bevy_ecs/schedule/executor/
multi_threaded.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
use alloc::sync::Arc;
use core::any::Any;
use std::sync::{Mutex, MutexGuard};

use bevy_tasks::{ComputeTaskPool, Scope, TaskPool, ThreadExecutor};
#[cfg(feature = "trace")]
use bevy_utils::tracing::info_span;
#[cfg(feature = "trace")]
use bevy_utils::tracing::Span;
use bevy_utils::{default, syncunsafecell::SyncUnsafeCell};
use core::panic::AssertUnwindSafe;

use concurrent_queue::ConcurrentQueue;
use fixedbitset::FixedBitSet;

use crate::{
    archetype::ArchetypeComponentId,
    prelude::Resource,
    query::Access,
    schedule::{is_apply_deferred, BoxedCondition, ExecutorKind, SystemExecutor, SystemSchedule},
    system::BoxedSystem,
    world::{unsafe_world_cell::UnsafeWorldCell, World},
};

use crate as bevy_ecs;

use super::__rust_begin_short_backtrace;

/// Borrowed data used by the [`MultiThreadedExecutor`].
struct Environment<'env, 'sys> {
    executor: &'env MultiThreadedExecutor,
    systems: &'sys [SyncUnsafeCell<BoxedSystem>],
    conditions: SyncUnsafeCell<Conditions<'sys>>,
    world_cell: UnsafeWorldCell<'env>,
}

struct Conditions<'a> {
    system_conditions: &'a mut [Vec<BoxedCondition>],
    set_conditions: &'a mut [Vec<BoxedCondition>],
    sets_with_conditions_of_systems: &'a [FixedBitSet],
    systems_in_sets_with_conditions: &'a [FixedBitSet],
}

impl<'env, 'sys> Environment<'env, 'sys> {
    fn new(
        executor: &'env MultiThreadedExecutor,
        schedule: &'sys mut SystemSchedule,
        world: &'env mut World,
    ) -> Self {
        Environment {
            executor,
            systems: SyncUnsafeCell::from_mut(schedule.systems.as_mut_slice()).as_slice_of_cells(),
            conditions: SyncUnsafeCell::new(Conditions {
                system_conditions: &mut schedule.system_conditions,
                set_conditions: &mut schedule.set_conditions,
                sets_with_conditions_of_systems: &schedule.sets_with_conditions_of_systems,
                systems_in_sets_with_conditions: &schedule.systems_in_sets_with_conditions,
            }),
            world_cell: world.as_unsafe_world_cell(),
        }
    }
}

/// Per-system data used by the [`MultiThreadedExecutor`].
// Copied here because it can't be read from the system when it's running.
struct SystemTaskMetadata {
    /// The [`ArchetypeComponentId`] access of the system.
    archetype_component_access: Access<ArchetypeComponentId>,
    /// Indices of the systems that directly depend on the system.
    dependents: Vec<usize>,
    /// Is `true` if the system does not access `!Send` data.
    is_send: bool,
    /// Is `true` if the system is exclusive.
    is_exclusive: bool,
}

/// The result of running a system that is sent across a channel.
struct SystemResult {
    system_index: usize,
}

/// Runs the schedule using a thread pool. Non-conflicting systems can run in parallel.
pub struct MultiThreadedExecutor {
    /// The running state, protected by a mutex so that a reference to the executor can be shared across tasks.
    state: Mutex<ExecutorState>,
    /// Queue of system completion events.
    system_completion: ConcurrentQueue<SystemResult>,
    /// Setting when true applies deferred system buffers after all systems have run
    apply_final_deferred: bool,
    /// When set, tells the executor that a thread has panicked.
    panic_payload: Mutex<Option<Box<dyn Any + Send>>>,
    starting_systems: FixedBitSet,
    /// Cached tracing span
    #[cfg(feature = "trace")]
    executor_span: Span,
}

/// The state of the executor while running.
pub struct ExecutorState {
    /// Metadata for scheduling and running system tasks.
    system_task_metadata: Vec<SystemTaskMetadata>,
    /// Union of the accesses of all currently running systems.
    active_access: Access<ArchetypeComponentId>,
    /// Returns `true` if a system with non-`Send` access is running.
    local_thread_running: bool,
    /// Returns `true` if an exclusive system is running.
    exclusive_running: bool,
    /// The number of systems that are running.
    num_running_systems: usize,
    /// The number of dependencies each system has that have not completed.
    num_dependencies_remaining: Vec<usize>,
    /// System sets whose conditions have been evaluated.
    evaluated_sets: FixedBitSet,
    /// Systems that have no remaining dependencies and are waiting to run.
    ready_systems: FixedBitSet,
    /// copy of `ready_systems`
    ready_systems_copy: FixedBitSet,
    /// Systems that are running.
    running_systems: FixedBitSet,
    /// Systems that got skipped.
    skipped_systems: FixedBitSet,
    /// Systems whose conditions have been evaluated and were run or skipped.
    completed_systems: FixedBitSet,
    /// Systems that have run but have not had their buffers applied.
    unapplied_systems: FixedBitSet,
}

/// References to data required by the executor.
/// This is copied to each system task so that can invoke the executor when they complete.
// These all need to outlive 'scope in order to be sent to new tasks,
// and keeping them all in a struct means we can use lifetime elision.
#[derive(Copy, Clone)]
struct Context<'scope, 'env, 'sys> {
    environment: &'env Environment<'env, 'sys>,
    scope: &'scope Scope<'scope, 'env, ()>,
}

impl Default for MultiThreadedExecutor {
    fn default() -> Self {
        Self::new()
    }
}

impl SystemExecutor for MultiThreadedExecutor {
    fn kind(&self) -> ExecutorKind {
        ExecutorKind::MultiThreaded
    }

    fn init(&mut self, schedule: &SystemSchedule) {
        let state = self.state.get_mut().unwrap();
        // pre-allocate space
        let sys_count = schedule.system_ids.len();
        let set_count = schedule.set_ids.len();

        self.system_completion = ConcurrentQueue::bounded(sys_count.max(1));
        self.starting_systems = FixedBitSet::with_capacity(sys_count);
        state.evaluated_sets = FixedBitSet::with_capacity(set_count);
        state.ready_systems = FixedBitSet::with_capacity(sys_count);
        state.ready_systems_copy = FixedBitSet::with_capacity(sys_count);
        state.running_systems = FixedBitSet::with_capacity(sys_count);
        state.completed_systems = FixedBitSet::with_capacity(sys_count);
        state.skipped_systems = FixedBitSet::with_capacity(sys_count);
        state.unapplied_systems = FixedBitSet::with_capacity(sys_count);

        state.system_task_metadata = Vec::with_capacity(sys_count);
        for index in 0..sys_count {
            state.system_task_metadata.push(SystemTaskMetadata {
                archetype_component_access: default(),
                dependents: schedule.system_dependents[index].clone(),
                is_send: schedule.systems[index].is_send(),
                is_exclusive: schedule.systems[index].is_exclusive(),
            });
            if schedule.system_dependencies[index] == 0 {
                self.starting_systems.insert(index);
            }
        }

        state.num_dependencies_remaining = Vec::with_capacity(sys_count);
    }

    fn run(
        &mut self,
        schedule: &mut SystemSchedule,
        world: &mut World,
        _skip_systems: Option<&FixedBitSet>,
    ) {
        let state = self.state.get_mut().unwrap();
        // reset counts
        if schedule.systems.is_empty() {
            return;
        }
        state.num_running_systems = 0;
        state
            .num_dependencies_remaining
            .clone_from(&schedule.system_dependencies);
        state.ready_systems.clone_from(&self.starting_systems);

        // If stepping is enabled, make sure we skip those systems that should
        // not be run.
        #[cfg(feature = "bevy_debug_stepping")]
        if let Some(skipped_systems) = _skip_systems {
            debug_assert_eq!(skipped_systems.len(), state.completed_systems.len());
            // mark skipped systems as completed
            state.completed_systems |= skipped_systems;

            // signal the dependencies for each of the skipped systems, as
            // though they had run
            for system_index in skipped_systems.ones() {
                state.signal_dependents(system_index);
                state.ready_systems.remove(system_index);
            }
        }

        let thread_executor = world
            .get_resource::<MainThreadExecutor>()
            .map(|e| e.0.clone());
        let thread_executor = thread_executor.as_deref();

        let environment = &Environment::new(self, schedule, world);

        ComputeTaskPool::get_or_init(TaskPool::default).scope_with_executor(
            false,
            thread_executor,
            |scope| {
                let context = Context { environment, scope };

                // The first tick won't need to process finished systems, but we still need to run the loop in
                // tick_executor() in case a system completes while the first tick still holds the mutex.
                context.tick_executor();
            },
        );

        // End the borrows of self and world in environment by copying out the reference to systems.
        let systems = environment.systems;

        let state = self.state.get_mut().unwrap();
        if self.apply_final_deferred {
            // Do one final apply buffers after all systems have completed
            // Commands should be applied while on the scope's thread, not the executor's thread
            let res = apply_deferred(&state.unapplied_systems, systems, world);
            if let Err(payload) = res {
                let panic_payload = self.panic_payload.get_mut().unwrap();
                *panic_payload = Some(payload);
            }
            state.unapplied_systems.clear();
        }

        // check to see if there was a panic
        let payload = self.panic_payload.get_mut().unwrap();
        if let Some(payload) = payload.take() {
            std::panic::resume_unwind(payload);
        }

        debug_assert!(state.ready_systems.is_clear());
        debug_assert!(state.running_systems.is_clear());
        state.active_access.clear();
        state.evaluated_sets.clear();
        state.skipped_systems.clear();
        state.completed_systems.clear();
    }

    fn set_apply_final_deferred(&mut self, value: bool) {
        self.apply_final_deferred = value;
    }
}

impl<'scope, 'env: 'scope, 'sys> Context<'scope, 'env, 'sys> {
    fn system_completed(
        &self,
        system_index: usize,
        res: Result<(), Box<dyn Any + Send>>,
        system: &BoxedSystem,
    ) {
        // tell the executor that the system finished
        self.environment
            .executor
            .system_completion
            .push(SystemResult { system_index })
            .unwrap_or_else(|error| unreachable!("{}", error));
        if let Err(payload) = res {
            eprintln!("Encountered a panic in system `{}`!", &*system.name());
            // set the payload to propagate the error
            {
                let mut panic_payload = self.environment.executor.panic_payload.lock().unwrap();
                *panic_payload = Some(payload);
            }
        }
        self.tick_executor();
    }

    fn try_lock<'a>(&'a self) -> Option<(&'a mut Conditions<'sys>, MutexGuard<'a, ExecutorState>)> {
        let guard = self.environment.executor.state.try_lock().ok()?;
        // SAFETY: This is an exclusive access as no other location fetches conditions mutably, and
        // is synchronized by the lock on the executor state.
        let conditions = unsafe { &mut *self.environment.conditions.get() };
        Some((conditions, guard))
    }

    fn tick_executor(&self) {
        // Ensure that the executor handles any events pushed to the system_completion queue by this thread.
        // If this thread acquires the lock, the exector runs after the push() and they are processed.
        // If this thread does not acquire the lock, then the is_empty() check on the other thread runs
        // after the lock is released, which is after try_lock() failed, which is after the push()
        // on this thread, so the is_empty() check will see the new events and loop.
        loop {
            let Some((conditions, mut guard)) = self.try_lock() else {
                return;
            };
            guard.tick(self, conditions);
            // Make sure we drop the guard before checking system_completion.is_empty(), or we could lose events.
            drop(guard);
            if self.environment.executor.system_completion.is_empty() {
                return;
            }
        }
    }
}

impl MultiThreadedExecutor {
    /// Creates a new `multi_threaded` executor for use with a [`Schedule`].
    ///
    /// [`Schedule`]: crate::schedule::Schedule
    pub fn new() -> Self {
        Self {
            state: Mutex::new(ExecutorState::new()),
            system_completion: ConcurrentQueue::unbounded(),
            starting_systems: FixedBitSet::new(),
            apply_final_deferred: true,
            panic_payload: Mutex::new(None),
            #[cfg(feature = "trace")]
            executor_span: info_span!("multithreaded executor"),
        }
    }
}

impl ExecutorState {
    fn new() -> Self {
        Self {
            system_task_metadata: Vec::new(),
            num_running_systems: 0,
            num_dependencies_remaining: Vec::new(),
            active_access: default(),
            local_thread_running: false,
            exclusive_running: false,
            evaluated_sets: FixedBitSet::new(),
            ready_systems: FixedBitSet::new(),
            ready_systems_copy: FixedBitSet::new(),
            running_systems: FixedBitSet::new(),
            skipped_systems: FixedBitSet::new(),
            completed_systems: FixedBitSet::new(),
            unapplied_systems: FixedBitSet::new(),
        }
    }

    fn tick(&mut self, context: &Context, conditions: &mut Conditions) {
        #[cfg(feature = "trace")]
        let _span = context.environment.executor.executor_span.enter();

        for result in context.environment.executor.system_completion.try_iter() {
            self.finish_system_and_handle_dependents(result);
        }

        self.rebuild_active_access();

        // SAFETY:
        // - `finish_system_and_handle_dependents` has updated the currently running systems.
        // - `rebuild_active_access` locks access for all currently running systems.
        unsafe {
            self.spawn_system_tasks(context, conditions);
        }
    }

    /// # Safety
    /// - Caller must ensure that `self.ready_systems` does not contain any systems that
    ///   have been mutably borrowed (such as the systems currently running).
    /// - `world_cell` must have permission to access all world data (not counting
    ///   any world data that is claimed by systems currently running on this executor).
    unsafe fn spawn_system_tasks(&mut self, context: &Context, conditions: &mut Conditions) {
        if self.exclusive_running {
            return;
        }

        // can't borrow since loop mutably borrows `self`
        let mut ready_systems = core::mem::take(&mut self.ready_systems_copy);

        // Skipping systems may cause their dependents to become ready immediately.
        // If that happens, we need to run again immediately or we may fail to spawn those dependents.
        let mut check_for_new_ready_systems = true;
        while check_for_new_ready_systems {
            check_for_new_ready_systems = false;

            ready_systems.clone_from(&self.ready_systems);

            for system_index in ready_systems.ones() {
                debug_assert!(!self.running_systems.contains(system_index));
                // SAFETY: Caller assured that these systems are not running.
                // Therefore, no other reference to this system exists and there is no aliasing.
                let system = unsafe { &mut *context.environment.systems[system_index].get() };

                if !self.can_run(
                    system_index,
                    system,
                    conditions,
                    context.environment.world_cell,
                ) {
                    // NOTE: exclusive systems with ambiguities are susceptible to
                    // being significantly displaced here (compared to single-threaded order)
                    // if systems after them in topological order can run
                    // if that becomes an issue, `break;` if exclusive system
                    continue;
                }

                self.ready_systems.remove(system_index);

                // SAFETY: `can_run` returned true, which means that:
                // - It must have called `update_archetype_component_access` for each run condition.
                // - There can be no systems running whose accesses would conflict with any conditions.
                if unsafe {
                    !self.should_run(
                        system_index,
                        system,
                        conditions,
                        context.environment.world_cell,
                    )
                } {
                    self.skip_system_and_signal_dependents(system_index);
                    // signal_dependents may have set more systems to ready.
                    check_for_new_ready_systems = true;
                    continue;
                }

                self.running_systems.insert(system_index);
                self.num_running_systems += 1;

                if self.system_task_metadata[system_index].is_exclusive {
                    // SAFETY: `can_run` returned true for this system,
                    // which means no systems are currently borrowed.
                    unsafe {
                        self.spawn_exclusive_system_task(context, system_index);
                    }
                    check_for_new_ready_systems = false;
                    break;
                }

                // SAFETY:
                // - Caller ensured no other reference to this system exists.
                // - `can_run` has been called, which calls `update_archetype_component_access` with this system.
                // - `can_run` returned true, so no systems with conflicting world access are running.
                unsafe {
                    self.spawn_system_task(context, system_index);
                }
            }
        }

        // give back
        self.ready_systems_copy = ready_systems;
    }

    fn can_run(
        &mut self,
        system_index: usize,
        system: &mut BoxedSystem,
        conditions: &mut Conditions,
        world: UnsafeWorldCell,
    ) -> bool {
        let system_meta = &self.system_task_metadata[system_index];
        if system_meta.is_exclusive && self.num_running_systems > 0 {
            return false;
        }

        if !system_meta.is_send && self.local_thread_running {
            return false;
        }

        // TODO: an earlier out if world's archetypes did not change
        for set_idx in conditions.sets_with_conditions_of_systems[system_index]
            .difference(&self.evaluated_sets)
        {
            for condition in &mut conditions.set_conditions[set_idx] {
                condition.update_archetype_component_access(world);
                if !condition
                    .archetype_component_access()
                    .is_compatible(&self.active_access)
                {
                    return false;
                }
            }
        }

        for condition in &mut conditions.system_conditions[system_index] {
            condition.update_archetype_component_access(world);
            if !condition
                .archetype_component_access()
                .is_compatible(&self.active_access)
            {
                return false;
            }
        }

        if !self.skipped_systems.contains(system_index) {
            system.update_archetype_component_access(world);
            if !system
                .archetype_component_access()
                .is_compatible(&self.active_access)
            {
                return false;
            }

            self.system_task_metadata[system_index]
                .archetype_component_access
                .clone_from(system.archetype_component_access());
        }

        true
    }

    /// # Safety
    /// * `world` must have permission to read any world data required by
    ///   the system's conditions: this includes conditions for the system
    ///   itself, and conditions for any of the system's sets.
    /// * `update_archetype_component` must have been called with `world`
    ///   for the system as well as system and system set's run conditions.
    unsafe fn should_run(
        &mut self,
        system_index: usize,
        system: &mut BoxedSystem,
        conditions: &mut Conditions,
        world: UnsafeWorldCell,
    ) -> bool {
        let mut should_run = !self.skipped_systems.contains(system_index);

        for set_idx in conditions.sets_with_conditions_of_systems[system_index].ones() {
            if self.evaluated_sets.contains(set_idx) {
                continue;
            }

            // Evaluate the system set's conditions.
            // SAFETY:
            // - The caller ensures that `world` has permission to read any data
            //   required by the conditions.
            // - `update_archetype_component_access` has been called for each run condition.
            let set_conditions_met = unsafe {
                evaluate_and_fold_conditions(&mut conditions.set_conditions[set_idx], world)
            };

            if !set_conditions_met {
                self.skipped_systems
                    .union_with(&conditions.systems_in_sets_with_conditions[set_idx]);
            }

            should_run &= set_conditions_met;
            self.evaluated_sets.insert(set_idx);
        }

        // Evaluate the system's conditions.
        // SAFETY:
        // - The caller ensures that `world` has permission to read any data
        //   required by the conditions.
        // - `update_archetype_component_access` has been called for each run condition.
        let system_conditions_met = unsafe {
            evaluate_and_fold_conditions(&mut conditions.system_conditions[system_index], world)
        };

        if !system_conditions_met {
            self.skipped_systems.insert(system_index);
        }

        should_run &= system_conditions_met;

        if should_run {
            // SAFETY:
            // - The caller ensures that `world` has permission to read any data
            //   required by the system.
            // - `update_archetype_component_access` has been called for system.
            let valid_params = unsafe { system.validate_param_unsafe(world) };
            if !valid_params {
                self.skipped_systems.insert(system_index);
            }
            should_run &= valid_params;
        }

        should_run
    }

    /// # Safety
    /// - Caller must not alias systems that are running.
    /// - `world` must have permission to access the world data
    ///   used by the specified system.
    /// - `update_archetype_component_access` must have been called with `world`
    ///   on the system associated with `system_index`.
    unsafe fn spawn_system_task(&mut self, context: &Context, system_index: usize) {
        // SAFETY: this system is not running, no other reference exists
        let system = unsafe { &mut *context.environment.systems[system_index].get() };
        // Move the full context object into the new future.
        let context = *context;

        let system_meta = &self.system_task_metadata[system_index];

        let task = async move {
            let res = std::panic::catch_unwind(AssertUnwindSafe(|| {
                // SAFETY:
                // - The caller ensures that we have permission to
                // access the world data used by the system.
                // - `update_archetype_component_access` has been called.
                unsafe {
                    __rust_begin_short_backtrace::run_unsafe(
                        &mut **system,
                        context.environment.world_cell,
                    );
                };
            }));
            context.system_completed(system_index, res, system);
        };

        self.active_access
            .extend(&system_meta.archetype_component_access);

        if system_meta.is_send {
            context.scope.spawn(task);
        } else {
            self.local_thread_running = true;
            context.scope.spawn_on_external(task);
        }
    }

    /// # Safety
    /// Caller must ensure no systems are currently borrowed.
    unsafe fn spawn_exclusive_system_task(&mut self, context: &Context, system_index: usize) {
        // SAFETY: this system is not running, no other reference exists
        let system = unsafe { &mut *context.environment.systems[system_index].get() };
        // Move the full context object into the new future.
        let context = *context;

        if is_apply_deferred(system) {
            // TODO: avoid allocation
            let unapplied_systems = self.unapplied_systems.clone();
            self.unapplied_systems.clear();
            let task = async move {
                // SAFETY: `can_run` returned true for this system, which means
                // that no other systems currently have access to the world.
                let world = unsafe { context.environment.world_cell.world_mut() };
                let res = apply_deferred(&unapplied_systems, context.environment.systems, world);
                context.system_completed(system_index, res, system);
            };

            context.scope.spawn_on_scope(task);
        } else {
            let task = async move {
                // SAFETY: `can_run` returned true for this system, which means
                // that no other systems currently have access to the world.
                let world = unsafe { context.environment.world_cell.world_mut() };
                let res = std::panic::catch_unwind(AssertUnwindSafe(|| {
                    __rust_begin_short_backtrace::run(&mut **system, world);
                }));
                context.system_completed(system_index, res, system);
            };

            context.scope.spawn_on_scope(task);
        }

        self.exclusive_running = true;
        self.local_thread_running = true;
    }

    fn finish_system_and_handle_dependents(&mut self, result: SystemResult) {
        let SystemResult { system_index, .. } = result;

        if self.system_task_metadata[system_index].is_exclusive {
            self.exclusive_running = false;
        }

        if !self.system_task_metadata[system_index].is_send {
            self.local_thread_running = false;
        }

        debug_assert!(self.num_running_systems >= 1);
        self.num_running_systems -= 1;
        self.running_systems.remove(system_index);
        self.completed_systems.insert(system_index);
        self.unapplied_systems.insert(system_index);

        self.signal_dependents(system_index);
    }

    fn skip_system_and_signal_dependents(&mut self, system_index: usize) {
        self.completed_systems.insert(system_index);
        self.signal_dependents(system_index);
    }

    fn signal_dependents(&mut self, system_index: usize) {
        for &dep_idx in &self.system_task_metadata[system_index].dependents {
            let remaining = &mut self.num_dependencies_remaining[dep_idx];
            debug_assert!(*remaining >= 1);
            *remaining -= 1;
            if *remaining == 0 && !self.completed_systems.contains(dep_idx) {
                self.ready_systems.insert(dep_idx);
            }
        }
    }

    fn rebuild_active_access(&mut self) {
        self.active_access.clear();
        for index in self.running_systems.ones() {
            let system_meta = &self.system_task_metadata[index];
            self.active_access
                .extend(&system_meta.archetype_component_access);
        }
    }
}

fn apply_deferred(
    unapplied_systems: &FixedBitSet,
    systems: &[SyncUnsafeCell<BoxedSystem>],
    world: &mut World,
) -> Result<(), Box<dyn Any + Send>> {
    for system_index in unapplied_systems.ones() {
        // SAFETY: none of these systems are running, no other references exist
        let system = unsafe { &mut *systems[system_index].get() };
        let res = std::panic::catch_unwind(AssertUnwindSafe(|| {
            system.apply_deferred(world);
        }));
        if let Err(payload) = res {
            eprintln!(
                "Encountered a panic when applying buffers for system `{}`!",
                &*system.name()
            );
            return Err(payload);
        }
    }
    Ok(())
}

/// # Safety
/// - `world` must have permission to read any world data
///   required by `conditions`.
/// - `update_archetype_component_access` must have been called
///   with `world` for each condition in `conditions`.
unsafe fn evaluate_and_fold_conditions(
    conditions: &mut [BoxedCondition],
    world: UnsafeWorldCell,
) -> bool {
    // not short-circuiting is intentional
    #[allow(clippy::unnecessary_fold)]
    conditions
        .iter_mut()
        .map(|condition| {
            // SAFETY:
            // - The caller ensures that `world` has permission to read any data
            //   required by the condition.
            // - `update_archetype_component_access` has been called for condition.
            if !unsafe { condition.validate_param_unsafe(world) } {
                return false;
            }
            // SAFETY:
            // - The caller ensures that `world` has permission to read any data
            //   required by the condition.
            // - `update_archetype_component_access` has been called for condition.
            unsafe { __rust_begin_short_backtrace::readonly_run_unsafe(&mut **condition, world) }
        })
        .fold(true, |acc, res| acc && res)
}

/// New-typed [`ThreadExecutor`] [`Resource`] that is used to run systems on the main thread
#[derive(Resource, Clone)]
pub struct MainThreadExecutor(pub Arc<ThreadExecutor<'static>>);

impl Default for MainThreadExecutor {
    fn default() -> Self {
        Self::new()
    }
}

impl MainThreadExecutor {
    /// Creates a new executor that can be used to run systems on the main thread.
    pub fn new() -> Self {
        MainThreadExecutor(TaskPool::get_thread_executor())
    }
}

#[cfg(test)]
mod tests {
    use crate::{
        self as bevy_ecs,
        prelude::Resource,
        schedule::{ExecutorKind, IntoSystemConfigs, Schedule},
        system::Commands,
        world::World,
    };

    #[derive(Resource)]
    struct R;

    #[test]
    fn skipped_systems_notify_dependents() {
        let mut world = World::new();
        let mut schedule = Schedule::default();
        schedule.set_executor_kind(ExecutorKind::MultiThreaded);
        schedule.add_systems(
            (
                (|| {}).run_if(|| false),
                // This system depends on a system that is always skipped.
                |mut commands: Commands| {
                    commands.insert_resource(R);
                },
            )
                .chain(),
        );
        schedule.run(&mut world);
        assert!(world.get_resource::<R>().is_some());
    }

    /// Regression test for a weird bug flagged by MIRI in
    /// `spawn_exclusive_system_task`, related to a `&mut World` being captured
    /// inside an `async` block and somehow remaining alive even after its last use.
    #[test]
    fn check_spawn_exclusive_system_task_miri() {
        let mut world = World::new();
        let mut schedule = Schedule::default();
        schedule.set_executor_kind(ExecutorKind::MultiThreaded);
        schedule.add_systems(((|_: Commands| {}), |_: Commands| {}).chain());
        schedule.run(&mut world);
    }
}