bevy_ecs/schedule/stepping.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
use fixedbitset::FixedBitSet;
use std::any::TypeId;
use std::collections::HashMap;
use crate::{
schedule::{InternedScheduleLabel, NodeId, Schedule, ScheduleLabel},
system::{IntoSystem, ResMut, Resource},
};
use bevy_utils::{
tracing::{error, info, warn},
TypeIdMap,
};
use thiserror::Error;
#[cfg(test)]
use bevy_utils::tracing::debug;
use crate as bevy_ecs;
#[derive(Debug, Default, PartialEq, Eq, Copy, Clone)]
enum Action {
/// Stepping is disabled; run all systems
#[default]
RunAll,
/// Stepping is enabled, but we're only running required systems this frame
Waiting,
/// Stepping is enabled; run all systems until the end of the frame, or
/// until we encounter a system marked with [`SystemBehavior::Break`] or all
/// systems in the frame have run.
Continue,
/// stepping is enabled; only run the next system in our step list
Step,
}
#[derive(Debug, Copy, Clone)]
enum SystemBehavior {
/// System will always run regardless of stepping action
AlwaysRun,
/// System will never run while stepping is enabled
NeverRun,
/// When [`Action::Waiting`] this system will not be run
/// When [`Action::Step`] this system will be stepped
/// When [`Action::Continue`] system execution will stop before executing
/// this system unless its the first system run when continuing
Break,
/// When [`Action::Waiting`] this system will not be run
/// When [`Action::Step`] this system will be stepped
/// When [`Action::Continue`] this system will be run
Continue,
}
// schedule_order index, and schedule start point
#[derive(Debug, Default, Clone, Copy)]
struct Cursor {
/// index within `Stepping::schedule_order`
pub schedule: usize,
/// index within the schedule's system list
pub system: usize,
}
// Two methods of referring to Systems, via TypeId, or per-Schedule NodeId
enum SystemIdentifier {
Type(TypeId),
Node(NodeId),
}
/// Updates to [`Stepping.schedule_states`] that will be applied at the start
/// of the next render frame
enum Update {
/// Set the action stepping will perform for this render frame
SetAction(Action),
/// Enable stepping for this schedule
AddSchedule(InternedScheduleLabel),
/// Disable stepping for this schedule
RemoveSchedule(InternedScheduleLabel),
/// Clear any system-specific behaviors for this schedule
ClearSchedule(InternedScheduleLabel),
/// Set a system-specific behavior for this schedule & system
SetBehavior(InternedScheduleLabel, SystemIdentifier, SystemBehavior),
/// Clear any system-specific behavior for this schedule & system
ClearBehavior(InternedScheduleLabel, SystemIdentifier),
}
#[derive(Error, Debug)]
#[error("not available until all configured schedules have been run; try again next frame")]
pub struct NotReady;
#[derive(Resource, Default)]
/// Resource for controlling system stepping behavior
pub struct Stepping {
// [`ScheduleState`] for each [`Schedule`] with stepping enabled
schedule_states: HashMap<InternedScheduleLabel, ScheduleState>,
// dynamically generated [`Schedule`] order
schedule_order: Vec<InternedScheduleLabel>,
// current position in the stepping frame
cursor: Cursor,
// index in [`schedule_order`] of the last schedule to call `skipped_systems()`
previous_schedule: Option<usize>,
// Action to perform during this render frame
action: Action,
// Updates apply at the start of the next render frame
updates: Vec<Update>,
}
impl std::fmt::Debug for Stepping {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(
f,
"Stepping {{ action: {:?}, schedules: {:?}, order: {:?}",
self.action,
self.schedule_states.keys(),
self.schedule_order
)?;
if self.action != Action::RunAll {
let Cursor { schedule, system } = self.cursor;
match self.schedule_order.get(schedule) {
Some(label) => write!(f, "cursor: {:?}[{}], ", label, system)?,
None => write!(f, "cursor: None, ")?,
};
}
write!(f, "}}")
}
}
impl Stepping {
/// Create a new instance of the `Stepping` resource.
pub fn new() -> Self {
Stepping::default()
}
/// System to call denoting that a new render frame has begun
///
/// Note: This system is automatically added to the default `MainSchedule`.
pub fn begin_frame(stepping: Option<ResMut<Self>>) {
if let Some(mut stepping) = stepping {
stepping.next_frame();
}
}
/// Return the list of schedules with stepping enabled in the order
/// they are executed in.
pub fn schedules(&self) -> Result<&Vec<InternedScheduleLabel>, NotReady> {
if self.schedule_order.len() == self.schedule_states.len() {
Ok(&self.schedule_order)
} else {
Err(NotReady)
}
}
/// Return our current position within the stepping frame
///
/// NOTE: This function **will** return `None` during normal execution with
/// stepping enabled. This can happen at the end of the stepping frame
/// after the last system has been run, but before the start of the next
/// render frame.
pub fn cursor(&self) -> Option<(InternedScheduleLabel, NodeId)> {
if self.action == Action::RunAll {
return None;
}
let label = match self.schedule_order.get(self.cursor.schedule) {
None => return None,
Some(label) => label,
};
let state = match self.schedule_states.get(label) {
None => return None,
Some(state) => state,
};
state
.node_ids
.get(self.cursor.system)
.map(|node_id| (*label, *node_id))
}
/// Enable stepping for the provided schedule
pub fn add_schedule(&mut self, schedule: impl ScheduleLabel) -> &mut Self {
self.updates.push(Update::AddSchedule(schedule.intern()));
self
}
/// Disable stepping for the provided schedule
///
/// NOTE: This function will also clear any system-specific behaviors that
/// may have been configured.
pub fn remove_schedule(&mut self, schedule: impl ScheduleLabel) -> &mut Self {
self.updates.push(Update::RemoveSchedule(schedule.intern()));
self
}
/// Clear behavior set for all systems in the provided [`Schedule`]
pub fn clear_schedule(&mut self, schedule: impl ScheduleLabel) -> &mut Self {
self.updates.push(Update::ClearSchedule(schedule.intern()));
self
}
/// Begin stepping at the start of the next frame
pub fn enable(&mut self) -> &mut Self {
#[cfg(feature = "bevy_debug_stepping")]
self.updates.push(Update::SetAction(Action::Waiting));
#[cfg(not(feature = "bevy_debug_stepping"))]
error!(
"Stepping cannot be enabled; \
bevy was compiled without the bevy_debug_stepping feature"
);
self
}
/// Disable stepping, resume normal systems execution
pub fn disable(&mut self) -> &mut Self {
self.updates.push(Update::SetAction(Action::RunAll));
self
}
/// Check if stepping is enabled
pub fn is_enabled(&self) -> bool {
self.action != Action::RunAll
}
/// Run the next system during the next render frame
///
/// NOTE: This will have no impact unless stepping has been enabled
pub fn step_frame(&mut self) -> &mut Self {
self.updates.push(Update::SetAction(Action::Step));
self
}
/// Run all remaining systems in the stepping frame during the next render
/// frame
///
/// NOTE: This will have no impact unless stepping has been enabled
pub fn continue_frame(&mut self) -> &mut Self {
self.updates.push(Update::SetAction(Action::Continue));
self
}
/// Ensure this system always runs when stepping is enabled
///
/// Note: if the system is run multiple times in the [`Schedule`], this
/// will apply for all instances of the system.
pub fn always_run<Marker>(
&mut self,
schedule: impl ScheduleLabel,
system: impl IntoSystem<(), (), Marker>,
) -> &mut Self {
let type_id = system.system_type_id();
self.updates.push(Update::SetBehavior(
schedule.intern(),
SystemIdentifier::Type(type_id),
SystemBehavior::AlwaysRun,
));
self
}
/// Ensure this system instance always runs when stepping is enabled
pub fn always_run_node(&mut self, schedule: impl ScheduleLabel, node: NodeId) -> &mut Self {
self.updates.push(Update::SetBehavior(
schedule.intern(),
SystemIdentifier::Node(node),
SystemBehavior::AlwaysRun,
));
self
}
/// Ensure this system never runs when stepping is enabled
pub fn never_run<Marker>(
&mut self,
schedule: impl ScheduleLabel,
system: impl IntoSystem<(), (), Marker>,
) -> &mut Self {
let type_id = system.system_type_id();
self.updates.push(Update::SetBehavior(
schedule.intern(),
SystemIdentifier::Type(type_id),
SystemBehavior::NeverRun,
));
self
}
/// Ensure this system instance never runs when stepping is enabled
pub fn never_run_node(&mut self, schedule: impl ScheduleLabel, node: NodeId) -> &mut Self {
self.updates.push(Update::SetBehavior(
schedule.intern(),
SystemIdentifier::Node(node),
SystemBehavior::NeverRun,
));
self
}
/// Add a breakpoint for system
pub fn set_breakpoint<Marker>(
&mut self,
schedule: impl ScheduleLabel,
system: impl IntoSystem<(), (), Marker>,
) -> &mut Self {
let type_id = system.system_type_id();
self.updates.push(Update::SetBehavior(
schedule.intern(),
SystemIdentifier::Type(type_id),
SystemBehavior::Break,
));
self
}
/// Add a breakpoint for system instance
pub fn set_breakpoint_node(&mut self, schedule: impl ScheduleLabel, node: NodeId) -> &mut Self {
self.updates.push(Update::SetBehavior(
schedule.intern(),
SystemIdentifier::Node(node),
SystemBehavior::Break,
));
self
}
/// Clear a breakpoint for the system
pub fn clear_breakpoint<Marker>(
&mut self,
schedule: impl ScheduleLabel,
system: impl IntoSystem<(), (), Marker>,
) -> &mut Self {
self.clear_system(schedule, system);
self
}
/// clear a breakpoint for system instance
pub fn clear_breakpoint_node(
&mut self,
schedule: impl ScheduleLabel,
node: NodeId,
) -> &mut Self {
self.clear_node(schedule, node);
self
}
/// Clear any behavior set for the system
pub fn clear_system<Marker>(
&mut self,
schedule: impl ScheduleLabel,
system: impl IntoSystem<(), (), Marker>,
) -> &mut Self {
let type_id = system.system_type_id();
self.updates.push(Update::ClearBehavior(
schedule.intern(),
SystemIdentifier::Type(type_id),
));
self
}
/// clear a breakpoint for system instance
pub fn clear_node(&mut self, schedule: impl ScheduleLabel, node: NodeId) -> &mut Self {
self.updates.push(Update::ClearBehavior(
schedule.intern(),
SystemIdentifier::Node(node),
));
self
}
/// lookup the first system for the supplied schedule index
fn first_system_index_for_schedule(&self, index: usize) -> usize {
let label = match self.schedule_order.get(index) {
None => return 0,
Some(label) => label,
};
let state = match self.schedule_states.get(label) {
None => return 0,
Some(state) => state,
};
state.first.unwrap_or(0)
}
/// Move the cursor to the start of the first schedule
fn reset_cursor(&mut self) {
self.cursor = Cursor {
schedule: 0,
system: self.first_system_index_for_schedule(0),
};
}
/// Advance schedule states for the next render frame
fn next_frame(&mut self) {
// if stepping is enabled; reset our internal state for the start of
// the next frame
if self.action != Action::RunAll {
self.action = Action::Waiting;
self.previous_schedule = None;
// if the cursor passed the last schedule, reset it
if self.cursor.schedule >= self.schedule_order.len() {
self.reset_cursor();
}
}
if self.updates.is_empty() {
return;
}
let mut reset_cursor = false;
for update in self.updates.drain(..) {
match update {
Update::SetAction(Action::RunAll) => {
self.action = Action::RunAll;
reset_cursor = true;
}
Update::SetAction(action) => {
// This match block is really just to filter out invalid
// transitions, and add debugging messages for permitted
// transitions. Any action transition that falls through
// this match block will be performed.
match (self.action, action) {
// ignore non-transition updates, and prevent a call to
// enable() from overwriting a step or continue call
(Action::RunAll, Action::RunAll)
| (Action::Waiting, Action::Waiting)
| (Action::Continue, Action::Continue)
| (Action::Step, Action::Step)
| (Action::Continue, Action::Waiting)
| (Action::Step, Action::Waiting) => continue,
// when stepping is disabled
(Action::RunAll, Action::Waiting) => info!("enabled stepping"),
(Action::RunAll, _) => {
warn!(
"stepping not enabled; call Stepping::enable() \
before step_frame() or continue_frame()"
);
continue;
}
// stepping enabled; waiting
(Action::Waiting, Action::RunAll) => info!("disabled stepping"),
(Action::Waiting, Action::Continue) => info!("continue frame"),
(Action::Waiting, Action::Step) => info!("step frame"),
// stepping enabled; continue frame
(Action::Continue, Action::RunAll) => info!("disabled stepping"),
(Action::Continue, Action::Step) => {
warn!("ignoring step_frame(); already continuing next frame");
continue;
}
// stepping enabled; step frame
(Action::Step, Action::RunAll) => info!("disabled stepping"),
(Action::Step, Action::Continue) => {
warn!("ignoring continue_frame(); already stepping next frame");
continue;
}
}
// permitted action transition; make the change
self.action = action;
}
Update::AddSchedule(l) => {
self.schedule_states.insert(l, ScheduleState::default());
}
Update::RemoveSchedule(label) => {
self.schedule_states.remove(&label);
if let Some(index) = self.schedule_order.iter().position(|l| l == &label) {
self.schedule_order.remove(index);
}
reset_cursor = true;
}
Update::ClearSchedule(label) => match self.schedule_states.get_mut(&label) {
Some(state) => state.clear_behaviors(),
None => {
warn!(
"stepping is not enabled for schedule {:?}; \
use `.add_stepping({:?})` to enable stepping",
label, label
);
}
},
Update::SetBehavior(label, system, behavior) => {
match self.schedule_states.get_mut(&label) {
Some(state) => state.set_behavior(system, behavior),
None => {
warn!(
"stepping is not enabled for schedule {:?}; \
use `.add_stepping({:?})` to enable stepping",
label, label
);
}
}
}
Update::ClearBehavior(label, system) => {
match self.schedule_states.get_mut(&label) {
Some(state) => state.clear_behavior(system),
None => {
warn!(
"stepping is not enabled for schedule {:?}; \
use `.add_stepping({:?})` to enable stepping",
label, label
);
}
}
}
}
}
if reset_cursor {
self.reset_cursor();
}
}
/// get the list of systems this schedule should skip for this render
/// frame
pub fn skipped_systems(&mut self, schedule: &Schedule) -> Option<FixedBitSet> {
if self.action == Action::RunAll {
return None;
}
// grab the label and state for this schedule
let label = schedule.label();
let state = self.schedule_states.get_mut(&label)?;
// Stepping is enabled, and this schedule is supposed to be stepped.
//
// We need to maintain a list of schedules in the order that they call
// this function. We'll check the ordered list now to see if this
// schedule is present. If not, we'll add it after the last schedule
// that called this function. Finally we want to save off the index of
// this schedule in the ordered schedule list. This is used to
// determine if this is the schedule the cursor is pointed at.
let index = self.schedule_order.iter().position(|l| *l == label);
let index = match (index, self.previous_schedule) {
(Some(index), _) => index,
(None, None) => {
self.schedule_order.insert(0, label);
0
}
(None, Some(last)) => {
self.schedule_order.insert(last + 1, label);
last + 1
}
};
// Update the index of the previous schedule to be the index of this
// schedule for the next call
self.previous_schedule = Some(index);
#[cfg(test)]
debug!(
"cursor {:?}, index {}, label {:?}",
self.cursor, index, label
);
// if the stepping frame cursor is pointing at this schedule, we'll run
// the schedule with the current stepping action. If this is not the
// cursor schedule, we'll run the schedule with the waiting action.
let cursor = self.cursor;
let (skip_list, next_system) = if index == cursor.schedule {
let (skip_list, next_system) =
state.skipped_systems(schedule, cursor.system, self.action);
// if we just stepped this schedule, then we'll switch the action
// to be waiting
if self.action == Action::Step {
self.action = Action::Waiting;
}
(skip_list, next_system)
} else {
// we're not supposed to run any systems in this schedule, so pull
// the skip list, but ignore any changes it makes to the cursor.
let (skip_list, _) = state.skipped_systems(schedule, 0, Action::Waiting);
(skip_list, Some(cursor.system))
};
// update the stepping frame cursor based on if there are any systems
// remaining to be run in the schedule
// Note: Don't try to detect the end of the render frame here using the
// schedule index. We don't know all schedules have been added to the
// schedule_order, so only next_frame() knows its safe to reset the
// cursor.
match next_system {
Some(i) => self.cursor.system = i,
None => {
let index = cursor.schedule + 1;
self.cursor = Cursor {
schedule: index,
system: self.first_system_index_for_schedule(index),
};
#[cfg(test)]
debug!("advanced schedule index: {} -> {}", cursor.schedule, index);
}
}
Some(skip_list)
}
}
#[derive(Default)]
struct ScheduleState {
/// per-system [`SystemBehavior`]
behaviors: HashMap<NodeId, SystemBehavior>,
/// order of [`NodeId`]s in the schedule
///
/// This is a cached copy of `SystemExecutable::system_ids`. We need it
/// available here to be accessed by [`Stepping::cursor()`] so we can return
/// [`NodeId`]s to the caller.
node_ids: Vec<NodeId>,
/// changes to system behavior that should be applied the next time
/// [`ScheduleState::skipped_systems()`] is called
behavior_updates: TypeIdMap<Option<SystemBehavior>>,
/// This field contains the first steppable system in the schedule.
first: Option<usize>,
}
impl ScheduleState {
// set the stepping behavior for a system in this schedule
fn set_behavior(&mut self, system: SystemIdentifier, behavior: SystemBehavior) {
self.first = None;
match system {
SystemIdentifier::Node(node_id) => {
self.behaviors.insert(node_id, behavior);
}
// Behaviors are indexed by NodeId, but we cannot map a system
// TypeId to a NodeId without the `Schedule`. So queue this update
// to be processed the next time `skipped_systems()` is called.
SystemIdentifier::Type(type_id) => {
self.behavior_updates.insert(type_id, Some(behavior));
}
}
}
// clear the stepping behavior for a system in this schedule
fn clear_behavior(&mut self, system: SystemIdentifier) {
self.first = None;
match system {
SystemIdentifier::Node(node_id) => {
self.behaviors.remove(&node_id);
}
// queue TypeId updates to be processed later when we have Schedule
SystemIdentifier::Type(type_id) => {
self.behavior_updates.insert(type_id, None);
}
}
}
// clear all system behaviors
fn clear_behaviors(&mut self) {
self.behaviors.clear();
self.behavior_updates.clear();
self.first = None;
}
// apply system behavior updates by looking up the node id of the system in
// the schedule, and updating `systems`
fn apply_behavior_updates(&mut self, schedule: &Schedule) {
// Systems may be present multiple times within a schedule, so we
// iterate through all systems in the schedule, and check our behavior
// updates for the system TypeId.
// PERF: If we add a way to efficiently query schedule systems by their TypeId, we could remove the full
// system scan here
for (node_id, system) in schedule.systems().unwrap() {
let behavior = self.behavior_updates.get(&system.type_id());
match behavior {
None => continue,
Some(None) => {
self.behaviors.remove(&node_id);
}
Some(Some(behavior)) => {
self.behaviors.insert(node_id, *behavior);
}
}
}
self.behavior_updates.clear();
#[cfg(test)]
debug!("apply_updates(): {:?}", self.behaviors);
}
fn skipped_systems(
&mut self,
schedule: &Schedule,
start: usize,
mut action: Action,
) -> (FixedBitSet, Option<usize>) {
use std::cmp::Ordering;
// if our NodeId list hasn't been populated, copy it over from the
// schedule
if self.node_ids.len() != schedule.systems_len() {
self.node_ids.clone_from(&schedule.executable().system_ids);
}
// Now that we have the schedule, apply any pending system behavior
// updates. The schedule is required to map from system `TypeId` to
// `NodeId`.
if !self.behavior_updates.is_empty() {
self.apply_behavior_updates(schedule);
}
// if we don't have a first system set, set it now
if self.first.is_none() {
for (i, (node_id, _)) in schedule.systems().unwrap().enumerate() {
match self.behaviors.get(&node_id) {
Some(SystemBehavior::AlwaysRun | SystemBehavior::NeverRun) => continue,
Some(_) | None => {
self.first = Some(i);
break;
}
}
}
}
let mut skip = FixedBitSet::with_capacity(schedule.systems_len());
let mut pos = start;
for (i, (node_id, _system)) in schedule.systems().unwrap().enumerate() {
let behavior = self
.behaviors
.get(&node_id)
.unwrap_or(&SystemBehavior::Continue);
#[cfg(test)]
debug!(
"skipped_systems(): systems[{}], pos {}, Action::{:?}, Behavior::{:?}, {}",
i,
pos,
action,
behavior,
_system.name()
);
match (action, behavior) {
// regardless of which action we're performing, if the system
// is marked as NeverRun, add it to the skip list.
// Also, advance the cursor past this system if it is our
// current position
(_, SystemBehavior::NeverRun) => {
skip.insert(i);
if i == pos {
pos += 1;
}
}
// similarly, ignore any system marked as AlwaysRun; they should
// never be added to the skip list
// Also, advance the cursor past this system if it is our
// current position
(_, SystemBehavior::AlwaysRun) => {
if i == pos {
pos += 1;
}
}
// if we're waiting, no other systems besides AlwaysRun should
// be run, so add systems to the skip list
(Action::Waiting, _) => skip.insert(i),
// If we're stepping, the remaining behaviors don't matter,
// we're only going to run the system at our cursor. Any system
// prior to the cursor is skipped. Once we encounter the system
// at the cursor, we'll advance the cursor, and set behavior to
// Waiting to skip remaining systems.
(Action::Step, _) => match i.cmp(&pos) {
Ordering::Less => skip.insert(i),
Ordering::Equal => {
pos += 1;
action = Action::Waiting;
}
Ordering::Greater => unreachable!(),
},
// If we're continuing, and the step behavior is continue, we
// want to skip any systems prior to our start position. That's
// where the stepping frame left off last time we ran anything.
(Action::Continue, SystemBehavior::Continue) => {
if i < start {
skip.insert(i);
}
}
// If we're continuing, and we encounter a breakpoint we may
// want to stop before executing the system. To do this we
// skip this system and set the action to Waiting.
//
// Note: if the cursor is pointing at this system, we will run
// it anyway. This allows the user to continue, hit a
// breakpoint, then continue again to run the breakpoint system
// and any following systems.
(Action::Continue, SystemBehavior::Break) => {
if i != start {
skip.insert(i);
// stop running systems if the breakpoint isn't the
// system under the cursor.
if i > start {
action = Action::Waiting;
}
}
}
// should have never gotten into this method if stepping is
// disabled
(Action::RunAll, _) => unreachable!(),
}
// If we're at the cursor position, and not waiting, advance the
// cursor.
if i == pos && action != Action::Waiting {
pos += 1;
}
}
// output is the skip list, and the index of the next system to run in
// this schedule.
if pos >= schedule.systems_len() {
(skip, None)
} else {
(skip, Some(pos))
}
}
}
#[cfg(all(test, feature = "bevy_debug_stepping"))]
mod tests {
use super::*;
use crate::prelude::*;
use crate::schedule::ScheduleLabel;
pub use crate as bevy_ecs;
#[derive(ScheduleLabel, Clone, Debug, PartialEq, Eq, Hash)]
struct TestSchedule;
#[derive(ScheduleLabel, Clone, Debug, PartialEq, Eq, Hash)]
struct TestScheduleA;
#[derive(ScheduleLabel, Clone, Debug, PartialEq, Eq, Hash)]
struct TestScheduleB;
#[derive(ScheduleLabel, Clone, Debug, PartialEq, Eq, Hash)]
struct TestScheduleC;
#[derive(ScheduleLabel, Clone, Debug, PartialEq, Eq, Hash)]
struct TestScheduleD;
fn first_system() {}
fn second_system() {}
fn third_system() {}
fn setup() -> (Schedule, World) {
let mut world = World::new();
let mut schedule = Schedule::new(TestSchedule);
schedule.add_systems((first_system, second_system).chain());
schedule.initialize(&mut world).unwrap();
(schedule, world)
}
// Helper for verifying skip_lists are equal, and if not, printing a human
// readable message.
macro_rules! assert_skip_list_eq {
($actual:expr, $expected:expr, $system_names:expr) => {
let actual = $actual;
let expected = $expected;
let systems: &Vec<&str> = $system_names;
if (actual != expected) {
use std::fmt::Write as _;
// mismatch, let's construct a human-readable message of what
// was returned
let mut msg = format!(
"Schedule:\n {:9} {:16}{:6} {:6} {:6}\n",
"index", "name", "expect", "actual", "result"
);
for (i, name) in systems.iter().enumerate() {
let _ = write!(msg, " system[{:1}] {:16}", i, name);
match (expected.contains(i), actual.contains(i)) {
(true, true) => msg.push_str("skip skip pass\n"),
(true, false) => {
msg.push_str("skip run FAILED; system should not have run\n")
}
(false, true) => {
msg.push_str("run skip FAILED; system should have run\n")
}
(false, false) => msg.push_str("run run pass\n"),
}
}
assert_eq!(actual, expected, "{}", msg);
}
};
}
// Helper for verifying that a set of systems will be run for a given skip
// list
macro_rules! assert_systems_run {
($schedule:expr, $skipped_systems:expr, $($system:expr),*) => {
// pull an ordered list of systems in the schedule, and save the
// system TypeId, and name.
let systems: Vec<(TypeId, std::borrow::Cow<'static, str>)> = $schedule.systems().unwrap()
.map(|(_, system)| {
(system.type_id(), system.name())
})
.collect();
// construct a list of systems that are expected to run
let mut expected = FixedBitSet::with_capacity(systems.len());
$(
let sys = IntoSystem::into_system($system);
for (i, (type_id, _)) in systems.iter().enumerate() {
if sys.type_id() == *type_id {
expected.insert(i);
}
}
)*
// flip the run list to get our skip list
expected.toggle_range(..);
// grab the list of skipped systems
let actual = match $skipped_systems {
None => FixedBitSet::with_capacity(systems.len()),
Some(b) => b,
};
let system_names: Vec<&str> = systems
.iter()
.map(|(_,n)| n.rsplit_once("::").unwrap().1)
.collect();
assert_skip_list_eq!(actual, expected, &system_names);
};
}
// Helper for verifying the expected systems will be run by the schedule
//
// This macro will construct an expected FixedBitSet for the systems that
// should be skipped, and compare it with the results from stepping the
// provided schedule. If they don't match, it generates a human-readable
// error message and asserts.
macro_rules! assert_schedule_runs {
($schedule:expr, $stepping:expr, $($system:expr),*) => {
// advance stepping to the next frame, and build the skip list for
// this schedule
$stepping.next_frame();
assert_systems_run!($schedule, $stepping.skipped_systems($schedule), $($system),*);
};
}
#[test]
fn stepping_disabled() {
let (schedule, _world) = setup();
let mut stepping = Stepping::new();
stepping.add_schedule(TestSchedule).disable().next_frame();
assert!(stepping.skipped_systems(&schedule).is_none());
assert!(stepping.cursor().is_none());
}
#[test]
fn unknown_schedule() {
let (schedule, _world) = setup();
let mut stepping = Stepping::new();
stepping.enable().next_frame();
assert!(stepping.skipped_systems(&schedule).is_none());
}
#[test]
fn disabled_always_run() {
let (schedule, _world) = setup();
let mut stepping = Stepping::new();
stepping
.add_schedule(TestSchedule)
.disable()
.always_run(TestSchedule, first_system);
assert_schedule_runs!(&schedule, &mut stepping, first_system, second_system);
}
#[test]
fn waiting_always_run() {
let (schedule, _world) = setup();
let mut stepping = Stepping::new();
stepping
.add_schedule(TestSchedule)
.enable()
.always_run(TestSchedule, first_system);
assert_schedule_runs!(&schedule, &mut stepping, first_system);
}
#[test]
fn step_always_run() {
let (schedule, _world) = setup();
let mut stepping = Stepping::new();
stepping
.add_schedule(TestSchedule)
.enable()
.always_run(TestSchedule, first_system)
.step_frame();
assert_schedule_runs!(&schedule, &mut stepping, first_system, second_system);
}
#[test]
fn continue_always_run() {
let (schedule, _world) = setup();
let mut stepping = Stepping::new();
stepping
.add_schedule(TestSchedule)
.enable()
.always_run(TestSchedule, first_system)
.continue_frame();
assert_schedule_runs!(&schedule, &mut stepping, first_system, second_system);
}
#[test]
fn disabled_never_run() {
let (schedule, _world) = setup();
let mut stepping = Stepping::new();
stepping
.add_schedule(TestSchedule)
.never_run(TestSchedule, first_system)
.disable();
assert_schedule_runs!(&schedule, &mut stepping, first_system, second_system);
}
#[test]
fn waiting_never_run() {
let (schedule, _world) = setup();
let mut stepping = Stepping::new();
stepping
.add_schedule(TestSchedule)
.enable()
.never_run(TestSchedule, first_system);
assert_schedule_runs!(&schedule, &mut stepping,);
}
#[test]
fn step_never_run() {
let (schedule, _world) = setup();
let mut stepping = Stepping::new();
stepping
.add_schedule(TestSchedule)
.enable()
.never_run(TestSchedule, first_system)
.step_frame();
assert_schedule_runs!(&schedule, &mut stepping, second_system);
}
#[test]
fn continue_never_run() {
let (schedule, _world) = setup();
let mut stepping = Stepping::new();
stepping
.add_schedule(TestSchedule)
.enable()
.never_run(TestSchedule, first_system)
.continue_frame();
assert_schedule_runs!(&schedule, &mut stepping, second_system);
}
#[test]
fn disabled_breakpoint() {
let (schedule, _world) = setup();
let mut stepping = Stepping::new();
stepping
.add_schedule(TestSchedule)
.disable()
.set_breakpoint(TestSchedule, second_system);
assert_schedule_runs!(&schedule, &mut stepping, first_system, second_system);
}
#[test]
fn waiting_breakpoint() {
let (schedule, _world) = setup();
let mut stepping = Stepping::new();
stepping
.add_schedule(TestSchedule)
.enable()
.set_breakpoint(TestSchedule, second_system);
assert_schedule_runs!(&schedule, &mut stepping,);
}
#[test]
fn step_breakpoint() {
let (schedule, _world) = setup();
let mut stepping = Stepping::new();
stepping
.add_schedule(TestSchedule)
.enable()
.set_breakpoint(TestSchedule, second_system)
.step_frame();
// since stepping stops at every system, breakpoints are ignored during
// stepping
assert_schedule_runs!(&schedule, &mut stepping, first_system);
stepping.step_frame();
assert_schedule_runs!(&schedule, &mut stepping, second_system);
// let's go again to verify that we wrap back around to the start of
// the frame
stepping.step_frame();
assert_schedule_runs!(&schedule, &mut stepping, first_system);
// should be back in a waiting state now that it ran first_system
assert_schedule_runs!(&schedule, &mut stepping,);
}
#[test]
fn continue_breakpoint() {
let (schedule, _world) = setup();
let mut stepping = Stepping::new();
stepping
.add_schedule(TestSchedule)
.enable()
.set_breakpoint(TestSchedule, second_system)
.continue_frame();
assert_schedule_runs!(&schedule, &mut stepping, first_system);
stepping.continue_frame();
assert_schedule_runs!(&schedule, &mut stepping, second_system);
stepping.continue_frame();
assert_schedule_runs!(&schedule, &mut stepping, first_system);
}
/// regression test for issue encountered while writing `system_stepping`
/// example
#[test]
fn continue_step_continue_with_breakpoint() {
let mut world = World::new();
let mut schedule = Schedule::new(TestSchedule);
schedule.add_systems((first_system, second_system, third_system).chain());
schedule.initialize(&mut world).unwrap();
let mut stepping = Stepping::new();
stepping
.add_schedule(TestSchedule)
.enable()
.set_breakpoint(TestSchedule, second_system);
stepping.continue_frame();
assert_schedule_runs!(&schedule, &mut stepping, first_system);
stepping.step_frame();
assert_schedule_runs!(&schedule, &mut stepping, second_system);
stepping.continue_frame();
assert_schedule_runs!(&schedule, &mut stepping, third_system);
}
#[test]
fn clear_breakpoint() {
let (schedule, _world) = setup();
let mut stepping = Stepping::new();
stepping
.add_schedule(TestSchedule)
.enable()
.set_breakpoint(TestSchedule, second_system)
.continue_frame();
assert_schedule_runs!(&schedule, &mut stepping, first_system);
stepping.continue_frame();
assert_schedule_runs!(&schedule, &mut stepping, second_system);
stepping.clear_breakpoint(TestSchedule, second_system);
stepping.continue_frame();
assert_schedule_runs!(&schedule, &mut stepping, first_system, second_system);
}
#[test]
fn clear_system() {
let (schedule, _world) = setup();
let mut stepping = Stepping::new();
stepping
.add_schedule(TestSchedule)
.enable()
.never_run(TestSchedule, second_system)
.continue_frame();
assert_schedule_runs!(&schedule, &mut stepping, first_system);
stepping.clear_system(TestSchedule, second_system);
stepping.continue_frame();
assert_schedule_runs!(&schedule, &mut stepping, first_system, second_system);
}
#[test]
fn clear_schedule() {
let (schedule, _world) = setup();
let mut stepping = Stepping::new();
stepping
.add_schedule(TestSchedule)
.enable()
.never_run(TestSchedule, first_system)
.never_run(TestSchedule, second_system)
.continue_frame();
assert_schedule_runs!(&schedule, &mut stepping,);
stepping.clear_schedule(TestSchedule);
stepping.continue_frame();
assert_schedule_runs!(&schedule, &mut stepping, first_system, second_system);
}
/// This was discovered in code-review, ensure that `clear_schedule` also
/// clears any pending changes too.
#[test]
fn set_behavior_then_clear_schedule() {
let (schedule, _world) = setup();
let mut stepping = Stepping::new();
stepping
.add_schedule(TestSchedule)
.enable()
.continue_frame();
assert_schedule_runs!(&schedule, &mut stepping, first_system, second_system);
stepping.never_run(TestSchedule, first_system);
stepping.clear_schedule(TestSchedule);
stepping.continue_frame();
assert_schedule_runs!(&schedule, &mut stepping, first_system, second_system);
}
/// Ensure that if they `clear_schedule` then make further changes to the
/// schedule, those changes after the clear are applied.
#[test]
fn clear_schedule_then_set_behavior() {
let (schedule, _world) = setup();
let mut stepping = Stepping::new();
stepping
.add_schedule(TestSchedule)
.enable()
.continue_frame();
assert_schedule_runs!(&schedule, &mut stepping, first_system, second_system);
stepping.clear_schedule(TestSchedule);
stepping.never_run(TestSchedule, first_system);
stepping.continue_frame();
assert_schedule_runs!(&schedule, &mut stepping, second_system);
}
// Schedules such as FixedUpdate can be called multiple times in a single
// render frame. Ensure we only run steppable systems the first time the
// schedule is run
#[test]
fn multiple_calls_per_frame_continue() {
let (schedule, _world) = setup();
let mut stepping = Stepping::new();
stepping
.add_schedule(TestSchedule)
.enable()
.always_run(TestSchedule, second_system)
.continue_frame();
// start a new frame, then run the schedule two times; first system
// should only run on the first one
stepping.next_frame();
assert_systems_run!(
&schedule,
stepping.skipped_systems(&schedule),
first_system,
second_system
);
assert_systems_run!(
&schedule,
stepping.skipped_systems(&schedule),
second_system
);
}
#[test]
fn multiple_calls_per_frame_step() {
let (schedule, _world) = setup();
let mut stepping = Stepping::new();
stepping.add_schedule(TestSchedule).enable().step_frame();
// start a new frame, then run the schedule two times; first system
// should only run on the first one
stepping.next_frame();
assert_systems_run!(&schedule, stepping.skipped_systems(&schedule), first_system);
assert_systems_run!(&schedule, stepping.skipped_systems(&schedule),);
}
#[test]
fn step_duplicate_systems() {
let mut world = World::new();
let mut schedule = Schedule::new(TestSchedule);
schedule.add_systems((first_system, first_system, second_system).chain());
schedule.initialize(&mut world).unwrap();
let mut stepping = Stepping::new();
stepping.add_schedule(TestSchedule).enable();
// needed for assert_skip_list_eq!
let system_names = vec!["first_system", "first_system", "second_system"];
// we're going to step three times, and each system in order should run
// only once
for system_index in 0..3 {
// build the skip list by setting all bits, then clearing our the
// one system that should run this step
let mut expected = FixedBitSet::with_capacity(3);
expected.set_range(.., true);
expected.set(system_index, false);
// step the frame and get the skip list
stepping.step_frame();
stepping.next_frame();
let skip_list = stepping
.skipped_systems(&schedule)
.expect("TestSchedule has been added to Stepping");
assert_skip_list_eq!(skip_list, expected, &system_names);
}
}
#[test]
fn step_run_if_false() {
let mut world = World::new();
let mut schedule = Schedule::new(TestSchedule);
// This needs to be a system test to confirm the interaction between
// the skip list and system conditions in Schedule::run(). That means
// all of our systems need real bodies that do things.
//
// first system will be configured as `run_if(|| false)`, so it can
// just panic if called
let first_system = move || panic!("first_system should not be run");
// The second system, we need to know when it has been called, so we'll
// add a resource for tracking if it has been run. The system will
// increment the run count.
#[derive(Resource)]
struct RunCount(usize);
world.insert_resource(RunCount(0));
let second_system = |mut run_count: ResMut<RunCount>| {
println!("I have run!");
run_count.0 += 1;
};
// build our schedule; first_system should never run, followed by
// second_system.
schedule.add_systems((first_system.run_if(|| false), second_system).chain());
schedule.initialize(&mut world).unwrap();
// set up stepping
let mut stepping = Stepping::new();
stepping.add_schedule(TestSchedule).enable();
world.insert_resource(stepping);
// if we step, and the run condition is false, we should not run
// second_system. The stepping cursor is at first_system, and if
// first_system wasn't able to run, that's ok.
let mut stepping = world.resource_mut::<Stepping>();
stepping.step_frame();
stepping.next_frame();
schedule.run(&mut world);
assert_eq!(
world.resource::<RunCount>().0,
0,
"second_system should not have run"
);
// now on the next step, second_system should run
let mut stepping = world.resource_mut::<Stepping>();
stepping.step_frame();
stepping.next_frame();
schedule.run(&mut world);
assert_eq!(
world.resource::<RunCount>().0,
1,
"second_system should have run"
);
}
#[test]
fn remove_schedule() {
let (schedule, _world) = setup();
let mut stepping = Stepping::new();
stepping.add_schedule(TestSchedule).enable();
// run the schedule once and verify all systems are skipped
assert_schedule_runs!(&schedule, &mut stepping,);
assert!(!stepping.schedules().unwrap().is_empty());
// remove the test schedule
stepping.remove_schedule(TestSchedule);
assert_schedule_runs!(&schedule, &mut stepping, first_system, second_system);
assert!(stepping.schedules().unwrap().is_empty());
}
// verify that Stepping can construct an ordered list of schedules
#[test]
fn schedules() {
let mut world = World::new();
// build & initialize a few schedules
let mut schedule_a = Schedule::new(TestScheduleA);
schedule_a.initialize(&mut world).unwrap();
let mut schedule_b = Schedule::new(TestScheduleB);
schedule_b.initialize(&mut world).unwrap();
let mut schedule_c = Schedule::new(TestScheduleC);
schedule_c.initialize(&mut world).unwrap();
let mut schedule_d = Schedule::new(TestScheduleD);
schedule_d.initialize(&mut world).unwrap();
// setup stepping and add all the schedules
let mut stepping = Stepping::new();
stepping
.add_schedule(TestScheduleA)
.add_schedule(TestScheduleB)
.add_schedule(TestScheduleC)
.add_schedule(TestScheduleD)
.enable()
.next_frame();
assert!(stepping.schedules().is_err());
stepping.skipped_systems(&schedule_b);
assert!(stepping.schedules().is_err());
stepping.skipped_systems(&schedule_a);
assert!(stepping.schedules().is_err());
stepping.skipped_systems(&schedule_c);
assert!(stepping.schedules().is_err());
// when we call the last schedule, Stepping should have enough data to
// return an ordered list of schedules
stepping.skipped_systems(&schedule_d);
assert!(stepping.schedules().is_ok());
assert_eq!(
*stepping.schedules().unwrap(),
vec![
TestScheduleB.intern(),
TestScheduleA.intern(),
TestScheduleC.intern(),
TestScheduleD.intern(),
]
);
}
#[test]
fn verify_cursor() {
// helper to build a cursor tuple for the supplied schedule
fn cursor(schedule: &Schedule, index: usize) -> (InternedScheduleLabel, NodeId) {
let node_id = schedule.executable().system_ids[index];
(schedule.label(), node_id)
}
let mut world = World::new();
// create two schedules with a number of systems in them
let mut schedule_a = Schedule::new(TestScheduleA);
schedule_a.add_systems((|| {}, || {}, || {}, || {}).chain());
schedule_a.initialize(&mut world).unwrap();
let mut schedule_b = Schedule::new(TestScheduleB);
schedule_b.add_systems((|| {}, || {}, || {}, || {}).chain());
schedule_b.initialize(&mut world).unwrap();
// setup stepping and add all schedules
let mut stepping = Stepping::new();
stepping
.add_schedule(TestScheduleA)
.add_schedule(TestScheduleB)
.enable();
assert!(stepping.cursor().is_none());
// step the system nine times, and verify the cursor before & after
// each step
let mut cursors = Vec::new();
for _ in 0..9 {
stepping.step_frame().next_frame();
cursors.push(stepping.cursor());
stepping.skipped_systems(&schedule_a);
stepping.skipped_systems(&schedule_b);
cursors.push(stepping.cursor());
}
#[rustfmt::skip]
assert_eq!(
cursors,
vec![
// before render frame // after render frame
None, Some(cursor(&schedule_a, 1)),
Some(cursor(&schedule_a, 1)), Some(cursor(&schedule_a, 2)),
Some(cursor(&schedule_a, 2)), Some(cursor(&schedule_a, 3)),
Some(cursor(&schedule_a, 3)), Some(cursor(&schedule_b, 0)),
Some(cursor(&schedule_b, 0)), Some(cursor(&schedule_b, 1)),
Some(cursor(&schedule_b, 1)), Some(cursor(&schedule_b, 2)),
Some(cursor(&schedule_b, 2)), Some(cursor(&schedule_b, 3)),
Some(cursor(&schedule_b, 3)), None,
Some(cursor(&schedule_a, 0)), Some(cursor(&schedule_a, 1)),
]
);
// reset our cursor (disable/enable), and update stepping to test if the
// cursor properly skips over AlwaysRun & NeverRun systems. Also set
// a Break system to ensure that shows properly in the cursor
stepping
// disable/enable to reset cursor
.disable()
.enable()
.set_breakpoint_node(TestScheduleA, NodeId::System(1))
.always_run_node(TestScheduleA, NodeId::System(3))
.never_run_node(TestScheduleB, NodeId::System(0));
let mut cursors = Vec::new();
for _ in 0..9 {
stepping.step_frame().next_frame();
cursors.push(stepping.cursor());
stepping.skipped_systems(&schedule_a);
stepping.skipped_systems(&schedule_b);
cursors.push(stepping.cursor());
}
#[rustfmt::skip]
assert_eq!(
cursors,
vec![
// before render frame // after render frame
Some(cursor(&schedule_a, 0)), Some(cursor(&schedule_a, 1)),
Some(cursor(&schedule_a, 1)), Some(cursor(&schedule_a, 2)),
Some(cursor(&schedule_a, 2)), Some(cursor(&schedule_b, 1)),
Some(cursor(&schedule_b, 1)), Some(cursor(&schedule_b, 2)),
Some(cursor(&schedule_b, 2)), Some(cursor(&schedule_b, 3)),
Some(cursor(&schedule_b, 3)), None,
Some(cursor(&schedule_a, 0)), Some(cursor(&schedule_a, 1)),
Some(cursor(&schedule_a, 1)), Some(cursor(&schedule_a, 2)),
Some(cursor(&schedule_a, 2)), Some(cursor(&schedule_b, 1)),
]
);
}
}