bevy_ecs/schedule/
graph_utils.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
use core::fmt::Debug;

use bevy_utils::{HashMap, HashSet};
use fixedbitset::FixedBitSet;
use petgraph::{algo::TarjanScc, graphmap::NodeTrait, prelude::*};

use crate::schedule::set::*;

/// Unique identifier for a system or system set stored in a [`ScheduleGraph`].
///
/// [`ScheduleGraph`]: super::ScheduleGraph
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum NodeId {
    /// Identifier for a system.
    System(usize),
    /// Identifier for a system set.
    Set(usize),
}

impl NodeId {
    /// Returns the internal integer value.
    pub(crate) fn index(&self) -> usize {
        match self {
            NodeId::System(index) | NodeId::Set(index) => *index,
        }
    }

    /// Returns `true` if the identified node is a system.
    pub const fn is_system(&self) -> bool {
        matches!(self, NodeId::System(_))
    }

    /// Returns `true` if the identified node is a system set.
    pub const fn is_set(&self) -> bool {
        matches!(self, NodeId::Set(_))
    }
}

/// Specifies what kind of edge should be added to the dependency graph.
#[derive(Debug, Clone, Copy, Eq, PartialEq, PartialOrd, Ord, Hash)]
pub(crate) enum DependencyKind {
    /// A node that should be preceded.
    Before,
    /// A node that should be succeeded.
    After,
    /// A node that should be preceded and will **not** automatically insert an instance of `apply_deferred` on the edge.
    BeforeNoSync,
    /// A node that should be succeeded and will **not** automatically insert an instance of `apply_deferred` on the edge.
    AfterNoSync,
}

/// An edge to be added to the dependency graph.
#[derive(Clone)]
pub(crate) struct Dependency {
    pub(crate) kind: DependencyKind,
    pub(crate) set: InternedSystemSet,
}

impl Dependency {
    pub fn new(kind: DependencyKind, set: InternedSystemSet) -> Self {
        Self { kind, set }
    }
}

/// Configures ambiguity detection for a single system.
#[derive(Clone, Debug, Default)]
pub(crate) enum Ambiguity {
    #[default]
    Check,
    /// Ignore warnings with systems in any of these system sets. May contain duplicates.
    IgnoreWithSet(Vec<InternedSystemSet>),
    /// Ignore all warnings.
    IgnoreAll,
}

/// Metadata about how the node fits in the schedule graph
#[derive(Clone, Default)]
pub(crate) struct GraphInfo {
    /// the sets that the node belongs to (hierarchy)
    pub(crate) hierarchy: Vec<InternedSystemSet>,
    /// the sets that the node depends on (must run before or after)
    pub(crate) dependencies: Vec<Dependency>,
    pub(crate) ambiguous_with: Ambiguity,
}

/// Converts 2D row-major pair of indices into a 1D array index.
pub(crate) fn index(row: usize, col: usize, num_cols: usize) -> usize {
    debug_assert!(col < num_cols);
    (row * num_cols) + col
}

/// Converts a 1D array index into a 2D row-major pair of indices.
pub(crate) fn row_col(index: usize, num_cols: usize) -> (usize, usize) {
    (index / num_cols, index % num_cols)
}

/// Stores the results of the graph analysis.
pub(crate) struct CheckGraphResults<V> {
    /// Boolean reachability matrix for the graph.
    pub(crate) reachable: FixedBitSet,
    /// Pairs of nodes that have a path connecting them.
    pub(crate) connected: HashSet<(V, V)>,
    /// Pairs of nodes that don't have a path connecting them.
    pub(crate) disconnected: Vec<(V, V)>,
    /// Edges that are redundant because a longer path exists.
    pub(crate) transitive_edges: Vec<(V, V)>,
    /// Variant of the graph with no transitive edges.
    pub(crate) transitive_reduction: DiGraphMap<V, ()>,
    /// Variant of the graph with all possible transitive edges.
    // TODO: this will very likely be used by "if-needed" ordering
    #[allow(dead_code)]
    pub(crate) transitive_closure: DiGraphMap<V, ()>,
}

impl<V: NodeTrait + Debug> Default for CheckGraphResults<V> {
    fn default() -> Self {
        Self {
            reachable: FixedBitSet::new(),
            connected: HashSet::new(),
            disconnected: Vec::new(),
            transitive_edges: Vec::new(),
            transitive_reduction: DiGraphMap::new(),
            transitive_closure: DiGraphMap::new(),
        }
    }
}

/// Processes a DAG and computes its:
/// - transitive reduction (along with the set of removed edges)
/// - transitive closure
/// - reachability matrix (as a bitset)
/// - pairs of nodes connected by a path
/// - pairs of nodes not connected by a path
///
/// The algorithm implemented comes from
/// ["On the calculation of transitive reduction-closure of orders"][1] by Habib, Morvan and Rampon.
///
/// [1]: https://doi.org/10.1016/0012-365X(93)90164-O
pub(crate) fn check_graph<V>(
    graph: &DiGraphMap<V, ()>,
    topological_order: &[V],
) -> CheckGraphResults<V>
where
    V: NodeTrait + Debug,
{
    if graph.node_count() == 0 {
        return CheckGraphResults::default();
    }

    let n = graph.node_count();

    // build a copy of the graph where the nodes and edges appear in topsorted order
    let mut map = HashMap::with_capacity(n);
    let mut topsorted = DiGraphMap::<V, ()>::new();
    // iterate nodes in topological order
    for (i, &node) in topological_order.iter().enumerate() {
        map.insert(node, i);
        topsorted.add_node(node);
        // insert nodes as successors to their predecessors
        for pred in graph.neighbors_directed(node, Incoming) {
            topsorted.add_edge(pred, node, ());
        }
    }

    let mut reachable = FixedBitSet::with_capacity(n * n);
    let mut connected = HashSet::new();
    let mut disconnected = Vec::new();

    let mut transitive_edges = Vec::new();
    let mut transitive_reduction = DiGraphMap::<V, ()>::new();
    let mut transitive_closure = DiGraphMap::<V, ()>::new();

    let mut visited = FixedBitSet::with_capacity(n);

    // iterate nodes in topological order
    for node in topsorted.nodes() {
        transitive_reduction.add_node(node);
        transitive_closure.add_node(node);
    }

    // iterate nodes in reverse topological order
    for a in topsorted.nodes().rev() {
        let index_a = *map.get(&a).unwrap();
        // iterate their successors in topological order
        for b in topsorted.neighbors_directed(a, Outgoing) {
            let index_b = *map.get(&b).unwrap();
            debug_assert!(index_a < index_b);
            if !visited[index_b] {
                // edge <a, b> is not redundant
                transitive_reduction.add_edge(a, b, ());
                transitive_closure.add_edge(a, b, ());
                reachable.insert(index(index_a, index_b, n));

                let successors = transitive_closure
                    .neighbors_directed(b, Outgoing)
                    .collect::<Vec<_>>();
                for c in successors {
                    let index_c = *map.get(&c).unwrap();
                    debug_assert!(index_b < index_c);
                    if !visited[index_c] {
                        visited.insert(index_c);
                        transitive_closure.add_edge(a, c, ());
                        reachable.insert(index(index_a, index_c, n));
                    }
                }
            } else {
                // edge <a, b> is redundant
                transitive_edges.push((a, b));
            }
        }

        visited.clear();
    }

    // partition pairs of nodes into "connected by path" and "not connected by path"
    for i in 0..(n - 1) {
        // reachable is upper triangular because the nodes were topsorted
        for index in index(i, i + 1, n)..=index(i, n - 1, n) {
            let (a, b) = row_col(index, n);
            let pair = (topological_order[a], topological_order[b]);
            if reachable[index] {
                connected.insert(pair);
            } else {
                disconnected.push(pair);
            }
        }
    }

    // fill diagonal (nodes reach themselves)
    // for i in 0..n {
    //     reachable.set(index(i, i, n), true);
    // }

    CheckGraphResults {
        reachable,
        connected,
        disconnected,
        transitive_edges,
        transitive_reduction,
        transitive_closure,
    }
}

/// Returns the simple cycles in a strongly-connected component of a directed graph.
///
/// The algorithm implemented comes from
/// ["Finding all the elementary circuits of a directed graph"][1] by D. B. Johnson.
///
/// [1]: https://doi.org/10.1137/0204007
pub fn simple_cycles_in_component<N>(graph: &DiGraphMap<N, ()>, scc: &[N]) -> Vec<Vec<N>>
where
    N: NodeTrait + Debug,
{
    let mut cycles = vec![];
    let mut sccs = vec![scc.to_vec()];

    while let Some(mut scc) = sccs.pop() {
        // only look at nodes and edges in this strongly-connected component
        let mut subgraph = DiGraphMap::new();
        for &node in &scc {
            subgraph.add_node(node);
        }

        for &node in &scc {
            for successor in graph.neighbors(node) {
                if subgraph.contains_node(successor) {
                    subgraph.add_edge(node, successor, ());
                }
            }
        }

        // path of nodes that may form a cycle
        let mut path = Vec::with_capacity(subgraph.node_count());
        // we mark nodes as "blocked" to avoid finding permutations of the same cycles
        let mut blocked = HashSet::with_capacity(subgraph.node_count());
        // connects nodes along path segments that can't be part of a cycle (given current root)
        // those nodes can be unblocked at the same time
        let mut unblock_together: HashMap<N, HashSet<N>> =
            HashMap::with_capacity(subgraph.node_count());
        // stack for unblocking nodes
        let mut unblock_stack = Vec::with_capacity(subgraph.node_count());
        // nodes can be involved in multiple cycles
        let mut maybe_in_more_cycles: HashSet<N> = HashSet::with_capacity(subgraph.node_count());
        // stack for DFS
        let mut stack = Vec::with_capacity(subgraph.node_count());

        // we're going to look for all cycles that begin and end at this node
        let root = scc.pop().unwrap();
        // start a path at the root
        path.clear();
        path.push(root);
        // mark this node as blocked
        blocked.insert(root);

        // DFS
        stack.clear();
        stack.push((root, subgraph.neighbors(root)));
        while !stack.is_empty() {
            let (ref node, successors) = stack.last_mut().unwrap();
            if let Some(next) = successors.next() {
                if next == root {
                    // found a cycle
                    maybe_in_more_cycles.extend(path.iter());
                    cycles.push(path.clone());
                } else if !blocked.contains(&next) {
                    // first time seeing `next` on this path
                    maybe_in_more_cycles.remove(&next);
                    path.push(next);
                    blocked.insert(next);
                    stack.push((next, subgraph.neighbors(next)));
                    continue;
                } else {
                    // not first time seeing `next` on this path
                }
            }

            if successors.peekable().peek().is_none() {
                if maybe_in_more_cycles.contains(node) {
                    unblock_stack.push(*node);
                    // unblock this node's ancestors
                    while let Some(n) = unblock_stack.pop() {
                        if blocked.remove(&n) {
                            let unblock_predecessors = unblock_together.entry(n).or_default();
                            unblock_stack.extend(unblock_predecessors.iter());
                            unblock_predecessors.clear();
                        }
                    }
                } else {
                    // if its descendants can be unblocked later, this node will be too
                    for successor in subgraph.neighbors(*node) {
                        unblock_together.entry(successor).or_default().insert(*node);
                    }
                }

                // remove node from path and DFS stack
                path.pop();
                stack.pop();
            }
        }

        // remove node from subgraph
        subgraph.remove_node(root);

        // divide remainder into smaller SCCs
        let mut tarjan_scc = TarjanScc::new();
        tarjan_scc.run(&subgraph, |scc| {
            if scc.len() > 1 {
                sccs.push(scc.to_vec());
            }
        });
    }

    cycles
}