bevy_ecs/reflect/component.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
//! Definitions for [`Component`] reflection.
//! This allows inserting, updating, removing and generally interacting with components
//! whose types are only known at runtime.
//!
//! This module exports two types: [`ReflectComponentFns`] and [`ReflectComponent`].
//!
//! # Architecture
//!
//! [`ReflectComponent`] wraps a [`ReflectComponentFns`]. In fact, each method on
//! [`ReflectComponent`] wraps a call to a function pointer field in `ReflectComponentFns`.
//!
//! ## Who creates `ReflectComponent`s?
//!
//! When a user adds the `#[reflect(Component)]` attribute to their `#[derive(Reflect)]`
//! type, it tells the derive macro for `Reflect` to add the following single line to its
//! [`get_type_registration`] method (see the relevant code[^1]).
//!
//! ```
//! # use bevy_reflect::{FromType, Reflect};
//! # use bevy_ecs::prelude::{ReflectComponent, Component};
//! # #[derive(Default, Reflect, Component)]
//! # struct A;
//! # impl A {
//! # fn foo() {
//! # let mut registration = bevy_reflect::TypeRegistration::of::<A>();
//! registration.insert::<ReflectComponent>(FromType::<Self>::from_type());
//! # }
//! # }
//! ```
//!
//! This line adds a `ReflectComponent` to the registration data for the type in question.
//! The user can access the `ReflectComponent` for type `T` through the type registry,
//! as per the `trait_reflection.rs` example.
//!
//! The `FromType::<Self>::from_type()` in the previous line calls the `FromType<C>`
//! implementation of `ReflectComponent`.
//!
//! The `FromType<C>` impl creates a function per field of [`ReflectComponentFns`].
//! In those functions, we call generic methods on [`World`] and [`EntityWorldMut`].
//!
//! The result is a `ReflectComponent` completely independent of `C`, yet capable
//! of using generic ECS methods such as `entity.get::<C>()` to get `&dyn Reflect`
//! with underlying type `C`, without the `C` appearing in the type signature.
//!
//! ## A note on code generation
//!
//! A downside of this approach is that monomorphized code (ie: concrete code
//! for generics) is generated **unconditionally**, regardless of whether it ends
//! up used or not.
//!
//! Adding `N` fields on `ReflectComponentFns` will generate `N × M` additional
//! functions, where `M` is how many types derive `#[reflect(Component)]`.
//!
//! Those functions will increase the size of the final app binary.
//!
//! [^1]: `crates/bevy_reflect/bevy_reflect_derive/src/registration.rs`
//!
//! [`get_type_registration`]: bevy_reflect::GetTypeRegistration::get_type_registration
use super::from_reflect_with_fallback;
use crate::{
change_detection::Mut,
component::{Component, ComponentId},
entity::Entity,
world::{
unsafe_world_cell::UnsafeEntityCell, EntityMut, EntityWorldMut, FilteredEntityMut,
FilteredEntityRef, World,
},
};
use bevy_reflect::{FromReflect, FromType, PartialReflect, Reflect, TypePath, TypeRegistry};
/// A struct used to operate on reflected [`Component`] trait of a type.
///
/// A [`ReflectComponent`] for type `T` can be obtained via
/// [`bevy_reflect::TypeRegistration::data`].
#[derive(Clone)]
pub struct ReflectComponent(ReflectComponentFns);
/// The raw function pointers needed to make up a [`ReflectComponent`].
///
/// This is used when creating custom implementations of [`ReflectComponent`] with
/// [`ReflectComponent::new()`].
///
/// > **Note:**
/// > Creating custom implementations of [`ReflectComponent`] is an advanced feature that most users
/// > will not need.
/// > Usually a [`ReflectComponent`] is created for a type by deriving [`Reflect`]
/// > and adding the `#[reflect(Component)]` attribute.
/// > After adding the component to the [`TypeRegistry`],
/// > its [`ReflectComponent`] can then be retrieved when needed.
///
/// Creating a custom [`ReflectComponent`] may be useful if you need to create new component types
/// at runtime, for example, for scripting implementations.
///
/// By creating a custom [`ReflectComponent`] and inserting it into a type's
/// [`TypeRegistration`][bevy_reflect::TypeRegistration],
/// you can modify the way that reflected components of that type will be inserted into the Bevy
/// world.
#[derive(Clone)]
pub struct ReflectComponentFns {
/// Function pointer implementing [`ReflectComponent::insert()`].
pub insert: fn(&mut EntityWorldMut, &dyn PartialReflect, &TypeRegistry),
/// Function pointer implementing [`ReflectComponent::apply()`].
pub apply: fn(EntityMut, &dyn PartialReflect),
/// Function pointer implementing [`ReflectComponent::apply_or_insert()`].
pub apply_or_insert: fn(&mut EntityWorldMut, &dyn PartialReflect, &TypeRegistry),
/// Function pointer implementing [`ReflectComponent::remove()`].
pub remove: fn(&mut EntityWorldMut),
/// Function pointer implementing [`ReflectComponent::contains()`].
pub contains: fn(FilteredEntityRef) -> bool,
/// Function pointer implementing [`ReflectComponent::reflect()`].
pub reflect: fn(FilteredEntityRef) -> Option<&dyn Reflect>,
/// Function pointer implementing [`ReflectComponent::reflect_mut()`].
pub reflect_mut: fn(FilteredEntityMut) -> Option<Mut<dyn Reflect>>,
/// Function pointer implementing [`ReflectComponent::reflect_unchecked_mut()`].
///
/// # Safety
/// The function may only be called with an [`UnsafeEntityCell`] that can be used to mutably access the relevant component on the given entity.
pub reflect_unchecked_mut: unsafe fn(UnsafeEntityCell<'_>) -> Option<Mut<'_, dyn Reflect>>,
/// Function pointer implementing [`ReflectComponent::copy()`].
pub copy: fn(&World, &mut World, Entity, Entity, &TypeRegistry),
/// Function pointer implementing [`ReflectComponent::register_component()`].
pub register_component: fn(&mut World) -> ComponentId,
}
impl ReflectComponentFns {
/// Get the default set of [`ReflectComponentFns`] for a specific component type using its
/// [`FromType`] implementation.
///
/// This is useful if you want to start with the default implementation before overriding some
/// of the functions to create a custom implementation.
pub fn new<T: Component + FromReflect + TypePath>() -> Self {
<ReflectComponent as FromType<T>>::from_type().0
}
}
impl ReflectComponent {
/// Insert a reflected [`Component`] into the entity like [`insert()`](EntityWorldMut::insert).
pub fn insert(
&self,
entity: &mut EntityWorldMut,
component: &dyn PartialReflect,
registry: &TypeRegistry,
) {
(self.0.insert)(entity, component, registry);
}
/// Uses reflection to set the value of this [`Component`] type in the entity to the given value.
///
/// # Panics
///
/// Panics if there is no [`Component`] of the given type.
pub fn apply<'a>(&self, entity: impl Into<EntityMut<'a>>, component: &dyn PartialReflect) {
(self.0.apply)(entity.into(), component);
}
/// Uses reflection to set the value of this [`Component`] type in the entity to the given value or insert a new one if it does not exist.
pub fn apply_or_insert(
&self,
entity: &mut EntityWorldMut,
component: &dyn PartialReflect,
registry: &TypeRegistry,
) {
(self.0.apply_or_insert)(entity, component, registry);
}
/// Removes this [`Component`] type from the entity. Does nothing if it doesn't exist.
pub fn remove(&self, entity: &mut EntityWorldMut) {
(self.0.remove)(entity);
}
/// Returns whether entity contains this [`Component`]
pub fn contains<'a>(&self, entity: impl Into<FilteredEntityRef<'a>>) -> bool {
(self.0.contains)(entity.into())
}
/// Gets the value of this [`Component`] type from the entity as a reflected reference.
pub fn reflect<'a>(&self, entity: impl Into<FilteredEntityRef<'a>>) -> Option<&'a dyn Reflect> {
(self.0.reflect)(entity.into())
}
/// Gets the value of this [`Component`] type from the entity as a mutable reflected reference.
pub fn reflect_mut<'a>(
&self,
entity: impl Into<FilteredEntityMut<'a>>,
) -> Option<Mut<'a, dyn Reflect>> {
(self.0.reflect_mut)(entity.into())
}
/// # Safety
/// This method does not prevent you from having two mutable pointers to the same data,
/// violating Rust's aliasing rules. To avoid this:
/// * Only call this method with a [`UnsafeEntityCell`] that may be used to mutably access the component on the entity `entity`
/// * Don't call this method more than once in the same scope for a given [`Component`].
pub unsafe fn reflect_unchecked_mut<'a>(
&self,
entity: UnsafeEntityCell<'a>,
) -> Option<Mut<'a, dyn Reflect>> {
// SAFETY: safety requirements deferred to caller
unsafe { (self.0.reflect_unchecked_mut)(entity) }
}
/// Gets the value of this [`Component`] type from entity from `source_world` and [applies](Self::apply()) it to the value of this [`Component`] type in entity in `destination_world`.
///
/// # Panics
///
/// Panics if there is no [`Component`] of the given type or either entity does not exist.
pub fn copy(
&self,
source_world: &World,
destination_world: &mut World,
source_entity: Entity,
destination_entity: Entity,
registry: &TypeRegistry,
) {
(self.0.copy)(
source_world,
destination_world,
source_entity,
destination_entity,
registry,
);
}
/// Register the type of this [`Component`] in [`World`], returning its [`ComponentId`].
pub fn register_component(&self, world: &mut World) -> ComponentId {
(self.0.register_component)(world)
}
/// Create a custom implementation of [`ReflectComponent`].
///
/// This is an advanced feature,
/// useful for scripting implementations,
/// that should not be used by most users
/// unless you know what you are doing.
///
/// Usually you should derive [`Reflect`] and add the `#[reflect(Component)]` component
/// to generate a [`ReflectComponent`] implementation automatically.
///
/// See [`ReflectComponentFns`] for more information.
pub fn new(fns: ReflectComponentFns) -> Self {
Self(fns)
}
/// The underlying function pointers implementing methods on `ReflectComponent`.
///
/// This is useful when you want to keep track locally of an individual
/// function pointer.
///
/// Calling [`TypeRegistry::get`] followed by
/// [`TypeRegistration::data::<ReflectComponent>`] can be costly if done several
/// times per frame. Consider cloning [`ReflectComponent`] and keeping it
/// between frames, cloning a `ReflectComponent` is very cheap.
///
/// If you only need a subset of the methods on `ReflectComponent`,
/// use `fn_pointers` to get the underlying [`ReflectComponentFns`]
/// and copy the subset of function pointers you care about.
///
/// [`TypeRegistration::data::<ReflectComponent>`]: bevy_reflect::TypeRegistration::data
/// [`TypeRegistry::get`]: bevy_reflect::TypeRegistry::get
pub fn fn_pointers(&self) -> &ReflectComponentFns {
&self.0
}
}
impl<C: Component + Reflect + TypePath> FromType<C> for ReflectComponent {
fn from_type() -> Self {
ReflectComponent(ReflectComponentFns {
insert: |entity, reflected_component, registry| {
let component = entity.world_scope(|world| {
from_reflect_with_fallback::<C>(reflected_component, world, registry)
});
entity.insert(component);
},
apply: |mut entity, reflected_component| {
let mut component = entity.get_mut::<C>().unwrap();
component.apply(reflected_component);
},
apply_or_insert: |entity, reflected_component, registry| {
if let Some(mut component) = entity.get_mut::<C>() {
component.apply(reflected_component.as_partial_reflect());
} else {
let component = entity.world_scope(|world| {
from_reflect_with_fallback::<C>(reflected_component, world, registry)
});
entity.insert(component);
}
},
remove: |entity| {
entity.remove::<C>();
},
contains: |entity| entity.contains::<C>(),
copy: |source_world, destination_world, source_entity, destination_entity, registry| {
let source_component = source_world.get::<C>(source_entity).unwrap();
let destination_component =
from_reflect_with_fallback::<C>(source_component, destination_world, registry);
destination_world
.entity_mut(destination_entity)
.insert(destination_component);
},
reflect: |entity| entity.get::<C>().map(|c| c as &dyn Reflect),
reflect_mut: |entity| {
entity
.into_mut::<C>()
.map(|c| c.map_unchanged(|value| value as &mut dyn Reflect))
},
reflect_unchecked_mut: |entity| {
// SAFETY: reflect_unchecked_mut is an unsafe function pointer used by
// `reflect_unchecked_mut` which must be called with an UnsafeEntityCell with access to the component `C` on the `entity`
let c = unsafe { entity.get_mut::<C>() };
c.map(|c| c.map_unchanged(|value| value as &mut dyn Reflect))
},
register_component: |world: &mut World| -> ComponentId {
world.register_component::<C>()
},
})
}
}