bevy_ecs/schedule/schedule.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
use std::{
collections::BTreeSet,
fmt::{Debug, Write},
};
#[cfg(feature = "trace")]
use bevy_utils::tracing::info_span;
use bevy_utils::{default, tracing::info};
use bevy_utils::{
tracing::{error, warn},
HashMap, HashSet,
};
use fixedbitset::FixedBitSet;
use petgraph::{algo::TarjanScc, prelude::*};
use thiserror::Error;
use crate::{
self as bevy_ecs,
component::{ComponentId, Components, Tick},
prelude::Component,
schedule::*,
system::{BoxedSystem, IntoSystem, Resource, System},
world::World,
};
pub use stepping::Stepping;
/// Resource that stores [`Schedule`]s mapped to [`ScheduleLabel`]s excluding the current running [`Schedule`].
#[derive(Default, Resource)]
pub struct Schedules {
inner: HashMap<InternedScheduleLabel, Schedule>,
/// List of [`ComponentId`]s to ignore when reporting system order ambiguity conflicts
pub ignored_scheduling_ambiguities: BTreeSet<ComponentId>,
}
impl Schedules {
/// Constructs an empty `Schedules` with zero initial capacity.
pub fn new() -> Self {
Self {
inner: HashMap::new(),
ignored_scheduling_ambiguities: BTreeSet::new(),
}
}
/// Inserts a labeled schedule into the map.
///
/// If the map already had an entry for `label`, `schedule` is inserted,
/// and the old schedule is returned. Otherwise, `None` is returned.
pub fn insert(&mut self, schedule: Schedule) -> Option<Schedule> {
self.inner.insert(schedule.label, schedule)
}
/// Removes the schedule corresponding to the `label` from the map, returning it if it existed.
pub fn remove(&mut self, label: impl ScheduleLabel) -> Option<Schedule> {
self.inner.remove(&label.intern())
}
/// Removes the (schedule, label) pair corresponding to the `label` from the map, returning it if it existed.
pub fn remove_entry(
&mut self,
label: impl ScheduleLabel,
) -> Option<(InternedScheduleLabel, Schedule)> {
self.inner.remove_entry(&label.intern())
}
/// Does a schedule with the provided label already exist?
pub fn contains(&self, label: impl ScheduleLabel) -> bool {
self.inner.contains_key(&label.intern())
}
/// Returns a reference to the schedule associated with `label`, if it exists.
pub fn get(&self, label: impl ScheduleLabel) -> Option<&Schedule> {
self.inner.get(&label.intern())
}
/// Returns a mutable reference to the schedule associated with `label`, if it exists.
pub fn get_mut(&mut self, label: impl ScheduleLabel) -> Option<&mut Schedule> {
self.inner.get_mut(&label.intern())
}
/// Returns a mutable reference to the schedules associated with `label`, creating one if it doesn't already exist.
pub fn entry(&mut self, label: impl ScheduleLabel) -> &mut Schedule {
self.inner
.entry(label.intern())
.or_insert_with(|| Schedule::new(label))
}
/// Returns an iterator over all schedules. Iteration order is undefined.
pub fn iter(&self) -> impl Iterator<Item = (&dyn ScheduleLabel, &Schedule)> {
self.inner
.iter()
.map(|(label, schedule)| (&**label, schedule))
}
/// Returns an iterator over mutable references to all schedules. Iteration order is undefined.
pub fn iter_mut(&mut self) -> impl Iterator<Item = (&dyn ScheduleLabel, &mut Schedule)> {
self.inner
.iter_mut()
.map(|(label, schedule)| (&**label, schedule))
}
/// Iterates the change ticks of all systems in all stored schedules and clamps any older than
/// [`MAX_CHANGE_AGE`](crate::change_detection::MAX_CHANGE_AGE).
/// This prevents overflow and thus prevents false positives.
pub(crate) fn check_change_ticks(&mut self, change_tick: Tick) {
#[cfg(feature = "trace")]
let _all_span = info_span!("check stored schedule ticks").entered();
// label used when trace feature is enabled
#[allow(unused_variables)]
for (label, schedule) in &mut self.inner {
#[cfg(feature = "trace")]
let name = format!("{label:?}");
#[cfg(feature = "trace")]
let _one_span = info_span!("check schedule ticks", name = &name).entered();
schedule.check_change_ticks(change_tick);
}
}
/// Applies the provided [`ScheduleBuildSettings`] to all schedules.
pub fn configure_schedules(&mut self, schedule_build_settings: ScheduleBuildSettings) {
for (_, schedule) in &mut self.inner {
schedule.set_build_settings(schedule_build_settings.clone());
}
}
/// Ignore system order ambiguities caused by conflicts on [`Component`]s of type `T`.
pub fn allow_ambiguous_component<T: Component>(&mut self, world: &mut World) {
self.ignored_scheduling_ambiguities
.insert(world.init_component::<T>());
}
/// Ignore system order ambiguities caused by conflicts on [`Resource`]s of type `T`.
pub fn allow_ambiguous_resource<T: Resource>(&mut self, world: &mut World) {
self.ignored_scheduling_ambiguities
.insert(world.components.init_resource::<T>());
}
/// Iterate through the [`ComponentId`]'s that will be ignored.
pub fn iter_ignored_ambiguities(&self) -> impl Iterator<Item = &ComponentId> + '_ {
self.ignored_scheduling_ambiguities.iter()
}
/// Prints the names of the components and resources with [`info`]
///
/// May panic or retrieve incorrect names if [`Components`] is not from the same
/// world
pub fn print_ignored_ambiguities(&self, components: &Components) {
let mut message =
"System order ambiguities caused by conflicts on the following types are ignored:\n"
.to_string();
for id in self.iter_ignored_ambiguities() {
writeln!(message, "{}", components.get_name(*id).unwrap()).unwrap();
}
info!("{}", message);
}
/// Adds one or more systems to the [`Schedule`] matching the provided [`ScheduleLabel`].
pub fn add_systems<M>(
&mut self,
schedule: impl ScheduleLabel,
systems: impl IntoSystemConfigs<M>,
) -> &mut Self {
self.entry(schedule).add_systems(systems);
self
}
/// Configures a collection of system sets in the provided schedule, adding any sets that do not exist.
#[track_caller]
pub fn configure_sets(
&mut self,
schedule: impl ScheduleLabel,
sets: impl IntoSystemSetConfigs,
) -> &mut Self {
self.entry(schedule).configure_sets(sets);
self
}
/// Suppress warnings and errors that would result from systems in these sets having ambiguities
/// (conflicting access but indeterminate order) with systems in `set`.
///
/// When possible, do this directly in the `.add_systems(Update, a.ambiguous_with(b))` call.
/// However, sometimes two independent plugins `A` and `B` are reported as ambiguous, which you
/// can only suppress as the consumer of both.
#[track_caller]
pub fn ignore_ambiguity<M1, M2, S1, S2>(
&mut self,
schedule: impl ScheduleLabel,
a: S1,
b: S2,
) -> &mut Self
where
S1: IntoSystemSet<M1>,
S2: IntoSystemSet<M2>,
{
self.entry(schedule).ignore_ambiguity(a, b);
self
}
}
fn make_executor(kind: ExecutorKind) -> Box<dyn SystemExecutor> {
match kind {
ExecutorKind::Simple => Box::new(SimpleExecutor::new()),
ExecutorKind::SingleThreaded => Box::new(SingleThreadedExecutor::new()),
ExecutorKind::MultiThreaded => Box::new(MultiThreadedExecutor::new()),
}
}
/// Chain systems into dependencies
#[derive(PartialEq)]
pub enum Chain {
/// Run nodes in order. If there are deferred parameters in preceding systems a
/// [`apply_deferred`] will be added on the edge.
Yes,
/// Run nodes in order. This will not add [`apply_deferred`] between nodes.
YesIgnoreDeferred,
/// Nodes are allowed to run in any order.
No,
}
/// A collection of systems, and the metadata and executor needed to run them
/// in a certain order under certain conditions.
///
/// # Example
/// Here is an example of a `Schedule` running a "Hello world" system:
/// ```
/// # use bevy_ecs::prelude::*;
/// fn hello_world() { println!("Hello world!") }
///
/// fn main() {
/// let mut world = World::new();
/// let mut schedule = Schedule::default();
/// schedule.add_systems(hello_world);
///
/// schedule.run(&mut world);
/// }
/// ```
///
/// A schedule can also run several systems in an ordered way:
/// ```
/// # use bevy_ecs::prelude::*;
/// fn system_one() { println!("System 1 works!") }
/// fn system_two() { println!("System 2 works!") }
/// fn system_three() { println!("System 3 works!") }
///
/// fn main() {
/// let mut world = World::new();
/// let mut schedule = Schedule::default();
/// schedule.add_systems((
/// system_two,
/// system_one.before(system_two),
/// system_three.after(system_two),
/// ));
///
/// schedule.run(&mut world);
/// }
/// ```
pub struct Schedule {
label: InternedScheduleLabel,
graph: ScheduleGraph,
executable: SystemSchedule,
executor: Box<dyn SystemExecutor>,
executor_initialized: bool,
}
#[derive(ScheduleLabel, Hash, PartialEq, Eq, Debug, Clone)]
struct DefaultSchedule;
impl Default for Schedule {
/// Creates a schedule with a default label. Only use in situations where
/// you don't care about the [`ScheduleLabel`]. Inserting a default schedule
/// into the world risks overwriting another schedule. For most situations
/// you should use [`Schedule::new`].
fn default() -> Self {
Self::new(DefaultSchedule)
}
}
impl Schedule {
/// Constructs an empty `Schedule`.
pub fn new(label: impl ScheduleLabel) -> Self {
Self {
label: label.intern(),
graph: ScheduleGraph::new(),
executable: SystemSchedule::new(),
executor: make_executor(ExecutorKind::default()),
executor_initialized: false,
}
}
/// Get the `InternedScheduleLabel` for this `Schedule`.
pub fn label(&self) -> InternedScheduleLabel {
self.label
}
/// Add a collection of systems to the schedule.
pub fn add_systems<M>(&mut self, systems: impl IntoSystemConfigs<M>) -> &mut Self {
self.graph.process_configs(systems.into_configs(), false);
self
}
/// Suppress warnings and errors that would result from systems in these sets having ambiguities
/// (conflicting access but indeterminate order) with systems in `set`.
#[track_caller]
pub fn ignore_ambiguity<M1, M2, S1, S2>(&mut self, a: S1, b: S2) -> &mut Self
where
S1: IntoSystemSet<M1>,
S2: IntoSystemSet<M2>,
{
let a = a.into_system_set();
let b = b.into_system_set();
let Some(&a_id) = self.graph.system_set_ids.get(&a.intern()) else {
panic!(
"Could not mark system as ambiguous, `{:?}` was not found in the schedule.
Did you try to call `ambiguous_with` before adding the system to the world?",
a
);
};
let Some(&b_id) = self.graph.system_set_ids.get(&b.intern()) else {
panic!(
"Could not mark system as ambiguous, `{:?}` was not found in the schedule.
Did you try to call `ambiguous_with` before adding the system to the world?",
b
);
};
self.graph.ambiguous_with.add_edge(a_id, b_id, ());
self
}
/// Configures a collection of system sets in this schedule, adding them if they does not exist.
#[track_caller]
pub fn configure_sets(&mut self, sets: impl IntoSystemSetConfigs) -> &mut Self {
self.graph.configure_sets(sets);
self
}
/// Changes miscellaneous build settings.
pub fn set_build_settings(&mut self, settings: ScheduleBuildSettings) -> &mut Self {
self.graph.settings = settings;
self
}
/// Returns the schedule's current `ScheduleBuildSettings`.
pub fn get_build_settings(&self) -> ScheduleBuildSettings {
self.graph.settings.clone()
}
/// Returns the schedule's current execution strategy.
pub fn get_executor_kind(&self) -> ExecutorKind {
self.executor.kind()
}
/// Sets the schedule's execution strategy.
pub fn set_executor_kind(&mut self, executor: ExecutorKind) -> &mut Self {
if executor != self.executor.kind() {
self.executor = make_executor(executor);
self.executor_initialized = false;
}
self
}
/// Set whether the schedule applies deferred system buffers on final time or not. This is a catch-all
/// in case a system uses commands but was not explicitly ordered before an instance of
/// [`apply_deferred`]. By default this
/// setting is true, but may be disabled if needed.
pub fn set_apply_final_deferred(&mut self, apply_final_deferred: bool) -> &mut Self {
self.executor.set_apply_final_deferred(apply_final_deferred);
self
}
/// Runs all systems in this schedule on the `world`, using its current execution strategy.
pub fn run(&mut self, world: &mut World) {
#[cfg(feature = "trace")]
let _span = info_span!("schedule", name = ?self.label).entered();
world.check_change_ticks();
self.initialize(world)
.unwrap_or_else(|e| panic!("Error when initializing schedule {:?}: {e}", self.label));
#[cfg(not(feature = "bevy_debug_stepping"))]
self.executor.run(&mut self.executable, world, None);
#[cfg(feature = "bevy_debug_stepping")]
{
let skip_systems = match world.get_resource_mut::<Stepping>() {
None => None,
Some(mut stepping) => stepping.skipped_systems(self),
};
self.executor
.run(&mut self.executable, world, skip_systems.as_ref());
}
}
/// Initializes any newly-added systems and conditions, rebuilds the executable schedule,
/// and re-initializes the executor.
///
/// Moves all systems and run conditions out of the [`ScheduleGraph`].
pub fn initialize(&mut self, world: &mut World) -> Result<(), ScheduleBuildError> {
if self.graph.changed {
self.graph.initialize(world);
let ignored_ambiguities = world
.get_resource_or_insert_with::<Schedules>(Schedules::default)
.ignored_scheduling_ambiguities
.clone();
self.graph.update_schedule(
&mut self.executable,
world.components(),
&ignored_ambiguities,
self.label,
)?;
self.graph.changed = false;
self.executor_initialized = false;
}
if !self.executor_initialized {
self.executor.init(&self.executable);
self.executor_initialized = true;
}
Ok(())
}
/// Returns the [`ScheduleGraph`].
pub fn graph(&self) -> &ScheduleGraph {
&self.graph
}
/// Returns a mutable reference to the [`ScheduleGraph`].
pub fn graph_mut(&mut self) -> &mut ScheduleGraph {
&mut self.graph
}
/// Returns the [`SystemSchedule`].
pub(crate) fn executable(&self) -> &SystemSchedule {
&self.executable
}
/// Iterates the change ticks of all systems in the schedule and clamps any older than
/// [`MAX_CHANGE_AGE`](crate::change_detection::MAX_CHANGE_AGE).
/// This prevents overflow and thus prevents false positives.
pub(crate) fn check_change_ticks(&mut self, change_tick: Tick) {
for system in &mut self.executable.systems {
if !is_apply_deferred(system) {
system.check_change_tick(change_tick);
}
}
for conditions in &mut self.executable.system_conditions {
for system in conditions {
system.check_change_tick(change_tick);
}
}
for conditions in &mut self.executable.set_conditions {
for system in conditions {
system.check_change_tick(change_tick);
}
}
}
/// Directly applies any accumulated [`Deferred`](crate::system::Deferred) system parameters (like [`Commands`](crate::prelude::Commands)) to the `world`.
///
/// Like always, deferred system parameters are applied in the "topological sort order" of the schedule graph.
/// As a result, buffers from one system are only guaranteed to be applied before those of other systems
/// if there is an explicit system ordering between the two systems.
///
/// This is used in rendering to extract data from the main world, storing the data in system buffers,
/// before applying their buffers in a different world.
pub fn apply_deferred(&mut self, world: &mut World) {
for system in &mut self.executable.systems {
system.apply_deferred(world);
}
}
/// Returns an iterator over all systems in this schedule.
///
/// Note: this method will return [`ScheduleNotInitialized`] if the
/// schedule has never been initialized or run.
pub fn systems(
&self,
) -> Result<impl Iterator<Item = (NodeId, &BoxedSystem)> + Sized, ScheduleNotInitialized> {
if !self.executor_initialized {
return Err(ScheduleNotInitialized);
}
let iter = self
.executable
.system_ids
.iter()
.zip(&self.executable.systems)
.map(|(node_id, system)| (*node_id, system));
Ok(iter)
}
/// Returns the number of systems in this schedule.
pub fn systems_len(&self) -> usize {
if !self.executor_initialized {
self.graph.systems.len()
} else {
self.executable.systems.len()
}
}
}
/// A directed acyclic graph structure.
#[derive(Default)]
pub struct Dag {
/// A directed graph.
graph: DiGraphMap<NodeId, ()>,
/// A cached topological ordering of the graph.
topsort: Vec<NodeId>,
}
impl Dag {
fn new() -> Self {
Self {
graph: DiGraphMap::new(),
topsort: Vec::new(),
}
}
/// The directed graph of the stored systems, connected by their ordering dependencies.
pub fn graph(&self) -> &DiGraphMap<NodeId, ()> {
&self.graph
}
/// A cached topological ordering of the graph.
///
/// The order is determined by the ordering dependencies between systems.
pub fn cached_topsort(&self) -> &[NodeId] {
&self.topsort
}
}
/// A [`SystemSet`] with metadata, stored in a [`ScheduleGraph`].
struct SystemSetNode {
inner: InternedSystemSet,
}
impl SystemSetNode {
pub fn new(set: InternedSystemSet) -> Self {
Self { inner: set }
}
pub fn name(&self) -> String {
format!("{:?}", &self.inner)
}
pub fn is_system_type(&self) -> bool {
self.inner.system_type().is_some()
}
pub fn is_anonymous(&self) -> bool {
self.inner.is_anonymous()
}
}
/// A [`BoxedSystem`] with metadata, stored in a [`ScheduleGraph`].
struct SystemNode {
inner: Option<BoxedSystem>,
}
impl SystemNode {
pub fn new(system: BoxedSystem) -> Self {
Self {
inner: Some(system),
}
}
pub fn get(&self) -> Option<&BoxedSystem> {
self.inner.as_ref()
}
pub fn get_mut(&mut self) -> Option<&mut BoxedSystem> {
self.inner.as_mut()
}
}
/// Metadata for a [`Schedule`].
///
/// The order isn't optimized; calling `ScheduleGraph::build_schedule` will return a
/// `SystemSchedule` where the order is optimized for execution.
#[derive(Default)]
pub struct ScheduleGraph {
/// List of systems in the schedule
systems: Vec<SystemNode>,
/// List of conditions for each system, in the same order as `systems`
system_conditions: Vec<Vec<BoxedCondition>>,
/// List of system sets in the schedule
system_sets: Vec<SystemSetNode>,
/// List of conditions for each system set, in the same order as `system_sets`
system_set_conditions: Vec<Vec<BoxedCondition>>,
/// Map from system set to node id
system_set_ids: HashMap<InternedSystemSet, NodeId>,
/// Systems that have not been initialized yet; for system sets, we store the index of the first uninitialized condition
/// (all the conditions after that index still need to be initialized)
uninit: Vec<(NodeId, usize)>,
/// Directed acyclic graph of the hierarchy (which systems/sets are children of which sets)
hierarchy: Dag,
/// Directed acyclic graph of the dependency (which systems/sets have to run before which other systems/sets)
dependency: Dag,
ambiguous_with: UnGraphMap<NodeId, ()>,
ambiguous_with_all: HashSet<NodeId>,
conflicting_systems: Vec<(NodeId, NodeId, Vec<ComponentId>)>,
anonymous_sets: usize,
changed: bool,
settings: ScheduleBuildSettings,
/// Dependency edges that will **not** automatically insert an instance of `apply_deferred` on the edge.
no_sync_edges: BTreeSet<(NodeId, NodeId)>,
auto_sync_node_ids: HashMap<u32, NodeId>,
}
impl ScheduleGraph {
/// Creates an empty [`ScheduleGraph`] with default settings.
pub fn new() -> Self {
Self {
systems: Vec::new(),
system_conditions: Vec::new(),
system_sets: Vec::new(),
system_set_conditions: Vec::new(),
system_set_ids: HashMap::new(),
uninit: Vec::new(),
hierarchy: Dag::new(),
dependency: Dag::new(),
ambiguous_with: UnGraphMap::new(),
ambiguous_with_all: HashSet::new(),
conflicting_systems: Vec::new(),
anonymous_sets: 0,
changed: false,
settings: default(),
no_sync_edges: BTreeSet::new(),
auto_sync_node_ids: HashMap::new(),
}
}
/// Returns the system at the given [`NodeId`], if it exists.
pub fn get_system_at(&self, id: NodeId) -> Option<&dyn System<In = (), Out = ()>> {
if !id.is_system() {
return None;
}
self.systems
.get(id.index())
.and_then(|system| system.inner.as_deref())
}
/// Returns the system at the given [`NodeId`].
///
/// Panics if it doesn't exist.
#[track_caller]
pub fn system_at(&self, id: NodeId) -> &dyn System<In = (), Out = ()> {
self.get_system_at(id)
.ok_or_else(|| format!("system with id {id:?} does not exist in this Schedule"))
.unwrap()
}
/// Returns the set at the given [`NodeId`], if it exists.
pub fn get_set_at(&self, id: NodeId) -> Option<&dyn SystemSet> {
if !id.is_set() {
return None;
}
self.system_sets.get(id.index()).map(|set| &*set.inner)
}
/// Returns the set at the given [`NodeId`].
///
/// Panics if it doesn't exist.
#[track_caller]
pub fn set_at(&self, id: NodeId) -> &dyn SystemSet {
self.get_set_at(id)
.ok_or_else(|| format!("set with id {id:?} does not exist in this Schedule"))
.unwrap()
}
/// Returns an iterator over all systems in this schedule, along with the conditions for each system.
pub fn systems(
&self,
) -> impl Iterator<Item = (NodeId, &dyn System<In = (), Out = ()>, &[BoxedCondition])> {
self.systems
.iter()
.zip(self.system_conditions.iter())
.enumerate()
.filter_map(|(i, (system_node, condition))| {
let system = system_node.inner.as_deref()?;
Some((NodeId::System(i), system, condition.as_slice()))
})
}
/// Returns an iterator over all system sets in this schedule, along with the conditions for each
/// system set.
pub fn system_sets(&self) -> impl Iterator<Item = (NodeId, &dyn SystemSet, &[BoxedCondition])> {
self.system_set_ids.iter().map(|(_, &node_id)| {
let set_node = &self.system_sets[node_id.index()];
let set = &*set_node.inner;
let conditions = self.system_set_conditions[node_id.index()].as_slice();
(node_id, set, conditions)
})
}
/// Returns the [`Dag`] of the hierarchy.
///
/// The hierarchy is a directed acyclic graph of the systems and sets,
/// where an edge denotes that a system or set is the child of another set.
pub fn hierarchy(&self) -> &Dag {
&self.hierarchy
}
/// Returns the [`Dag`] of the dependencies in the schedule.
///
/// Nodes in this graph are systems and sets, and edges denote that
/// a system or set has to run before another system or set.
pub fn dependency(&self) -> &Dag {
&self.dependency
}
/// Returns the list of systems that conflict with each other, i.e. have ambiguities in their access.
///
/// If the `Vec<ComponentId>` is empty, the systems conflict on [`World`] access.
/// Must be called after [`ScheduleGraph::build_schedule`] to be non-empty.
pub fn conflicting_systems(&self) -> &[(NodeId, NodeId, Vec<ComponentId>)] {
&self.conflicting_systems
}
fn process_config<T: ProcessNodeConfig>(
&mut self,
config: NodeConfig<T>,
collect_nodes: bool,
) -> ProcessConfigsResult {
ProcessConfigsResult {
densely_chained: true,
nodes: collect_nodes
.then_some(T::process_config(self, config))
.into_iter()
.collect(),
}
}
fn apply_collective_conditions<T: ProcessNodeConfig>(
&mut self,
configs: &mut [NodeConfigs<T>],
collective_conditions: Vec<BoxedCondition>,
) {
if !collective_conditions.is_empty() {
if let [config] = configs {
for condition in collective_conditions {
config.run_if_dyn(condition);
}
} else {
let set = self.create_anonymous_set();
for config in configs.iter_mut() {
config.in_set_inner(set.intern());
}
let mut set_config = SystemSetConfig::new(set.intern());
set_config.conditions.extend(collective_conditions);
self.configure_set_inner(set_config).unwrap();
}
}
}
/// Adds the config nodes to the graph.
///
/// `collect_nodes` controls whether the `NodeId`s of the processed config nodes are stored in the returned [`ProcessConfigsResult`].
/// `process_config` is the function which processes each individual config node and returns a corresponding `NodeId`.
///
/// The fields on the returned [`ProcessConfigsResult`] are:
/// - `nodes`: a vector of all node ids contained in the nested `NodeConfigs`
/// - `densely_chained`: a boolean that is true if all nested nodes are linearly chained (with successive `after` orderings) in the order they are defined
#[track_caller]
fn process_configs<T: ProcessNodeConfig>(
&mut self,
configs: NodeConfigs<T>,
collect_nodes: bool,
) -> ProcessConfigsResult {
match configs {
NodeConfigs::NodeConfig(config) => self.process_config(config, collect_nodes),
NodeConfigs::Configs {
mut configs,
collective_conditions,
chained,
} => {
self.apply_collective_conditions(&mut configs, collective_conditions);
let ignore_deferred = matches!(chained, Chain::YesIgnoreDeferred);
let chained = matches!(chained, Chain::Yes | Chain::YesIgnoreDeferred);
// Densely chained if
// * chained and all configs in the chain are densely chained, or
// * unchained with a single densely chained config
let mut densely_chained = chained || configs.len() == 1;
let mut configs = configs.into_iter();
let mut nodes = Vec::new();
let Some(first) = configs.next() else {
return ProcessConfigsResult {
nodes: Vec::new(),
densely_chained,
};
};
let mut previous_result = self.process_configs(first, collect_nodes || chained);
densely_chained &= previous_result.densely_chained;
for current in configs {
let current_result = self.process_configs(current, collect_nodes || chained);
densely_chained &= current_result.densely_chained;
if chained {
// if the current result is densely chained, we only need to chain the first node
let current_nodes = if current_result.densely_chained {
¤t_result.nodes[..1]
} else {
¤t_result.nodes
};
// if the previous result was densely chained, we only need to chain the last node
let previous_nodes = if previous_result.densely_chained {
&previous_result.nodes[previous_result.nodes.len() - 1..]
} else {
&previous_result.nodes
};
for previous_node in previous_nodes {
for current_node in current_nodes {
self.dependency
.graph
.add_edge(*previous_node, *current_node, ());
if ignore_deferred {
self.no_sync_edges.insert((*previous_node, *current_node));
}
}
}
}
if collect_nodes {
nodes.append(&mut previous_result.nodes);
}
previous_result = current_result;
}
if collect_nodes {
nodes.append(&mut previous_result.nodes);
}
ProcessConfigsResult {
nodes,
densely_chained,
}
}
}
}
/// Add a [`SystemConfig`] to the graph, including its dependencies and conditions.
fn add_system_inner(&mut self, config: SystemConfig) -> Result<NodeId, ScheduleBuildError> {
let id = NodeId::System(self.systems.len());
// graph updates are immediate
self.update_graphs(id, config.graph_info)?;
// system init has to be deferred (need `&mut World`)
self.uninit.push((id, 0));
self.systems.push(SystemNode::new(config.node));
self.system_conditions.push(config.conditions);
Ok(id)
}
#[track_caller]
fn configure_sets(&mut self, sets: impl IntoSystemSetConfigs) {
self.process_configs(sets.into_configs(), false);
}
/// Add a single `SystemSetConfig` to the graph, including its dependencies and conditions.
fn configure_set_inner(&mut self, set: SystemSetConfig) -> Result<NodeId, ScheduleBuildError> {
let SystemSetConfig {
node: set,
graph_info,
mut conditions,
} = set;
let id = match self.system_set_ids.get(&set) {
Some(&id) => id,
None => self.add_set(set),
};
// graph updates are immediate
self.update_graphs(id, graph_info)?;
// system init has to be deferred (need `&mut World`)
let system_set_conditions = &mut self.system_set_conditions[id.index()];
self.uninit.push((id, system_set_conditions.len()));
system_set_conditions.append(&mut conditions);
Ok(id)
}
fn add_set(&mut self, set: InternedSystemSet) -> NodeId {
let id = NodeId::Set(self.system_sets.len());
self.system_sets.push(SystemSetNode::new(set));
self.system_set_conditions.push(Vec::new());
self.system_set_ids.insert(set, id);
id
}
/// Checks that a system set isn't included in itself.
/// If not present, add the set to the graph.
fn check_hierarchy_set(
&mut self,
id: &NodeId,
set: InternedSystemSet,
) -> Result<(), ScheduleBuildError> {
match self.system_set_ids.get(&set) {
Some(set_id) => {
if id == set_id {
return Err(ScheduleBuildError::HierarchyLoop(self.get_node_name(id)));
}
}
None => {
self.add_set(set);
}
}
Ok(())
}
fn create_anonymous_set(&mut self) -> AnonymousSet {
let id = self.anonymous_sets;
self.anonymous_sets += 1;
AnonymousSet::new(id)
}
/// Check that no set is included in itself.
/// Add all the sets from the [`GraphInfo`]'s hierarchy to the graph.
fn check_hierarchy_sets(
&mut self,
id: &NodeId,
graph_info: &GraphInfo,
) -> Result<(), ScheduleBuildError> {
for &set in &graph_info.hierarchy {
self.check_hierarchy_set(id, set)?;
}
Ok(())
}
/// Checks that no system set is dependent on itself.
/// Add all the sets from the [`GraphInfo`]'s dependencies to the graph.
fn check_edges(
&mut self,
id: &NodeId,
graph_info: &GraphInfo,
) -> Result<(), ScheduleBuildError> {
for Dependency { kind: _, set } in &graph_info.dependencies {
match self.system_set_ids.get(set) {
Some(set_id) => {
if id == set_id {
return Err(ScheduleBuildError::DependencyLoop(self.get_node_name(id)));
}
}
None => {
self.add_set(*set);
}
}
}
if let Ambiguity::IgnoreWithSet(ambiguous_with) = &graph_info.ambiguous_with {
for set in ambiguous_with {
if !self.system_set_ids.contains_key(set) {
self.add_set(*set);
}
}
}
Ok(())
}
/// Update the internal graphs (hierarchy, dependency, ambiguity) by adding a single [`GraphInfo`]
fn update_graphs(
&mut self,
id: NodeId,
graph_info: GraphInfo,
) -> Result<(), ScheduleBuildError> {
self.check_hierarchy_sets(&id, &graph_info)?;
self.check_edges(&id, &graph_info)?;
self.changed = true;
let GraphInfo {
hierarchy: sets,
dependencies,
ambiguous_with,
..
} = graph_info;
self.hierarchy.graph.add_node(id);
self.dependency.graph.add_node(id);
for set in sets.into_iter().map(|set| self.system_set_ids[&set]) {
self.hierarchy.graph.add_edge(set, id, ());
// ensure set also appears in dependency graph
self.dependency.graph.add_node(set);
}
for (kind, set) in dependencies
.into_iter()
.map(|Dependency { kind, set }| (kind, self.system_set_ids[&set]))
{
let (lhs, rhs) = match kind {
DependencyKind::Before => (id, set),
DependencyKind::BeforeNoSync => {
self.no_sync_edges.insert((id, set));
(id, set)
}
DependencyKind::After => (set, id),
DependencyKind::AfterNoSync => {
self.no_sync_edges.insert((set, id));
(set, id)
}
};
self.dependency.graph.add_edge(lhs, rhs, ());
// ensure set also appears in hierarchy graph
self.hierarchy.graph.add_node(set);
}
match ambiguous_with {
Ambiguity::Check => (),
Ambiguity::IgnoreWithSet(ambiguous_with) => {
for set in ambiguous_with
.into_iter()
.map(|set| self.system_set_ids[&set])
{
self.ambiguous_with.add_edge(id, set, ());
}
}
Ambiguity::IgnoreAll => {
self.ambiguous_with_all.insert(id);
}
}
Ok(())
}
/// Initializes any newly-added systems and conditions by calling [`System::initialize`]
pub fn initialize(&mut self, world: &mut World) {
for (id, i) in self.uninit.drain(..) {
match id {
NodeId::System(index) => {
self.systems[index].get_mut().unwrap().initialize(world);
for condition in &mut self.system_conditions[index] {
condition.initialize(world);
}
}
NodeId::Set(index) => {
for condition in self.system_set_conditions[index].iter_mut().skip(i) {
condition.initialize(world);
}
}
}
}
}
/// Build a [`SystemSchedule`] optimized for scheduler access from the [`ScheduleGraph`].
///
/// This method also
/// - checks for dependency or hierarchy cycles
/// - checks for system access conflicts and reports ambiguities
pub fn build_schedule(
&mut self,
components: &Components,
schedule_label: InternedScheduleLabel,
ignored_ambiguities: &BTreeSet<ComponentId>,
) -> Result<SystemSchedule, ScheduleBuildError> {
// check hierarchy for cycles
self.hierarchy.topsort =
self.topsort_graph(&self.hierarchy.graph, ReportCycles::Hierarchy)?;
let hier_results = check_graph(&self.hierarchy.graph, &self.hierarchy.topsort);
self.optionally_check_hierarchy_conflicts(&hier_results.transitive_edges, schedule_label)?;
// remove redundant edges
self.hierarchy.graph = hier_results.transitive_reduction;
// check dependencies for cycles
self.dependency.topsort =
self.topsort_graph(&self.dependency.graph, ReportCycles::Dependency)?;
// check for systems or system sets depending on sets they belong to
let dep_results = check_graph(&self.dependency.graph, &self.dependency.topsort);
self.check_for_cross_dependencies(&dep_results, &hier_results.connected)?;
// map all system sets to their systems
// go in reverse topological order (bottom-up) for efficiency
let (set_systems, set_system_bitsets) =
self.map_sets_to_systems(&self.hierarchy.topsort, &self.hierarchy.graph);
self.check_order_but_intersect(&dep_results.connected, &set_system_bitsets)?;
// check that there are no edges to system-type sets that have multiple instances
self.check_system_type_set_ambiguity(&set_systems)?;
let mut dependency_flattened = self.get_dependency_flattened(&set_systems);
// modify graph with auto sync points
if self.settings.auto_insert_apply_deferred {
dependency_flattened = self.auto_insert_apply_deferred(&mut dependency_flattened)?;
}
// topsort
let mut dependency_flattened_dag = Dag {
topsort: self.topsort_graph(&dependency_flattened, ReportCycles::Dependency)?,
graph: dependency_flattened,
};
let flat_results = check_graph(
&dependency_flattened_dag.graph,
&dependency_flattened_dag.topsort,
);
// remove redundant edges
dependency_flattened_dag.graph = flat_results.transitive_reduction;
// flatten: combine `in_set` with `ambiguous_with` information
let ambiguous_with_flattened = self.get_ambiguous_with_flattened(&set_systems);
// check for conflicts
let conflicting_systems = self.get_conflicting_systems(
&flat_results.disconnected,
&ambiguous_with_flattened,
ignored_ambiguities,
);
self.optionally_check_conflicts(&conflicting_systems, components, schedule_label)?;
self.conflicting_systems = conflicting_systems;
// build the schedule
Ok(self.build_schedule_inner(dependency_flattened_dag, hier_results.reachable))
}
// modify the graph to have sync nodes for any dependants after a system with deferred system params
fn auto_insert_apply_deferred(
&mut self,
dependency_flattened: &mut GraphMap<NodeId, (), Directed>,
) -> Result<GraphMap<NodeId, (), Directed>, ScheduleBuildError> {
let mut sync_point_graph = dependency_flattened.clone();
let topo = self.topsort_graph(dependency_flattened, ReportCycles::Dependency)?;
// calculate the number of sync points each sync point is from the beginning of the graph
// use the same sync point if the distance is the same
let mut distances: HashMap<usize, Option<u32>> = HashMap::with_capacity(topo.len());
for node in &topo {
let add_sync_after = self.systems[node.index()].get().unwrap().has_deferred();
for target in dependency_flattened.neighbors_directed(*node, Outgoing) {
let add_sync_on_edge = add_sync_after
&& !is_apply_deferred(self.systems[target.index()].get().unwrap())
&& !self.no_sync_edges.contains(&(*node, target));
let weight = if add_sync_on_edge { 1 } else { 0 };
let distance = distances
.get(&target.index())
.unwrap_or(&None)
.or(Some(0))
.map(|distance| {
distance.max(
distances.get(&node.index()).unwrap_or(&None).unwrap_or(0) + weight,
)
});
distances.insert(target.index(), distance);
if add_sync_on_edge {
let sync_point = self.get_sync_point(distances[&target.index()].unwrap());
sync_point_graph.add_edge(*node, sync_point, ());
sync_point_graph.add_edge(sync_point, target, ());
// edge is now redundant
sync_point_graph.remove_edge(*node, target);
}
}
}
Ok(sync_point_graph)
}
/// add an [`apply_deferred`] system with no config
fn add_auto_sync(&mut self) -> NodeId {
let id = NodeId::System(self.systems.len());
self.systems
.push(SystemNode::new(Box::new(IntoSystem::into_system(
apply_deferred,
))));
self.system_conditions.push(Vec::new());
// ignore ambiguities with auto sync points
// They aren't under user control, so no one should know or care.
self.ambiguous_with_all.insert(id);
id
}
/// Returns the `NodeId` of the cached auto sync point. Will create
/// a new one if needed.
fn get_sync_point(&mut self, distance: u32) -> NodeId {
self.auto_sync_node_ids
.get(&distance)
.copied()
.or_else(|| {
let node_id = self.add_auto_sync();
self.auto_sync_node_ids.insert(distance, node_id);
Some(node_id)
})
.unwrap()
}
/// Return a map from system set `NodeId` to a list of system `NodeId`s that are included in the set.
/// Also return a map from system set `NodeId` to a `FixedBitSet` of system `NodeId`s that are included in the set,
/// where the bitset order is the same as `self.systems`
fn map_sets_to_systems(
&self,
hierarchy_topsort: &[NodeId],
hierarchy_graph: &GraphMap<NodeId, (), Directed>,
) -> (HashMap<NodeId, Vec<NodeId>>, HashMap<NodeId, FixedBitSet>) {
let mut set_systems: HashMap<NodeId, Vec<NodeId>> =
HashMap::with_capacity(self.system_sets.len());
let mut set_system_bitsets = HashMap::with_capacity(self.system_sets.len());
for &id in hierarchy_topsort.iter().rev() {
if id.is_system() {
continue;
}
let mut systems = Vec::new();
let mut system_bitset = FixedBitSet::with_capacity(self.systems.len());
for child in hierarchy_graph.neighbors_directed(id, Outgoing) {
match child {
NodeId::System(_) => {
systems.push(child);
system_bitset.insert(child.index());
}
NodeId::Set(_) => {
let child_systems = set_systems.get(&child).unwrap();
let child_system_bitset = set_system_bitsets.get(&child).unwrap();
systems.extend_from_slice(child_systems);
system_bitset.union_with(child_system_bitset);
}
}
}
set_systems.insert(id, systems);
set_system_bitsets.insert(id, system_bitset);
}
(set_systems, set_system_bitsets)
}
fn get_dependency_flattened(
&mut self,
set_systems: &HashMap<NodeId, Vec<NodeId>>,
) -> GraphMap<NodeId, (), Directed> {
// flatten: combine `in_set` with `before` and `after` information
// have to do it like this to preserve transitivity
let mut dependency_flattened = self.dependency.graph.clone();
let mut temp = Vec::new();
for (&set, systems) in set_systems {
if systems.is_empty() {
// collapse dependencies for empty sets
for a in dependency_flattened.neighbors_directed(set, Incoming) {
for b in dependency_flattened.neighbors_directed(set, Outgoing) {
if self.no_sync_edges.contains(&(a, set))
&& self.no_sync_edges.contains(&(set, b))
{
self.no_sync_edges.insert((a, b));
}
temp.push((a, b));
}
}
} else {
for a in dependency_flattened.neighbors_directed(set, Incoming) {
for &sys in systems {
if self.no_sync_edges.contains(&(a, set)) {
self.no_sync_edges.insert((a, sys));
}
temp.push((a, sys));
}
}
for b in dependency_flattened.neighbors_directed(set, Outgoing) {
for &sys in systems {
if self.no_sync_edges.contains(&(set, b)) {
self.no_sync_edges.insert((sys, b));
}
temp.push((sys, b));
}
}
}
dependency_flattened.remove_node(set);
for (a, b) in temp.drain(..) {
dependency_flattened.add_edge(a, b, ());
}
}
dependency_flattened
}
fn get_ambiguous_with_flattened(
&self,
set_systems: &HashMap<NodeId, Vec<NodeId>>,
) -> GraphMap<NodeId, (), Undirected> {
let mut ambiguous_with_flattened = UnGraphMap::new();
for (lhs, rhs, _) in self.ambiguous_with.all_edges() {
match (lhs, rhs) {
(NodeId::System(_), NodeId::System(_)) => {
ambiguous_with_flattened.add_edge(lhs, rhs, ());
}
(NodeId::Set(_), NodeId::System(_)) => {
for &lhs_ in set_systems.get(&lhs).unwrap_or(&Vec::new()) {
ambiguous_with_flattened.add_edge(lhs_, rhs, ());
}
}
(NodeId::System(_), NodeId::Set(_)) => {
for &rhs_ in set_systems.get(&rhs).unwrap_or(&Vec::new()) {
ambiguous_with_flattened.add_edge(lhs, rhs_, ());
}
}
(NodeId::Set(_), NodeId::Set(_)) => {
for &lhs_ in set_systems.get(&lhs).unwrap_or(&Vec::new()) {
for &rhs_ in set_systems.get(&rhs).unwrap_or(&vec![]) {
ambiguous_with_flattened.add_edge(lhs_, rhs_, ());
}
}
}
}
}
ambiguous_with_flattened
}
fn get_conflicting_systems(
&self,
flat_results_disconnected: &Vec<(NodeId, NodeId)>,
ambiguous_with_flattened: &GraphMap<NodeId, (), Undirected>,
ignored_ambiguities: &BTreeSet<ComponentId>,
) -> Vec<(NodeId, NodeId, Vec<ComponentId>)> {
let mut conflicting_systems = Vec::new();
for &(a, b) in flat_results_disconnected {
if ambiguous_with_flattened.contains_edge(a, b)
|| self.ambiguous_with_all.contains(&a)
|| self.ambiguous_with_all.contains(&b)
{
continue;
}
let system_a = self.systems[a.index()].get().unwrap();
let system_b = self.systems[b.index()].get().unwrap();
if system_a.is_exclusive() || system_b.is_exclusive() {
conflicting_systems.push((a, b, Vec::new()));
} else {
let access_a = system_a.component_access();
let access_b = system_b.component_access();
if !access_a.is_compatible(access_b) {
let conflicts: Vec<_> = access_a
.get_conflicts(access_b)
.into_iter()
.filter(|id| !ignored_ambiguities.contains(id))
.collect();
if !conflicts.is_empty() {
conflicting_systems.push((a, b, conflicts));
}
}
}
}
conflicting_systems
}
fn build_schedule_inner(
&self,
dependency_flattened_dag: Dag,
hier_results_reachable: FixedBitSet,
) -> SystemSchedule {
let dg_system_ids = dependency_flattened_dag.topsort.clone();
let dg_system_idx_map = dg_system_ids
.iter()
.cloned()
.enumerate()
.map(|(i, id)| (id, i))
.collect::<HashMap<_, _>>();
let hg_systems = self
.hierarchy
.topsort
.iter()
.cloned()
.enumerate()
.filter(|&(_i, id)| id.is_system())
.collect::<Vec<_>>();
let (hg_set_with_conditions_idxs, hg_set_ids): (Vec<_>, Vec<_>) = self
.hierarchy
.topsort
.iter()
.cloned()
.enumerate()
.filter(|&(_i, id)| {
// ignore system sets that have no conditions
// ignore system type sets (already covered, they don't have conditions)
id.is_set() && !self.system_set_conditions[id.index()].is_empty()
})
.unzip();
let sys_count = self.systems.len();
let set_with_conditions_count = hg_set_ids.len();
let hg_node_count = self.hierarchy.graph.node_count();
// get the number of dependencies and the immediate dependents of each system
// (needed by multi_threaded executor to run systems in the correct order)
let mut system_dependencies = Vec::with_capacity(sys_count);
let mut system_dependents = Vec::with_capacity(sys_count);
for &sys_id in &dg_system_ids {
let num_dependencies = dependency_flattened_dag
.graph
.neighbors_directed(sys_id, Incoming)
.count();
let dependents = dependency_flattened_dag
.graph
.neighbors_directed(sys_id, Outgoing)
.map(|dep_id| dg_system_idx_map[&dep_id])
.collect::<Vec<_>>();
system_dependencies.push(num_dependencies);
system_dependents.push(dependents);
}
// get the rows and columns of the hierarchy graph's reachability matrix
// (needed to we can evaluate conditions in the correct order)
let mut systems_in_sets_with_conditions =
vec![FixedBitSet::with_capacity(sys_count); set_with_conditions_count];
for (i, &row) in hg_set_with_conditions_idxs.iter().enumerate() {
let bitset = &mut systems_in_sets_with_conditions[i];
for &(col, sys_id) in &hg_systems {
let idx = dg_system_idx_map[&sys_id];
let is_descendant = hier_results_reachable[index(row, col, hg_node_count)];
bitset.set(idx, is_descendant);
}
}
let mut sets_with_conditions_of_systems =
vec![FixedBitSet::with_capacity(set_with_conditions_count); sys_count];
for &(col, sys_id) in &hg_systems {
let i = dg_system_idx_map[&sys_id];
let bitset = &mut sets_with_conditions_of_systems[i];
for (idx, &row) in hg_set_with_conditions_idxs
.iter()
.enumerate()
.take_while(|&(_idx, &row)| row < col)
{
let is_ancestor = hier_results_reachable[index(row, col, hg_node_count)];
bitset.set(idx, is_ancestor);
}
}
SystemSchedule {
systems: Vec::with_capacity(sys_count),
system_conditions: Vec::with_capacity(sys_count),
set_conditions: Vec::with_capacity(set_with_conditions_count),
system_ids: dg_system_ids,
set_ids: hg_set_ids,
system_dependencies,
system_dependents,
sets_with_conditions_of_systems,
systems_in_sets_with_conditions,
}
}
/// Updates the `SystemSchedule` from the `ScheduleGraph`.
fn update_schedule(
&mut self,
schedule: &mut SystemSchedule,
components: &Components,
ignored_ambiguities: &BTreeSet<ComponentId>,
schedule_label: InternedScheduleLabel,
) -> Result<(), ScheduleBuildError> {
if !self.uninit.is_empty() {
return Err(ScheduleBuildError::Uninitialized);
}
// move systems out of old schedule
for ((id, system), conditions) in schedule
.system_ids
.drain(..)
.zip(schedule.systems.drain(..))
.zip(schedule.system_conditions.drain(..))
{
self.systems[id.index()].inner = Some(system);
self.system_conditions[id.index()] = conditions;
}
for (id, conditions) in schedule
.set_ids
.drain(..)
.zip(schedule.set_conditions.drain(..))
{
self.system_set_conditions[id.index()] = conditions;
}
*schedule = self.build_schedule(components, schedule_label, ignored_ambiguities)?;
// move systems into new schedule
for &id in &schedule.system_ids {
let system = self.systems[id.index()].inner.take().unwrap();
let conditions = std::mem::take(&mut self.system_conditions[id.index()]);
schedule.systems.push(system);
schedule.system_conditions.push(conditions);
}
for &id in &schedule.set_ids {
let conditions = std::mem::take(&mut self.system_set_conditions[id.index()]);
schedule.set_conditions.push(conditions);
}
Ok(())
}
}
/// Values returned by [`ScheduleGraph::process_configs`]
struct ProcessConfigsResult {
/// All nodes contained inside this `process_configs` call's [`NodeConfigs`] hierarchy,
/// if `ancestor_chained` is true
nodes: Vec<NodeId>,
/// True if and only if all nodes are "densely chained", meaning that all nested nodes
/// are linearly chained (as if `after` system ordering had been applied between each node)
/// in the order they are defined
densely_chained: bool,
}
/// Trait used by [`ScheduleGraph::process_configs`] to process a single [`NodeConfig`].
trait ProcessNodeConfig: Sized {
/// Process a single [`NodeConfig`].
fn process_config(schedule_graph: &mut ScheduleGraph, config: NodeConfig<Self>) -> NodeId;
}
impl ProcessNodeConfig for BoxedSystem {
fn process_config(schedule_graph: &mut ScheduleGraph, config: NodeConfig<Self>) -> NodeId {
schedule_graph.add_system_inner(config).unwrap()
}
}
impl ProcessNodeConfig for InternedSystemSet {
fn process_config(schedule_graph: &mut ScheduleGraph, config: NodeConfig<Self>) -> NodeId {
schedule_graph.configure_set_inner(config).unwrap()
}
}
/// Used to select the appropriate reporting function.
enum ReportCycles {
Hierarchy,
Dependency,
}
// methods for reporting errors
impl ScheduleGraph {
fn get_node_name(&self, id: &NodeId) -> String {
self.get_node_name_inner(id, self.settings.report_sets)
}
#[inline]
fn get_node_name_inner(&self, id: &NodeId, report_sets: bool) -> String {
let mut name = match id {
NodeId::System(_) => {
let name = self.systems[id.index()].get().unwrap().name().to_string();
if report_sets {
let sets = self.names_of_sets_containing_node(id);
if sets.is_empty() {
name
} else if sets.len() == 1 {
format!("{name} (in set {})", sets[0])
} else {
format!("{name} (in sets {})", sets.join(", "))
}
} else {
name
}
}
NodeId::Set(_) => {
let set = &self.system_sets[id.index()];
if set.is_anonymous() {
self.anonymous_set_name(id)
} else {
set.name()
}
}
};
if self.settings.use_shortnames {
name = bevy_utils::get_short_name(&name);
}
name
}
fn anonymous_set_name(&self, id: &NodeId) -> String {
format!(
"({})",
self.hierarchy
.graph
.edges_directed(*id, Outgoing)
// never get the sets of the members or this will infinite recurse when the report_sets setting is on.
.map(|(_, member_id, _)| self.get_node_name_inner(&member_id, false))
.reduce(|a, b| format!("{a}, {b}"))
.unwrap_or_default()
)
}
fn get_node_kind(&self, id: &NodeId) -> &'static str {
match id {
NodeId::System(_) => "system",
NodeId::Set(_) => "system set",
}
}
/// If [`ScheduleBuildSettings::hierarchy_detection`] is [`LogLevel::Ignore`] this check
/// is skipped.
fn optionally_check_hierarchy_conflicts(
&self,
transitive_edges: &[(NodeId, NodeId)],
schedule_label: InternedScheduleLabel,
) -> Result<(), ScheduleBuildError> {
if self.settings.hierarchy_detection == LogLevel::Ignore || transitive_edges.is_empty() {
return Ok(());
}
let message = self.get_hierarchy_conflicts_error_message(transitive_edges);
match self.settings.hierarchy_detection {
LogLevel::Ignore => unreachable!(),
LogLevel::Warn => {
error!(
"Schedule {schedule_label:?} has redundant edges:\n {}",
message
);
Ok(())
}
LogLevel::Error => Err(ScheduleBuildError::HierarchyRedundancy(message)),
}
}
fn get_hierarchy_conflicts_error_message(
&self,
transitive_edges: &[(NodeId, NodeId)],
) -> String {
let mut message = String::from("hierarchy contains redundant edge(s)");
for (parent, child) in transitive_edges {
writeln!(
message,
" -- {} `{}` cannot be child of set `{}`, longer path exists",
self.get_node_kind(child),
self.get_node_name(child),
self.get_node_name(parent),
)
.unwrap();
}
message
}
/// Tries to topologically sort `graph`.
///
/// If the graph is acyclic, returns [`Ok`] with the list of [`NodeId`] in a valid
/// topological order. If the graph contains cycles, returns [`Err`] with the list of
/// strongly-connected components that contain cycles (also in a valid topological order).
///
/// # Errors
///
/// If the graph contain cycles, then an error is returned.
fn topsort_graph(
&self,
graph: &DiGraphMap<NodeId, ()>,
report: ReportCycles,
) -> Result<Vec<NodeId>, ScheduleBuildError> {
// Tarjan's SCC algorithm returns elements in *reverse* topological order.
let mut tarjan_scc = TarjanScc::new();
let mut top_sorted_nodes = Vec::with_capacity(graph.node_count());
let mut sccs_with_cycles = Vec::new();
tarjan_scc.run(graph, |scc| {
// A strongly-connected component is a group of nodes who can all reach each other
// through one or more paths. If an SCC contains more than one node, there must be
// at least one cycle within them.
if scc.len() > 1 {
sccs_with_cycles.push(scc.to_vec());
}
top_sorted_nodes.extend_from_slice(scc);
});
if sccs_with_cycles.is_empty() {
// reverse to get topological order
top_sorted_nodes.reverse();
Ok(top_sorted_nodes)
} else {
let mut cycles = Vec::new();
for scc in &sccs_with_cycles {
cycles.append(&mut simple_cycles_in_component(graph, scc));
}
let error = match report {
ReportCycles::Hierarchy => ScheduleBuildError::HierarchyCycle(
self.get_hierarchy_cycles_error_message(&cycles),
),
ReportCycles::Dependency => ScheduleBuildError::DependencyCycle(
self.get_dependency_cycles_error_message(&cycles),
),
};
Err(error)
}
}
/// Logs details of cycles in the hierarchy graph.
fn get_hierarchy_cycles_error_message(&self, cycles: &[Vec<NodeId>]) -> String {
let mut message = format!("schedule has {} in_set cycle(s):\n", cycles.len());
for (i, cycle) in cycles.iter().enumerate() {
let mut names = cycle.iter().map(|id| self.get_node_name(id));
let first_name = names.next().unwrap();
writeln!(
message,
"cycle {}: set `{first_name}` contains itself",
i + 1,
)
.unwrap();
writeln!(message, "set `{first_name}`").unwrap();
for name in names.chain(std::iter::once(first_name)) {
writeln!(message, " ... which contains set `{name}`").unwrap();
}
writeln!(message).unwrap();
}
message
}
/// Logs details of cycles in the dependency graph.
fn get_dependency_cycles_error_message(&self, cycles: &[Vec<NodeId>]) -> String {
let mut message = format!("schedule has {} before/after cycle(s):\n", cycles.len());
for (i, cycle) in cycles.iter().enumerate() {
let mut names = cycle
.iter()
.map(|id| (self.get_node_kind(id), self.get_node_name(id)));
let (first_kind, first_name) = names.next().unwrap();
writeln!(
message,
"cycle {}: {first_kind} `{first_name}` must run before itself",
i + 1,
)
.unwrap();
writeln!(message, "{first_kind} `{first_name}`").unwrap();
for (kind, name) in names.chain(std::iter::once((first_kind, first_name))) {
writeln!(message, " ... which must run before {kind} `{name}`").unwrap();
}
writeln!(message).unwrap();
}
message
}
fn check_for_cross_dependencies(
&self,
dep_results: &CheckGraphResults<NodeId>,
hier_results_connected: &HashSet<(NodeId, NodeId)>,
) -> Result<(), ScheduleBuildError> {
for &(a, b) in &dep_results.connected {
if hier_results_connected.contains(&(a, b)) || hier_results_connected.contains(&(b, a))
{
let name_a = self.get_node_name(&a);
let name_b = self.get_node_name(&b);
return Err(ScheduleBuildError::CrossDependency(name_a, name_b));
}
}
Ok(())
}
fn check_order_but_intersect(
&self,
dep_results_connected: &HashSet<(NodeId, NodeId)>,
set_system_bitsets: &HashMap<NodeId, FixedBitSet>,
) -> Result<(), ScheduleBuildError> {
// check that there is no ordering between system sets that intersect
for (a, b) in dep_results_connected {
if !(a.is_set() && b.is_set()) {
continue;
}
let a_systems = set_system_bitsets.get(a).unwrap();
let b_systems = set_system_bitsets.get(b).unwrap();
if !a_systems.is_disjoint(b_systems) {
return Err(ScheduleBuildError::SetsHaveOrderButIntersect(
self.get_node_name(a),
self.get_node_name(b),
));
}
}
Ok(())
}
fn check_system_type_set_ambiguity(
&self,
set_systems: &HashMap<NodeId, Vec<NodeId>>,
) -> Result<(), ScheduleBuildError> {
for (&id, systems) in set_systems {
let set = &self.system_sets[id.index()];
if set.is_system_type() {
let instances = systems.len();
let ambiguous_with = self.ambiguous_with.edges(id);
let before = self.dependency.graph.edges_directed(id, Incoming);
let after = self.dependency.graph.edges_directed(id, Outgoing);
let relations = before.count() + after.count() + ambiguous_with.count();
if instances > 1 && relations > 0 {
return Err(ScheduleBuildError::SystemTypeSetAmbiguity(
self.get_node_name(&id),
));
}
}
}
Ok(())
}
/// if [`ScheduleBuildSettings::ambiguity_detection`] is [`LogLevel::Ignore`], this check is skipped
fn optionally_check_conflicts(
&self,
conflicts: &[(NodeId, NodeId, Vec<ComponentId>)],
components: &Components,
schedule_label: InternedScheduleLabel,
) -> Result<(), ScheduleBuildError> {
if self.settings.ambiguity_detection == LogLevel::Ignore || conflicts.is_empty() {
return Ok(());
}
let message = self.get_conflicts_error_message(conflicts, components);
match self.settings.ambiguity_detection {
LogLevel::Ignore => Ok(()),
LogLevel::Warn => {
warn!("Schedule {schedule_label:?} has ambiguities.\n{}", message);
Ok(())
}
LogLevel::Error => Err(ScheduleBuildError::Ambiguity(message)),
}
}
fn get_conflicts_error_message(
&self,
ambiguities: &[(NodeId, NodeId, Vec<ComponentId>)],
components: &Components,
) -> String {
let n_ambiguities = ambiguities.len();
let mut message = format!(
"{n_ambiguities} pairs of systems with conflicting data access have indeterminate execution order. \
Consider adding `before`, `after`, or `ambiguous_with` relationships between these:\n",
);
for (name_a, name_b, conflicts) in self.conflicts_to_string(ambiguities, components) {
writeln!(message, " -- {name_a} and {name_b}").unwrap();
if !conflicts.is_empty() {
writeln!(message, " conflict on: {conflicts:?}").unwrap();
} else {
// one or both systems must be exclusive
let world = std::any::type_name::<World>();
writeln!(message, " conflict on: {world}").unwrap();
}
}
message
}
/// convert conflicts to human readable format
pub fn conflicts_to_string<'a>(
&'a self,
ambiguities: &'a [(NodeId, NodeId, Vec<ComponentId>)],
components: &'a Components,
) -> impl Iterator<Item = (String, String, Vec<&str>)> + 'a {
ambiguities
.iter()
.map(move |(system_a, system_b, conflicts)| {
let name_a = self.get_node_name(system_a);
let name_b = self.get_node_name(system_b);
debug_assert!(system_a.is_system(), "{name_a} is not a system.");
debug_assert!(system_b.is_system(), "{name_b} is not a system.");
let conflict_names: Vec<_> = conflicts
.iter()
.map(|id| components.get_name(*id).unwrap())
.collect();
(name_a, name_b, conflict_names)
})
}
fn traverse_sets_containing_node(&self, id: NodeId, f: &mut impl FnMut(NodeId) -> bool) {
for (set_id, _, _) in self.hierarchy.graph.edges_directed(id, Incoming) {
if f(set_id) {
self.traverse_sets_containing_node(set_id, f);
}
}
}
fn names_of_sets_containing_node(&self, id: &NodeId) -> Vec<String> {
let mut sets = HashSet::new();
self.traverse_sets_containing_node(*id, &mut |set_id| {
!self.system_sets[set_id.index()].is_system_type() && sets.insert(set_id)
});
let mut sets: Vec<_> = sets
.into_iter()
.map(|set_id| self.get_node_name(&set_id))
.collect();
sets.sort();
sets
}
}
/// Category of errors encountered during schedule construction.
#[derive(Error, Debug)]
#[non_exhaustive]
pub enum ScheduleBuildError {
/// A system set contains itself.
#[error("System set `{0}` contains itself.")]
HierarchyLoop(String),
/// The hierarchy of system sets contains a cycle.
#[error("System set hierarchy contains cycle(s).\n{0}")]
HierarchyCycle(String),
/// The hierarchy of system sets contains redundant edges.
///
/// This error is disabled by default, but can be opted-in using [`ScheduleBuildSettings`].
#[error("System set hierarchy contains redundant edges.\n{0}")]
HierarchyRedundancy(String),
/// A system (set) has been told to run before itself.
#[error("System set `{0}` depends on itself.")]
DependencyLoop(String),
/// The dependency graph contains a cycle.
#[error("System dependencies contain cycle(s).\n{0}")]
DependencyCycle(String),
/// Tried to order a system (set) relative to a system set it belongs to.
#[error("`{0}` and `{1}` have both `in_set` and `before`-`after` relationships (these might be transitive). This combination is unsolvable as a system cannot run before or after a set it belongs to.")]
CrossDependency(String, String),
/// Tried to order system sets that share systems.
#[error("`{0}` and `{1}` have a `before`-`after` relationship (which may be transitive) but share systems.")]
SetsHaveOrderButIntersect(String, String),
/// Tried to order a system (set) relative to all instances of some system function.
#[error("Tried to order against `{0}` in a schedule that has more than one `{0}` instance. `{0}` is a `SystemTypeSet` and cannot be used for ordering if ambiguous. Use a different set without this restriction.")]
SystemTypeSetAmbiguity(String),
/// Systems with conflicting access have indeterminate run order.
///
/// This error is disabled by default, but can be opted-in using [`ScheduleBuildSettings`].
#[error("Systems with conflicting access have indeterminate run order.\n{0}")]
Ambiguity(String),
/// Tried to run a schedule before all of its systems have been initialized.
#[error("Systems in schedule have not been initialized.")]
Uninitialized,
}
/// Specifies how schedule construction should respond to detecting a certain kind of issue.
#[derive(Debug, Clone, PartialEq)]
pub enum LogLevel {
/// Occurrences are completely ignored.
Ignore,
/// Occurrences are logged only.
Warn,
/// Occurrences are logged and result in errors.
Error,
}
/// Specifies miscellaneous settings for schedule construction.
#[derive(Clone, Debug)]
pub struct ScheduleBuildSettings {
/// Determines whether the presence of ambiguities (systems with conflicting access but indeterminate order)
/// is only logged or also results in an [`Ambiguity`](ScheduleBuildError::Ambiguity) error.
///
/// Defaults to [`LogLevel::Ignore`].
pub ambiguity_detection: LogLevel,
/// Determines whether the presence of redundant edges in the hierarchy of system sets is only
/// logged or also results in a [`HierarchyRedundancy`](ScheduleBuildError::HierarchyRedundancy)
/// error.
///
/// Defaults to [`LogLevel::Warn`].
pub hierarchy_detection: LogLevel,
/// Auto insert [`apply_deferred`] systems into the schedule,
/// when there are [`Deferred`](crate::prelude::Deferred)
/// in one system and there are ordering dependencies on that system. [`Commands`](crate::system::Commands) is one
/// such deferred buffer.
///
/// You may want to disable this if you only want to sync deferred params at the end of the schedule,
/// or want to manually insert all your sync points.
///
/// Defaults to `true`
pub auto_insert_apply_deferred: bool,
/// If set to true, node names will be shortened instead of the fully qualified type path.
///
/// Defaults to `true`.
pub use_shortnames: bool,
/// If set to true, report all system sets the conflicting systems are part of.
///
/// Defaults to `true`.
pub report_sets: bool,
}
impl Default for ScheduleBuildSettings {
fn default() -> Self {
Self::new()
}
}
impl ScheduleBuildSettings {
/// Default build settings.
/// See the field-level documentation for the default value of each field.
pub const fn new() -> Self {
Self {
ambiguity_detection: LogLevel::Ignore,
hierarchy_detection: LogLevel::Warn,
auto_insert_apply_deferred: true,
use_shortnames: true,
report_sets: true,
}
}
}
/// Error to denote that [`Schedule::initialize`] or [`Schedule::run`] has not yet been called for
/// this schedule.
#[derive(Error, Debug)]
#[error("executable schedule has not been built")]
pub struct ScheduleNotInitialized;
#[cfg(test)]
mod tests {
use bevy_ecs_macros::ScheduleLabel;
use crate::{
self as bevy_ecs,
prelude::{Res, Resource},
schedule::{
tests::ResMut, IntoSystemConfigs, IntoSystemSetConfigs, Schedule,
ScheduleBuildSettings, SystemSet,
},
system::Commands,
world::World,
};
use super::Schedules;
#[derive(Resource)]
struct Resource1;
#[derive(Resource)]
struct Resource2;
// regression test for https://github.com/bevyengine/bevy/issues/9114
#[test]
fn ambiguous_with_not_breaking_run_conditions() {
#[derive(SystemSet, Debug, Clone, PartialEq, Eq, Hash)]
struct Set;
let mut world = World::new();
let mut schedule = Schedule::default();
schedule.configure_sets(Set.run_if(|| false));
schedule.add_systems(
(|| panic!("This system must not run"))
.ambiguous_with(|| ())
.in_set(Set),
);
schedule.run(&mut world);
}
#[test]
fn inserts_a_sync_point() {
let mut schedule = Schedule::default();
let mut world = World::default();
schedule.add_systems(
(
|mut commands: Commands| commands.insert_resource(Resource1),
|_: Res<Resource1>| {},
)
.chain(),
);
schedule.run(&mut world);
// inserted a sync point
assert_eq!(schedule.executable.systems.len(), 3);
}
#[test]
fn merges_sync_points_into_one() {
let mut schedule = Schedule::default();
let mut world = World::default();
// insert two parallel command systems, it should only create one sync point
schedule.add_systems(
(
(
|mut commands: Commands| commands.insert_resource(Resource1),
|mut commands: Commands| commands.insert_resource(Resource2),
),
|_: Res<Resource1>, _: Res<Resource2>| {},
)
.chain(),
);
schedule.run(&mut world);
// inserted sync points
assert_eq!(schedule.executable.systems.len(), 4);
// merges sync points on rebuild
schedule.add_systems(((
(
|mut commands: Commands| commands.insert_resource(Resource1),
|mut commands: Commands| commands.insert_resource(Resource2),
),
|_: Res<Resource1>, _: Res<Resource2>| {},
)
.chain(),));
schedule.run(&mut world);
assert_eq!(schedule.executable.systems.len(), 7);
}
#[test]
fn adds_multiple_consecutive_syncs() {
let mut schedule = Schedule::default();
let mut world = World::default();
// insert two consecutive command systems, it should create two sync points
schedule.add_systems(
(
|mut commands: Commands| commands.insert_resource(Resource1),
|mut commands: Commands| commands.insert_resource(Resource2),
|_: Res<Resource1>, _: Res<Resource2>| {},
)
.chain(),
);
schedule.run(&mut world);
assert_eq!(schedule.executable.systems.len(), 5);
}
#[test]
fn disable_auto_sync_points() {
let mut schedule = Schedule::default();
schedule.set_build_settings(ScheduleBuildSettings {
auto_insert_apply_deferred: false,
..Default::default()
});
let mut world = World::default();
schedule.add_systems(
(
|mut commands: Commands| commands.insert_resource(Resource1),
|res: Option<Res<Resource1>>| assert!(res.is_none()),
)
.chain(),
);
schedule.run(&mut world);
assert_eq!(schedule.executable.systems.len(), 2);
}
mod no_sync_edges {
use super::*;
fn insert_resource(mut commands: Commands) {
commands.insert_resource(Resource1);
}
fn resource_does_not_exist(res: Option<Res<Resource1>>) {
assert!(res.is_none());
}
#[derive(SystemSet, Hash, PartialEq, Eq, Debug, Clone)]
enum Sets {
A,
B,
}
fn check_no_sync_edges(add_systems: impl FnOnce(&mut Schedule)) {
let mut schedule = Schedule::default();
let mut world = World::default();
add_systems(&mut schedule);
schedule.run(&mut world);
assert_eq!(schedule.executable.systems.len(), 2);
}
#[test]
fn system_to_system_after() {
check_no_sync_edges(|schedule| {
schedule.add_systems((
insert_resource,
resource_does_not_exist.after_ignore_deferred(insert_resource),
));
});
}
#[test]
fn system_to_system_before() {
check_no_sync_edges(|schedule| {
schedule.add_systems((
insert_resource.before_ignore_deferred(resource_does_not_exist),
resource_does_not_exist,
));
});
}
#[test]
fn set_to_system_after() {
check_no_sync_edges(|schedule| {
schedule
.add_systems((insert_resource, resource_does_not_exist.in_set(Sets::A)))
.configure_sets(Sets::A.after_ignore_deferred(insert_resource));
});
}
#[test]
fn set_to_system_before() {
check_no_sync_edges(|schedule| {
schedule
.add_systems((insert_resource.in_set(Sets::A), resource_does_not_exist))
.configure_sets(Sets::A.before_ignore_deferred(resource_does_not_exist));
});
}
#[test]
fn set_to_set_after() {
check_no_sync_edges(|schedule| {
schedule
.add_systems((
insert_resource.in_set(Sets::A),
resource_does_not_exist.in_set(Sets::B),
))
.configure_sets(Sets::B.after_ignore_deferred(Sets::A));
});
}
#[test]
fn set_to_set_before() {
check_no_sync_edges(|schedule| {
schedule
.add_systems((
insert_resource.in_set(Sets::A),
resource_does_not_exist.in_set(Sets::B),
))
.configure_sets(Sets::A.before_ignore_deferred(Sets::B));
});
}
}
mod no_sync_chain {
use super::*;
#[derive(Resource)]
struct Ra;
#[derive(Resource)]
struct Rb;
#[derive(Resource)]
struct Rc;
fn run_schedule(expected_num_systems: usize, add_systems: impl FnOnce(&mut Schedule)) {
let mut schedule = Schedule::default();
let mut world = World::default();
add_systems(&mut schedule);
schedule.run(&mut world);
assert_eq!(schedule.executable.systems.len(), expected_num_systems);
}
#[test]
fn only_chain_outside() {
run_schedule(5, |schedule: &mut Schedule| {
schedule.add_systems(
(
(
|mut commands: Commands| commands.insert_resource(Ra),
|mut commands: Commands| commands.insert_resource(Rb),
),
(
|res_a: Option<Res<Ra>>, res_b: Option<Res<Rb>>| {
assert!(res_a.is_some());
assert!(res_b.is_some());
},
|res_a: Option<Res<Ra>>, res_b: Option<Res<Rb>>| {
assert!(res_a.is_some());
assert!(res_b.is_some());
},
),
)
.chain(),
);
});
run_schedule(4, |schedule: &mut Schedule| {
schedule.add_systems(
(
(
|mut commands: Commands| commands.insert_resource(Ra),
|mut commands: Commands| commands.insert_resource(Rb),
),
(
|res_a: Option<Res<Ra>>, res_b: Option<Res<Rb>>| {
assert!(res_a.is_none());
assert!(res_b.is_none());
},
|res_a: Option<Res<Ra>>, res_b: Option<Res<Rb>>| {
assert!(res_a.is_none());
assert!(res_b.is_none());
},
),
)
.chain_ignore_deferred(),
);
});
}
#[test]
fn chain_first() {
run_schedule(6, |schedule: &mut Schedule| {
schedule.add_systems(
(
(
|mut commands: Commands| commands.insert_resource(Ra),
|mut commands: Commands, res_a: Option<Res<Ra>>| {
commands.insert_resource(Rb);
assert!(res_a.is_some());
},
)
.chain(),
(
|res_a: Option<Res<Ra>>, res_b: Option<Res<Rb>>| {
assert!(res_a.is_some());
assert!(res_b.is_some());
},
|res_a: Option<Res<Ra>>, res_b: Option<Res<Rb>>| {
assert!(res_a.is_some());
assert!(res_b.is_some());
},
),
)
.chain(),
);
});
run_schedule(5, |schedule: &mut Schedule| {
schedule.add_systems(
(
(
|mut commands: Commands| commands.insert_resource(Ra),
|mut commands: Commands, res_a: Option<Res<Ra>>| {
commands.insert_resource(Rb);
assert!(res_a.is_some());
},
)
.chain(),
(
|res_a: Option<Res<Ra>>, res_b: Option<Res<Rb>>| {
assert!(res_a.is_some());
assert!(res_b.is_none());
},
|res_a: Option<Res<Ra>>, res_b: Option<Res<Rb>>| {
assert!(res_a.is_some());
assert!(res_b.is_none());
},
),
)
.chain_ignore_deferred(),
);
});
}
#[test]
fn chain_second() {
run_schedule(6, |schedule: &mut Schedule| {
schedule.add_systems(
(
(
|mut commands: Commands| commands.insert_resource(Ra),
|mut commands: Commands| commands.insert_resource(Rb),
),
(
|mut commands: Commands,
res_a: Option<Res<Ra>>,
res_b: Option<Res<Rb>>| {
commands.insert_resource(Rc);
assert!(res_a.is_some());
assert!(res_b.is_some());
},
|res_a: Option<Res<Ra>>,
res_b: Option<Res<Rb>>,
res_c: Option<Res<Rc>>| {
assert!(res_a.is_some());
assert!(res_b.is_some());
assert!(res_c.is_some());
},
)
.chain(),
)
.chain(),
);
});
run_schedule(5, |schedule: &mut Schedule| {
schedule.add_systems(
(
(
|mut commands: Commands| commands.insert_resource(Ra),
|mut commands: Commands| commands.insert_resource(Rb),
),
(
|mut commands: Commands,
res_a: Option<Res<Ra>>,
res_b: Option<Res<Rb>>| {
commands.insert_resource(Rc);
assert!(res_a.is_none());
assert!(res_b.is_none());
},
|res_a: Option<Res<Ra>>,
res_b: Option<Res<Rb>>,
res_c: Option<Res<Rc>>| {
assert!(res_a.is_some());
assert!(res_b.is_some());
assert!(res_c.is_some());
},
)
.chain(),
)
.chain_ignore_deferred(),
);
});
}
#[test]
fn chain_all() {
run_schedule(7, |schedule: &mut Schedule| {
schedule.add_systems(
(
(
|mut commands: Commands| commands.insert_resource(Ra),
|mut commands: Commands, res_a: Option<Res<Ra>>| {
commands.insert_resource(Rb);
assert!(res_a.is_some());
},
)
.chain(),
(
|mut commands: Commands,
res_a: Option<Res<Ra>>,
res_b: Option<Res<Rb>>| {
commands.insert_resource(Rc);
assert!(res_a.is_some());
assert!(res_b.is_some());
},
|res_a: Option<Res<Ra>>,
res_b: Option<Res<Rb>>,
res_c: Option<Res<Rc>>| {
assert!(res_a.is_some());
assert!(res_b.is_some());
assert!(res_c.is_some());
},
)
.chain(),
)
.chain(),
);
});
run_schedule(6, |schedule: &mut Schedule| {
schedule.add_systems(
(
(
|mut commands: Commands| commands.insert_resource(Ra),
|mut commands: Commands, res_a: Option<Res<Ra>>| {
commands.insert_resource(Rb);
assert!(res_a.is_some());
},
)
.chain(),
(
|mut commands: Commands,
res_a: Option<Res<Ra>>,
res_b: Option<Res<Rb>>| {
commands.insert_resource(Rc);
assert!(res_a.is_some());
assert!(res_b.is_none());
},
|res_a: Option<Res<Ra>>,
res_b: Option<Res<Rb>>,
res_c: Option<Res<Rc>>| {
assert!(res_a.is_some());
assert!(res_b.is_some());
assert!(res_c.is_some());
},
)
.chain(),
)
.chain_ignore_deferred(),
);
});
}
}
#[derive(ScheduleLabel, Hash, Debug, Clone, PartialEq, Eq)]
struct TestSchedule;
#[derive(Resource)]
struct CheckSystemRan(usize);
#[test]
fn add_systems_to_existing_schedule() {
let mut schedules = Schedules::default();
let schedule = Schedule::new(TestSchedule);
schedules.insert(schedule);
schedules.add_systems(TestSchedule, |mut ran: ResMut<CheckSystemRan>| ran.0 += 1);
let mut world = World::new();
world.insert_resource(CheckSystemRan(0));
world.insert_resource(schedules);
world.run_schedule(TestSchedule);
let value = world
.get_resource::<CheckSystemRan>()
.expect("CheckSystemRan Resource Should Exist");
assert_eq!(value.0, 1);
}
#[test]
fn add_systems_to_non_existing_schedule() {
let mut schedules = Schedules::default();
schedules.add_systems(TestSchedule, |mut ran: ResMut<CheckSystemRan>| ran.0 += 1);
let mut world = World::new();
world.insert_resource(CheckSystemRan(0));
world.insert_resource(schedules);
world.run_schedule(TestSchedule);
let value = world
.get_resource::<CheckSystemRan>()
.expect("CheckSystemRan Resource Should Exist");
assert_eq!(value.0, 1);
}
#[derive(SystemSet, Debug, Hash, Clone, PartialEq, Eq)]
enum TestSet {
First,
Second,
}
#[test]
fn configure_set_on_existing_schedule() {
let mut schedules = Schedules::default();
let schedule = Schedule::new(TestSchedule);
schedules.insert(schedule);
schedules.configure_sets(TestSchedule, (TestSet::First, TestSet::Second).chain());
schedules.add_systems(
TestSchedule,
(|mut ran: ResMut<CheckSystemRan>| {
assert_eq!(ran.0, 0);
ran.0 += 1;
})
.in_set(TestSet::First),
);
schedules.add_systems(
TestSchedule,
(|mut ran: ResMut<CheckSystemRan>| {
assert_eq!(ran.0, 1);
ran.0 += 1;
})
.in_set(TestSet::Second),
);
let mut world = World::new();
world.insert_resource(CheckSystemRan(0));
world.insert_resource(schedules);
world.run_schedule(TestSchedule);
let value = world
.get_resource::<CheckSystemRan>()
.expect("CheckSystemRan Resource Should Exist");
assert_eq!(value.0, 2);
}
#[test]
fn configure_set_on_new_schedule() {
let mut schedules = Schedules::default();
schedules.configure_sets(TestSchedule, (TestSet::First, TestSet::Second).chain());
schedules.add_systems(
TestSchedule,
(|mut ran: ResMut<CheckSystemRan>| {
assert_eq!(ran.0, 0);
ran.0 += 1;
})
.in_set(TestSet::First),
);
schedules.add_systems(
TestSchedule,
(|mut ran: ResMut<CheckSystemRan>| {
assert_eq!(ran.0, 1);
ran.0 += 1;
})
.in_set(TestSet::Second),
);
let mut world = World::new();
world.insert_resource(CheckSystemRan(0));
world.insert_resource(schedules);
world.run_schedule(TestSchedule);
let value = world
.get_resource::<CheckSystemRan>()
.expect("CheckSystemRan Resource Should Exist");
assert_eq!(value.0, 2);
}
}