueryBuilder::<Entity>::new(&mut world)
            .or(|builder| {
                builder.with::<A>();
                builder.with::<B>();
            })
            .build();
        assert_eq!(2, query_a.iter(&world).count());

        let mut query_b = QueryBuilder::<Entity>::new(&mut world)
            .or(|builder| {
                builder.with::<A>();
                builder.without::<B>();
            })
            .build();
        dbg!(&query_b.component_access);
        assert_eq!(2, query_b.iter(&world).count());

        let mut query_c = QueryBuilder::<Entity>::new(&mut world)
            .or(|builder| {
                builder.with::<A>();
                builder.with::<B>();
                builder.with::<C>();
            })
            .build();
        assert_eq!(3, query_c.iter(&world).count());
    }

    #[test]
    fn builder_transmute() {
        let mut world = World::new();
        world.spawn(A(0));
        world.spawn((A(1), B(0)));
        let mut query = QueryBuilder::<()>::new(&mut world)
            .with::<B>()
            .transmute::<&A>()
            .build();

        query.iter(&world).for_each(|a| assert_eq!(a.0, 1));
    }

    #[test]
    fn builder_static_components() {
        let mut world = World::new();
        let entity = world.spawn((A(0), B(1))).id();

        let mut query = QueryBuilder::<FilteredEntityRef>::new(&mut world)
            .data::<&A>()
            .data::<&B>()
            .build();

        let entity_ref = query.single(&world);

        assert_eq!(entity, entity_ref.id());

        let a = entity_ref.get::<A>().unwrap();
        let b = entity_ref.get::<B>().unwrap();

        assert_eq!(0, a.0);
        assert_eq!(1, b.0);
    }

    #[test]
    fn builder_dynamic_components() {
        let mut world = World::new();
        let entity = world.spawn((A(0), B(1))).id();
        let component_id_a = world.register_component::<A>();
        let component_id_b = world.register_component::<B>();

        let mut query = QueryBuilder::<FilteredEntityRef>::new(&mut world)
            .ref_id(component_id_a)
            .ref_id(component_id_b)
            .build();

        let entity_ref = query.single(&world);

        assert_eq!(entity, entity_ref.id());

        let a = entity_ref.get_by_id(component_id_a).unwrap();
        let b = entity_ref.get_by_id(component_id_b).unwrap();

        // SAFETY: We set these pointers to point to these components
        unsafe {
            assert_eq!(0, a.deref::<A>().0);
            assert_eq!(1, b.deref::<B>().0);
        }
    }

    /// Regression test for issue #14348
    #[test]
    fn builder_static_dense_dynamic_sparse() {
        #[derive(Component)]
        struct Dense;

        #[derive(Component)]
        #[component(storage = "SparseSet")]
        struct Sparse;

        let mut world = World::new();

        world.spawn(Dense);
        world.spawn((Dense, Sparse));

        let mut query = QueryBuilder::<&Dense>::new(&mut world)
            .with::<Sparse>()
            .build();

        let matched = query.iter(&world).count();
        assert_eq!(matched, 1);
    }
}