bevy_ecs/storage/
sparse_set.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
use crate::{
    component::{ComponentId, ComponentInfo, ComponentTicks, Tick, TickCells},
    entity::Entity,
    storage::{Column, TableRow},
};
use bevy_ptr::{OwningPtr, Ptr};
use nonmax::NonMaxUsize;
use std::{cell::UnsafeCell, hash::Hash, marker::PhantomData};

type EntityIndex = u32;

#[derive(Debug)]
pub(crate) struct SparseArray<I, V = I> {
    values: Vec<Option<V>>,
    marker: PhantomData<I>,
}

/// A space-optimized version of [`SparseArray`] that cannot be changed
/// after construction.
#[derive(Debug)]
pub(crate) struct ImmutableSparseArray<I, V = I> {
    values: Box<[Option<V>]>,
    marker: PhantomData<I>,
}

impl<I: SparseSetIndex, V> Default for SparseArray<I, V> {
    fn default() -> Self {
        Self::new()
    }
}

impl<I, V> SparseArray<I, V> {
    #[inline]
    pub const fn new() -> Self {
        Self {
            values: Vec::new(),
            marker: PhantomData,
        }
    }
}

macro_rules! impl_sparse_array {
    ($ty:ident) => {
        impl<I: SparseSetIndex, V> $ty<I, V> {
            /// Returns `true` if the collection contains a value for the specified `index`.
            #[inline]
            pub fn contains(&self, index: I) -> bool {
                let index = index.sparse_set_index();
                self.values.get(index).map(|v| v.is_some()).unwrap_or(false)
            }

            /// Returns a reference to the value at `index`.
            ///
            /// Returns `None` if `index` does not have a value or if `index` is out of bounds.
            #[inline]
            pub fn get(&self, index: I) -> Option<&V> {
                let index = index.sparse_set_index();
                self.values.get(index).map(|v| v.as_ref()).unwrap_or(None)
            }
        }
    };
}

impl_sparse_array!(SparseArray);
impl_sparse_array!(ImmutableSparseArray);

impl<I: SparseSetIndex, V> SparseArray<I, V> {
    /// Inserts `value` at `index` in the array.
    ///
    /// If `index` is out-of-bounds, this will enlarge the buffer to accommodate it.
    #[inline]
    pub fn insert(&mut self, index: I, value: V) {
        let index = index.sparse_set_index();
        if index >= self.values.len() {
            self.values.resize_with(index + 1, || None);
        }
        self.values[index] = Some(value);
    }

    /// Returns a mutable reference to the value at `index`.
    ///
    /// Returns `None` if `index` does not have a value or if `index` is out of bounds.
    #[inline]
    pub fn get_mut(&mut self, index: I) -> Option<&mut V> {
        let index = index.sparse_set_index();
        self.values
            .get_mut(index)
            .map(|v| v.as_mut())
            .unwrap_or(None)
    }

    /// Removes and returns the value stored at `index`.
    ///
    /// Returns `None` if `index` did not have a value or if `index` is out of bounds.
    #[inline]
    pub fn remove(&mut self, index: I) -> Option<V> {
        let index = index.sparse_set_index();
        self.values.get_mut(index).and_then(|value| value.take())
    }

    /// Removes all of the values stored within.
    pub fn clear(&mut self) {
        self.values.clear();
    }

    /// Converts the [`SparseArray`] into an immutable variant.
    pub(crate) fn into_immutable(self) -> ImmutableSparseArray<I, V> {
        ImmutableSparseArray {
            values: self.values.into_boxed_slice(),
            marker: PhantomData,
        }
    }
}

/// A sparse data structure of [`Component`](crate::component::Component)s.
///
/// Designed for relatively fast insertions and deletions.
#[derive(Debug)]
pub struct ComponentSparseSet {
    dense: Column,
    // Internally this only relies on the Entity index to keep track of where the component data is
    // stored for entities that are alive. The generation is not required, but is stored
    // in debug builds to validate that access is correct.
    #[cfg(not(debug_assertions))]
    entities: Vec<EntityIndex>,
    #[cfg(debug_assertions)]
    entities: Vec<Entity>,
    sparse: SparseArray<EntityIndex, TableRow>,
}

impl ComponentSparseSet {
    /// Creates a new [`ComponentSparseSet`] with a given component type layout and
    /// initial `capacity`.
    pub(crate) fn new(component_info: &ComponentInfo, capacity: usize) -> Self {
        Self {
            dense: Column::with_capacity(component_info, capacity),
            entities: Vec::with_capacity(capacity),
            sparse: Default::default(),
        }
    }

    /// Removes all of the values stored within.
    pub(crate) fn clear(&mut self) {
        self.dense.clear();
        self.entities.clear();
        self.sparse.clear();
    }

    /// Returns the number of component values in the sparse set.
    #[inline]
    pub fn len(&self) -> usize {
        self.dense.len()
    }

    /// Returns `true` if the sparse set contains no component values.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.dense.len() == 0
    }

    /// Inserts the `entity` key and component `value` pair into this sparse
    /// set.
    ///
    /// # Safety
    /// The `value` pointer must point to a valid address that matches the [`Layout`](std::alloc::Layout)
    /// inside the [`ComponentInfo`] given when constructing this sparse set.
    pub(crate) unsafe fn insert(
        &mut self,
        entity: Entity,
        value: OwningPtr<'_>,
        change_tick: Tick,
    ) {
        if let Some(&dense_index) = self.sparse.get(entity.index()) {
            #[cfg(debug_assertions)]
            assert_eq!(entity, self.entities[dense_index.as_usize()]);
            self.dense.replace(dense_index, value, change_tick);
        } else {
            let dense_index = self.dense.len();
            self.dense.push(value, ComponentTicks::new(change_tick));
            self.sparse
                .insert(entity.index(), TableRow::from_usize(dense_index));
            #[cfg(debug_assertions)]
            assert_eq!(self.entities.len(), dense_index);
            #[cfg(not(debug_assertions))]
            self.entities.push(entity.index());
            #[cfg(debug_assertions)]
            self.entities.push(entity);
        }
    }

    /// Returns `true` if the sparse set has a component value for the provided `entity`.
    #[inline]
    pub fn contains(&self, entity: Entity) -> bool {
        #[cfg(debug_assertions)]
        {
            if let Some(&dense_index) = self.sparse.get(entity.index()) {
                #[cfg(debug_assertions)]
                assert_eq!(entity, self.entities[dense_index.as_usize()]);
                true
            } else {
                false
            }
        }
        #[cfg(not(debug_assertions))]
        self.sparse.contains(entity.index())
    }

    /// Returns a reference to the entity's component value.
    ///
    /// Returns `None` if `entity` does not have a component in the sparse set.
    #[inline]
    pub fn get(&self, entity: Entity) -> Option<Ptr<'_>> {
        self.sparse.get(entity.index()).map(|&dense_index| {
            #[cfg(debug_assertions)]
            assert_eq!(entity, self.entities[dense_index.as_usize()]);
            // SAFETY: if the sparse index points to something in the dense vec, it exists
            unsafe { self.dense.get_data_unchecked(dense_index) }
        })
    }

    /// Returns references to the entity's component value and its added and changed ticks.
    ///
    /// Returns `None` if `entity` does not have a component in the sparse set.
    #[inline]
    pub fn get_with_ticks(&self, entity: Entity) -> Option<(Ptr<'_>, TickCells<'_>)> {
        let dense_index = *self.sparse.get(entity.index())?;
        #[cfg(debug_assertions)]
        assert_eq!(entity, self.entities[dense_index.as_usize()]);
        // SAFETY: if the sparse index points to something in the dense vec, it exists
        unsafe {
            Some((
                self.dense.get_data_unchecked(dense_index),
                TickCells {
                    added: self.dense.get_added_tick_unchecked(dense_index),
                    changed: self.dense.get_changed_tick_unchecked(dense_index),
                },
            ))
        }
    }

    /// Returns a reference to the "added" tick of the entity's component value.
    ///
    /// Returns `None` if `entity` does not have a component in the sparse set.
    #[inline]
    pub fn get_added_tick(&self, entity: Entity) -> Option<&UnsafeCell<Tick>> {
        let dense_index = *self.sparse.get(entity.index())?;
        #[cfg(debug_assertions)]
        assert_eq!(entity, self.entities[dense_index.as_usize()]);
        // SAFETY: if the sparse index points to something in the dense vec, it exists
        unsafe { Some(self.dense.get_added_tick_unchecked(dense_index)) }
    }

    /// Returns a reference to the "changed" tick of the entity's component value.
    ///
    /// Returns `None` if `entity` does not have a component in the sparse set.
    #[inline]
    pub fn get_changed_tick(&self, entity: Entity) -> Option<&UnsafeCell<Tick>> {
        let dense_index = *self.sparse.get(entity.index())?;
        #[cfg(debug_assertions)]
        assert_eq!(entity, self.entities[dense_index.as_usize()]);
        // SAFETY: if the sparse index points to something in the dense vec, it exists
        unsafe { Some(self.dense.get_changed_tick_unchecked(dense_index)) }
    }

    /// Returns a reference to the "added" and "changed" ticks of the entity's component value.
    ///
    /// Returns `None` if `entity` does not have a component in the sparse set.
    #[inline]
    pub fn get_ticks(&self, entity: Entity) -> Option<ComponentTicks> {
        let dense_index = *self.sparse.get(entity.index())?;
        #[cfg(debug_assertions)]
        assert_eq!(entity, self.entities[dense_index.as_usize()]);
        // SAFETY: if the sparse index points to something in the dense vec, it exists
        unsafe { Some(self.dense.get_ticks_unchecked(dense_index)) }
    }

    /// Removes the `entity` from this sparse set and returns a pointer to the associated value (if
    /// it exists).
    #[must_use = "The returned pointer must be used to drop the removed component."]
    pub(crate) fn remove_and_forget(&mut self, entity: Entity) -> Option<OwningPtr<'_>> {
        self.sparse.remove(entity.index()).map(|dense_index| {
            #[cfg(debug_assertions)]
            assert_eq!(entity, self.entities[dense_index.as_usize()]);
            self.entities.swap_remove(dense_index.as_usize());
            let is_last = dense_index.as_usize() == self.dense.len() - 1;
            // SAFETY: dense_index was just removed from `sparse`, which ensures that it is valid
            let (value, _) = unsafe { self.dense.swap_remove_and_forget_unchecked(dense_index) };
            if !is_last {
                let swapped_entity = self.entities[dense_index.as_usize()];
                #[cfg(not(debug_assertions))]
                let index = swapped_entity;
                #[cfg(debug_assertions)]
                let index = swapped_entity.index();
                *self.sparse.get_mut(index).unwrap() = dense_index;
            }
            value
        })
    }

    /// Removes (and drops) the entity's component value from the sparse set.
    ///
    /// Returns `true` if `entity` had a component value in the sparse set.
    pub(crate) fn remove(&mut self, entity: Entity) -> bool {
        if let Some(dense_index) = self.sparse.remove(entity.index()) {
            #[cfg(debug_assertions)]
            assert_eq!(entity, self.entities[dense_index.as_usize()]);
            self.entities.swap_remove(dense_index.as_usize());
            let is_last = dense_index.as_usize() == self.dense.len() - 1;
            // SAFETY: if the sparse index points to something in the dense vec, it exists
            unsafe {
                self.dense.swap_remove_unchecked(dense_index);
            }
            if !is_last {
                let swapped_entity = self.entities[dense_index.as_usize()];
                #[cfg(not(debug_assertions))]
                let index = swapped_entity;
                #[cfg(debug_assertions)]
                let index = swapped_entity.index();
                *self.sparse.get_mut(index).unwrap() = dense_index;
            }
            true
        } else {
            false
        }
    }

    pub(crate) fn check_change_ticks(&mut self, change_tick: Tick) {
        self.dense.check_change_ticks(change_tick);
    }
}

/// A data structure that blends dense and sparse storage
///
/// `I` is the type of the indices, while `V` is the type of data stored in the dense storage.
#[derive(Debug)]
pub struct SparseSet<I, V: 'static> {
    dense: Vec<V>,
    indices: Vec<I>,
    sparse: SparseArray<I, NonMaxUsize>,
}

/// A space-optimized version of [`SparseSet`] that cannot be changed
/// after construction.
#[derive(Debug)]
pub(crate) struct ImmutableSparseSet<I, V: 'static> {
    dense: Box<[V]>,
    indices: Box<[I]>,
    sparse: ImmutableSparseArray<I, NonMaxUsize>,
}

macro_rules! impl_sparse_set {
    ($ty:ident) => {
        impl<I: SparseSetIndex, V> $ty<I, V> {
            /// Returns the number of elements in the sparse set.
            #[inline]
            pub fn len(&self) -> usize {
                self.dense.len()
            }

            /// Returns `true` if the sparse set contains a value for `index`.
            #[inline]
            pub fn contains(&self, index: I) -> bool {
                self.sparse.contains(index)
            }

            /// Returns a reference to the value for `index`.
            ///
            /// Returns `None` if `index` does not have a value in the sparse set.
            pub fn get(&self, index: I) -> Option<&V> {
                self.sparse.get(index).map(|dense_index| {
                    // SAFETY: if the sparse index points to something in the dense vec, it exists
                    unsafe { self.dense.get_unchecked(dense_index.get()) }
                })
            }

            /// Returns a mutable reference to the value for `index`.
            ///
            /// Returns `None` if `index` does not have a value in the sparse set.
            pub fn get_mut(&mut self, index: I) -> Option<&mut V> {
                let dense = &mut self.dense;
                self.sparse.get(index).map(move |dense_index| {
                    // SAFETY: if the sparse index points to something in the dense vec, it exists
                    unsafe { dense.get_unchecked_mut(dense_index.get()) }
                })
            }

            /// Returns an iterator visiting all keys (indices) in arbitrary order.
            pub fn indices(&self) -> impl Iterator<Item = I> + '_ {
                self.indices.iter().cloned()
            }

            /// Returns an iterator visiting all values in arbitrary order.
            pub fn values(&self) -> impl Iterator<Item = &V> {
                self.dense.iter()
            }

            /// Returns an iterator visiting all values mutably in arbitrary order.
            pub fn values_mut(&mut self) -> impl Iterator<Item = &mut V> {
                self.dense.iter_mut()
            }

            /// Returns an iterator visiting all key-value pairs in arbitrary order, with references to the values.
            pub fn iter(&self) -> impl Iterator<Item = (&I, &V)> {
                self.indices.iter().zip(self.dense.iter())
            }

            /// Returns an iterator visiting all key-value pairs in arbitrary order, with mutable references to the values.
            pub fn iter_mut(&mut self) -> impl Iterator<Item = (&I, &mut V)> {
                self.indices.iter().zip(self.dense.iter_mut())
            }
        }
    };
}

impl_sparse_set!(SparseSet);
impl_sparse_set!(ImmutableSparseSet);

impl<I: SparseSetIndex, V> Default for SparseSet<I, V> {
    fn default() -> Self {
        Self::new()
    }
}

impl<I, V> SparseSet<I, V> {
    /// Creates a new [`SparseSet`].
    pub const fn new() -> Self {
        Self {
            dense: Vec::new(),
            indices: Vec::new(),
            sparse: SparseArray::new(),
        }
    }
}

impl<I: SparseSetIndex, V> SparseSet<I, V> {
    /// Creates a new [`SparseSet`] with a specified initial capacity.
    pub fn with_capacity(capacity: usize) -> Self {
        Self {
            dense: Vec::with_capacity(capacity),
            indices: Vec::with_capacity(capacity),
            sparse: Default::default(),
        }
    }

    /// Returns the total number of elements the [`SparseSet`] can hold without needing to reallocate.
    #[inline]
    pub fn capacity(&self) -> usize {
        self.dense.capacity()
    }

    /// Inserts `value` at `index`.
    ///
    /// If a value was already present at `index`, it will be overwritten.
    pub fn insert(&mut self, index: I, value: V) {
        if let Some(dense_index) = self.sparse.get(index.clone()).cloned() {
            // SAFETY: dense indices stored in self.sparse always exist
            unsafe {
                *self.dense.get_unchecked_mut(dense_index.get()) = value;
            }
        } else {
            self.sparse
                .insert(index.clone(), NonMaxUsize::new(self.dense.len()).unwrap());
            self.indices.push(index);
            self.dense.push(value);
        }
    }

    /// Returns a reference to the value for `index`, inserting one computed from `func`
    /// if not already present.
    pub fn get_or_insert_with(&mut self, index: I, func: impl FnOnce() -> V) -> &mut V {
        if let Some(dense_index) = self.sparse.get(index.clone()).cloned() {
            // SAFETY: dense indices stored in self.sparse always exist
            unsafe { self.dense.get_unchecked_mut(dense_index.get()) }
        } else {
            let value = func();
            let dense_index = self.dense.len();
            self.sparse
                .insert(index.clone(), NonMaxUsize::new(dense_index).unwrap());
            self.indices.push(index);
            self.dense.push(value);
            // SAFETY: dense index was just populated above
            unsafe { self.dense.get_unchecked_mut(dense_index) }
        }
    }

    /// Returns `true` if the sparse set contains no elements.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.dense.len() == 0
    }

    /// Removes and returns the value for `index`.
    ///
    /// Returns `None` if `index` does not have a value in the sparse set.
    pub fn remove(&mut self, index: I) -> Option<V> {
        self.sparse.remove(index).map(|dense_index| {
            let index = dense_index.get();
            let is_last = index == self.dense.len() - 1;
            let value = self.dense.swap_remove(index);
            self.indices.swap_remove(index);
            if !is_last {
                let swapped_index = self.indices[index].clone();
                *self.sparse.get_mut(swapped_index).unwrap() = dense_index;
            }
            value
        })
    }

    /// Clears all of the elements from the sparse set.
    pub fn clear(&mut self) {
        self.dense.clear();
        self.indices.clear();
        self.sparse.clear();
    }

    /// Converts the sparse set into its immutable variant.
    pub(crate) fn into_immutable(self) -> ImmutableSparseSet<I, V> {
        ImmutableSparseSet {
            dense: self.dense.into_boxed_slice(),
            indices: self.indices.into_boxed_slice(),
            sparse: self.sparse.into_immutable(),
        }
    }
}

/// Represents something that can be stored in a [`SparseSet`] as an integer.
///
/// Ideally, the `usize` values should be very small (ie: incremented starting from
/// zero), as the number of bits needed to represent a `SparseSetIndex` in a `FixedBitSet`
/// is proportional to the **value** of those `usize`.
pub trait SparseSetIndex: Clone + PartialEq + Eq + Hash {
    /// Gets the sparse set index corresponding to this instance.
    fn sparse_set_index(&self) -> usize;
    /// Creates a new instance of this type with the specified index.
    fn get_sparse_set_index(value: usize) -> Self;
}

macro_rules! impl_sparse_set_index {
    ($($ty:ty),+) => {
        $(impl SparseSetIndex for $ty {
            #[inline]
            fn sparse_set_index(&self) -> usize {
                *self as usize
            }

            #[inline]
            fn get_sparse_set_index(value: usize) -> Self {
                value as $ty
            }
        })*
    };
}

impl_sparse_set_index!(u8, u16, u32, u64, usize);

/// A collection of [`ComponentSparseSet`] storages, indexed by [`ComponentId`]
///
/// Can be accessed via [`Storages`](crate::storage::Storages)
#[derive(Default)]
pub struct SparseSets {
    sets: SparseSet<ComponentId, ComponentSparseSet>,
}

impl SparseSets {
    /// Returns the number of [`ComponentSparseSet`]s this collection contains.
    #[inline]
    pub fn len(&self) -> usize {
        self.sets.len()
    }

    /// Returns true if this collection contains no [`ComponentSparseSet`]s.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.sets.is_empty()
    }

    /// An Iterator visiting all ([`ComponentId`], [`ComponentSparseSet`]) pairs.
    /// NOTE: Order is not guaranteed.
    pub fn iter(&self) -> impl Iterator<Item = (ComponentId, &ComponentSparseSet)> {
        self.sets.iter().map(|(id, data)| (*id, data))
    }

    /// Gets a reference to the [`ComponentSparseSet`] of a [`ComponentId`].
    #[inline]
    pub fn get(&self, component_id: ComponentId) -> Option<&ComponentSparseSet> {
        self.sets.get(component_id)
    }

    /// Gets a mutable reference of [`ComponentSparseSet`] of a [`ComponentInfo`].
    /// Create a new [`ComponentSparseSet`] if not exists.
    pub(crate) fn get_or_insert(
        &mut self,
        component_info: &ComponentInfo,
    ) -> &mut ComponentSparseSet {
        if !self.sets.contains(component_info.id()) {
            self.sets.insert(
                component_info.id(),
                ComponentSparseSet::new(component_info, 64),
            );
        }

        self.sets.get_mut(component_info.id()).unwrap()
    }

    /// Gets a mutable reference to the [`ComponentSparseSet`] of a [`ComponentId`].
    pub(crate) fn get_mut(&mut self, component_id: ComponentId) -> Option<&mut ComponentSparseSet> {
        self.sets.get_mut(component_id)
    }

    /// Clear entities stored in each [`ComponentSparseSet`]
    pub(crate) fn clear_entities(&mut self) {
        for set in self.sets.values_mut() {
            set.clear();
        }
    }

    pub(crate) fn check_change_ticks(&mut self, change_tick: Tick) {
        for set in self.sets.values_mut() {
            set.check_change_ticks(change_tick);
        }
    }
}

#[cfg(test)]
mod tests {
    use super::SparseSets;
    use crate::{
        self as bevy_ecs,
        component::{Component, ComponentDescriptor, ComponentId, ComponentInfo},
        entity::Entity,
        storage::SparseSet,
    };

    #[derive(Debug, Eq, PartialEq)]
    struct Foo(usize);

    #[test]
    fn sparse_set() {
        let mut set = SparseSet::<Entity, Foo>::default();
        let e0 = Entity::from_raw(0);
        let e1 = Entity::from_raw(1);
        let e2 = Entity::from_raw(2);
        let e3 = Entity::from_raw(3);
        let e4 = Entity::from_raw(4);

        set.insert(e1, Foo(1));
        set.insert(e2, Foo(2));
        set.insert(e3, Foo(3));

        assert_eq!(set.get(e0), None);
        assert_eq!(set.get(e1), Some(&Foo(1)));
        assert_eq!(set.get(e2), Some(&Foo(2)));
        assert_eq!(set.get(e3), Some(&Foo(3)));
        assert_eq!(set.get(e4), None);

        {
            let iter_results = set.values().collect::<Vec<_>>();
            assert_eq!(iter_results, vec![&Foo(1), &Foo(2), &Foo(3)]);
        }

        assert_eq!(set.remove(e2), Some(Foo(2)));
        assert_eq!(set.remove(e2), None);

        assert_eq!(set.get(e0), None);
        assert_eq!(set.get(e1), Some(&Foo(1)));
        assert_eq!(set.get(e2), None);
        assert_eq!(set.get(e3), Some(&Foo(3)));
        assert_eq!(set.get(e4), None);

        assert_eq!(set.remove(e1), Some(Foo(1)));

        assert_eq!(set.get(e0), None);
        assert_eq!(set.get(e1), None);
        assert_eq!(set.get(e2), None);
        assert_eq!(set.get(e3), Some(&Foo(3)));
        assert_eq!(set.get(e4), None);

        set.insert(e1, Foo(10));

        assert_eq!(set.get(e1), Some(&Foo(10)));

        *set.get_mut(e1).unwrap() = Foo(11);
        assert_eq!(set.get(e1), Some(&Foo(11)));
    }

    #[test]
    fn sparse_sets() {
        let mut sets = SparseSets::default();

        #[derive(Component, Default, Debug)]
        struct TestComponent1;

        #[derive(Component, Default, Debug)]
        struct TestComponent2;

        assert_eq!(sets.len(), 0);
        assert!(sets.is_empty());

        init_component::<TestComponent1>(&mut sets, 1);
        assert_eq!(sets.len(), 1);

        init_component::<TestComponent2>(&mut sets, 2);
        assert_eq!(sets.len(), 2);

        // check its shape by iter
        let mut collected_sets = sets
            .iter()
            .map(|(id, set)| (id, set.len()))
            .collect::<Vec<_>>();
        collected_sets.sort();
        assert_eq!(
            collected_sets,
            vec![(ComponentId::new(1), 0), (ComponentId::new(2), 0),]
        );

        fn init_component<T: Component>(sets: &mut SparseSets, id: usize) {
            let descriptor = ComponentDescriptor::new::<T>();
            let id = ComponentId::new(id);
            let info = ComponentInfo::new(id, descriptor);
            sets.get_or_insert(&info);
        }
    }
}