bevy_ecs/system/
function_system.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
use crate::{
    archetype::{ArchetypeComponentId, ArchetypeGeneration},
    component::{ComponentId, Tick},
    prelude::FromWorld,
    query::{Access, FilteredAccessSet},
    schedule::{InternedSystemSet, SystemSet},
    system::{check_system_change_tick, ReadOnlySystemParam, System, SystemParam, SystemParamItem},
    world::{unsafe_world_cell::UnsafeWorldCell, DeferredWorld, World, WorldId},
};

use bevy_utils::all_tuples;
use std::{borrow::Cow, marker::PhantomData};

#[cfg(feature = "trace")]
use bevy_utils::tracing::{info_span, Span};

use super::{In, IntoSystem, ReadOnlySystem, SystemBuilder};

/// The metadata of a [`System`].
#[derive(Clone)]
pub struct SystemMeta {
    pub(crate) name: Cow<'static, str>,
    pub(crate) component_access_set: FilteredAccessSet<ComponentId>,
    pub(crate) archetype_component_access: Access<ArchetypeComponentId>,
    // NOTE: this must be kept private. making a SystemMeta non-send is irreversible to prevent
    // SystemParams from overriding each other
    is_send: bool,
    has_deferred: bool,
    pub(crate) last_run: Tick,
    #[cfg(feature = "trace")]
    pub(crate) system_span: Span,
    #[cfg(feature = "trace")]
    pub(crate) commands_span: Span,
}

impl SystemMeta {
    pub(crate) fn new<T>() -> Self {
        let name = std::any::type_name::<T>();
        Self {
            name: name.into(),
            archetype_component_access: Access::default(),
            component_access_set: FilteredAccessSet::default(),
            is_send: true,
            has_deferred: false,
            last_run: Tick::new(0),
            #[cfg(feature = "trace")]
            system_span: info_span!("system", name = name),
            #[cfg(feature = "trace")]
            commands_span: info_span!("system_commands", name = name),
        }
    }

    /// Returns the system's name
    #[inline]
    pub fn name(&self) -> &str {
        &self.name
    }

    /// Returns true if the system is [`Send`].
    #[inline]
    pub fn is_send(&self) -> bool {
        self.is_send
    }

    /// Sets the system to be not [`Send`].
    ///
    /// This is irreversible.
    #[inline]
    pub fn set_non_send(&mut self) {
        self.is_send = false;
    }

    /// Returns true if the system has deferred [`SystemParam`]'s
    #[inline]
    pub fn has_deferred(&self) -> bool {
        self.has_deferred
    }

    /// Marks the system as having deferred buffers like [`Commands`](`super::Commands`)
    /// This lets the scheduler insert [`apply_deferred`](`crate::prelude::apply_deferred`) systems automatically.
    pub fn set_has_deferred(&mut self) {
        self.has_deferred = true;
    }
}

// TODO: Actually use this in FunctionSystem. We should probably only do this once Systems are constructed using a World reference
// (to avoid the need for unwrapping to retrieve SystemMeta)
/// Holds on to persistent state required to drive [`SystemParam`] for a [`System`].
///
/// This is a powerful and convenient tool for working with exclusive world access,
/// allowing you to fetch data from the [`World`] as if you were running a [`System`].
/// However, simply calling `world::run_system(my_system)` using a [`World::run_system`](World::run_system)
/// can be significantly simpler and ensures that change detection and command flushing work as expected.
///
/// Borrow-checking is handled for you, allowing you to mutably access multiple compatible system parameters at once,
/// and arbitrary system parameters (like [`EventWriter`](crate::event::EventWriter)) can be conveniently fetched.
///
/// For an alternative approach to split mutable access to the world, see [`World::resource_scope`].
///
/// # Warning
///
/// [`SystemState`] values created can be cached to improve performance,
/// and *must* be cached and reused in order for system parameters that rely on local state to work correctly.
/// These include:
/// - [`Added`](crate::query::Added) and [`Changed`](crate::query::Changed) query filters
/// - [`Local`](crate::system::Local) variables that hold state
/// - [`EventReader`](crate::event::EventReader) system parameters, which rely on a [`Local`](crate::system::Local) to track which events have been seen
///
/// Note that this is automatically handled for you when using a [`World::run_system`](World::run_system).
///
/// # Example
///
/// Basic usage:
/// ```
/// # use bevy_ecs::prelude::*;
/// # use bevy_ecs::system::SystemState;
/// # use bevy_ecs::event::Events;
/// #
/// # #[derive(Event)]
/// # struct MyEvent;
/// # #[derive(Resource)]
/// # struct MyResource(u32);
/// #
/// # #[derive(Component)]
/// # struct MyComponent;
/// #
/// // Work directly on the `World`
/// let mut world = World::new();
/// world.init_resource::<Events<MyEvent>>();
///
/// // Construct a `SystemState` struct, passing in a tuple of `SystemParam`
/// // as if you were writing an ordinary system.
/// let mut system_state: SystemState<(
///     EventWriter<MyEvent>,
///     Option<ResMut<MyResource>>,
///     Query<&MyComponent>,
/// )> = SystemState::new(&mut world);
///
/// // Use system_state.get_mut(&mut world) and unpack your system parameters into variables!
/// // system_state.get(&world) provides read-only versions of your system parameters instead.
/// let (event_writer, maybe_resource, query) = system_state.get_mut(&mut world);
///
/// // If you are using `Commands`, you can choose when you want to apply them to the world.
/// // You need to manually call `.apply(world)` on the `SystemState` to apply them.
/// ```
/// Caching:
/// ```
/// # use bevy_ecs::prelude::*;
/// # use bevy_ecs::system::SystemState;
/// # use bevy_ecs::event::Events;
/// #
/// # #[derive(Event)]
/// # struct MyEvent;
/// #[derive(Resource)]
/// struct CachedSystemState {
///     event_state: SystemState<EventReader<'static, 'static, MyEvent>>,
/// }
///
/// // Create and store a system state once
/// let mut world = World::new();
/// world.init_resource::<Events<MyEvent>>();
/// let initial_state: SystemState<EventReader<MyEvent>> = SystemState::new(&mut world);
///
/// // The system state is cached in a resource
/// world.insert_resource(CachedSystemState {
///     event_state: initial_state,
/// });
///
/// // Later, fetch the cached system state, saving on overhead
/// world.resource_scope(|world, mut cached_state: Mut<CachedSystemState>| {
///     let mut event_reader = cached_state.event_state.get_mut(world);
///
///     for events in event_reader.read() {
///         println!("Hello World!");
///     }
/// });
/// ```
pub struct SystemState<Param: SystemParam + 'static> {
    meta: SystemMeta,
    param_state: Param::State,
    world_id: WorldId,
    archetype_generation: ArchetypeGeneration,
}

impl<Param: SystemParam> SystemState<Param> {
    /// Creates a new [`SystemState`] with default state.
    ///
    /// ## Note
    /// For users of [`SystemState::get_manual`] or [`get_manual_mut`](SystemState::get_manual_mut):
    ///
    /// `new` does not cache any of the world's archetypes, so you must call [`SystemState::update_archetypes`]
    /// manually before calling `get_manual{_mut}`.
    pub fn new(world: &mut World) -> Self {
        let mut meta = SystemMeta::new::<Param>();
        meta.last_run = world.change_tick().relative_to(Tick::MAX);
        let param_state = Param::init_state(world, &mut meta);
        Self {
            meta,
            param_state,
            world_id: world.id(),
            archetype_generation: ArchetypeGeneration::initial(),
        }
    }

    // Create a [`SystemState`] from a [`SystemBuilder`]
    pub(crate) fn from_builder(builder: SystemBuilder<Param>) -> Self {
        Self {
            meta: builder.meta,
            param_state: builder.state,
            world_id: builder.world.id(),
            archetype_generation: ArchetypeGeneration::initial(),
        }
    }

    /// Gets the metadata for this instance.
    #[inline]
    pub fn meta(&self) -> &SystemMeta {
        &self.meta
    }

    /// Retrieve the [`SystemParam`] values. This can only be called when all parameters are read-only.
    #[inline]
    pub fn get<'w, 's>(&'s mut self, world: &'w World) -> SystemParamItem<'w, 's, Param>
    where
        Param: ReadOnlySystemParam,
    {
        self.validate_world(world.id());
        self.update_archetypes(world);
        // SAFETY: Param is read-only and doesn't allow mutable access to World.
        // It also matches the World this SystemState was created with.
        unsafe { self.get_unchecked_manual(world.as_unsafe_world_cell_readonly()) }
    }

    /// Retrieve the mutable [`SystemParam`] values.
    #[inline]
    pub fn get_mut<'w, 's>(&'s mut self, world: &'w mut World) -> SystemParamItem<'w, 's, Param> {
        self.validate_world(world.id());
        self.update_archetypes(world);
        // SAFETY: World is uniquely borrowed and matches the World this SystemState was created with.
        unsafe { self.get_unchecked_manual(world.as_unsafe_world_cell()) }
    }

    /// Applies all state queued up for [`SystemParam`] values. For example, this will apply commands queued up
    /// by a [`Commands`](`super::Commands`) parameter to the given [`World`].
    /// This function should be called manually after the values returned by [`SystemState::get`] and [`SystemState::get_mut`]
    /// are finished being used.
    pub fn apply(&mut self, world: &mut World) {
        Param::apply(&mut self.param_state, &self.meta, world);
    }

    /// Returns `true` if `world_id` matches the [`World`] that was used to call [`SystemState::new`].
    /// Otherwise, this returns false.
    #[inline]
    pub fn matches_world(&self, world_id: WorldId) -> bool {
        self.world_id == world_id
    }

    /// Asserts that the [`SystemState`] matches the provided world.
    #[inline]
    #[track_caller]
    fn validate_world(&self, world_id: WorldId) {
        #[inline(never)]
        #[track_caller]
        #[cold]
        fn panic_mismatched(this: WorldId, other: WorldId) -> ! {
            panic!("Encountered a mismatched World. This SystemState was created from {this:?}, but a method was called using {other:?}.");
        }

        if !self.matches_world(world_id) {
            panic_mismatched(self.world_id, world_id);
        }
    }

    /// Updates the state's internal view of the [`World`]'s archetypes. If this is not called before fetching the parameters,
    /// the results may not accurately reflect what is in the `world`.
    ///
    /// This is only required if [`SystemState::get_manual`] or [`SystemState::get_manual_mut`] is being called, and it only needs to
    /// be called if the `world` has been structurally mutated (i.e. added/removed a component or resource). Users using
    /// [`SystemState::get`] or [`SystemState::get_mut`] do not need to call this as it will be automatically called for them.
    #[inline]
    pub fn update_archetypes(&mut self, world: &World) {
        self.update_archetypes_unsafe_world_cell(world.as_unsafe_world_cell_readonly());
    }

    /// Updates the state's internal view of the `world`'s archetypes. If this is not called before fetching the parameters,
    /// the results may not accurately reflect what is in the `world`.
    ///
    /// This is only required if [`SystemState::get_manual`] or [`SystemState::get_manual_mut`] is being called, and it only needs to
    /// be called if the `world` has been structurally mutated (i.e. added/removed a component or resource). Users using
    /// [`SystemState::get`] or [`SystemState::get_mut`] do not need to call this as it will be automatically called for them.
    ///
    /// # Note
    ///
    /// This method only accesses world metadata.
    #[inline]
    pub fn update_archetypes_unsafe_world_cell(&mut self, world: UnsafeWorldCell) {
        assert_eq!(self.world_id, world.id(), "Encountered a mismatched World. A System cannot be used with Worlds other than the one it was initialized with.");

        let archetypes = world.archetypes();
        let old_generation =
            std::mem::replace(&mut self.archetype_generation, archetypes.generation());

        for archetype in &archetypes[old_generation..] {
            // SAFETY: The assertion above ensures that the param_state was initialized from `world`.
            unsafe { Param::new_archetype(&mut self.param_state, archetype, &mut self.meta) };
        }
    }

    /// Retrieve the [`SystemParam`] values. This can only be called when all parameters are read-only.
    /// This will not update the state's view of the world's archetypes automatically nor increment the
    /// world's change tick.
    ///
    /// For this to return accurate results, ensure [`SystemState::update_archetypes`] is called before this
    /// function.
    ///
    /// Users should strongly prefer to use [`SystemState::get`] over this function.
    #[inline]
    pub fn get_manual<'w, 's>(&'s mut self, world: &'w World) -> SystemParamItem<'w, 's, Param>
    where
        Param: ReadOnlySystemParam,
    {
        self.validate_world(world.id());
        let change_tick = world.read_change_tick();
        // SAFETY: Param is read-only and doesn't allow mutable access to World.
        // It also matches the World this SystemState was created with.
        unsafe { self.fetch(world.as_unsafe_world_cell_readonly(), change_tick) }
    }

    /// Retrieve the mutable [`SystemParam`] values.  This will not update the state's view of the world's archetypes
    /// automatically nor increment the world's change tick.
    ///
    /// For this to return accurate results, ensure [`SystemState::update_archetypes`] is called before this
    /// function.
    ///
    /// Users should strongly prefer to use [`SystemState::get_mut`] over this function.
    #[inline]
    pub fn get_manual_mut<'w, 's>(
        &'s mut self,
        world: &'w mut World,
    ) -> SystemParamItem<'w, 's, Param> {
        self.validate_world(world.id());
        let change_tick = world.change_tick();
        // SAFETY: World is uniquely borrowed and matches the World this SystemState was created with.
        unsafe { self.fetch(world.as_unsafe_world_cell(), change_tick) }
    }

    /// Retrieve the [`SystemParam`] values. This will not update archetypes automatically.
    ///
    /// # Safety
    /// This call might access any of the input parameters in a way that violates Rust's mutability rules. Make sure the data
    /// access is safe in the context of global [`World`] access. The passed-in [`World`] _must_ be the [`World`] the [`SystemState`] was
    /// created with.
    #[inline]
    pub unsafe fn get_unchecked_manual<'w, 's>(
        &'s mut self,
        world: UnsafeWorldCell<'w>,
    ) -> SystemParamItem<'w, 's, Param> {
        let change_tick = world.increment_change_tick();
        // SAFETY: The invariants are uphold by the caller.
        unsafe { self.fetch(world, change_tick) }
    }

    /// # Safety
    /// This call might access any of the input parameters in a way that violates Rust's mutability rules. Make sure the data
    /// access is safe in the context of global [`World`] access. The passed-in [`World`] _must_ be the [`World`] the [`SystemState`] was
    /// created with.
    #[inline]
    unsafe fn fetch<'w, 's>(
        &'s mut self,
        world: UnsafeWorldCell<'w>,
        change_tick: Tick,
    ) -> SystemParamItem<'w, 's, Param> {
        // SAFETY: The invariants are uphold by the caller.
        let param =
            unsafe { Param::get_param(&mut self.param_state, &self.meta, world, change_tick) };
        self.meta.last_run = change_tick;
        param
    }
}

impl<Param: SystemParam> FromWorld for SystemState<Param> {
    fn from_world(world: &mut World) -> Self {
        Self::new(world)
    }
}

/// The [`System`] counter part of an ordinary function.
///
/// You get this by calling [`IntoSystem::into_system`]  on a function that only accepts
/// [`SystemParam`]s. The output of the system becomes the functions return type, while the input
/// becomes the functions [`In`] tagged parameter or `()` if no such parameter exists.
///
/// [`FunctionSystem`] must be `.initialized` before they can be run.
///
/// The [`Clone`] implementation for [`FunctionSystem`] returns a new instance which
/// is NOT initialized. The cloned system must also be `.initialized` before it can be run.
pub struct FunctionSystem<Marker, F>
where
    F: SystemParamFunction<Marker>,
{
    func: F,
    pub(crate) param_state: Option<<F::Param as SystemParam>::State>,
    pub(crate) system_meta: SystemMeta,
    world_id: Option<WorldId>,
    archetype_generation: ArchetypeGeneration,
    // NOTE: PhantomData<fn()-> T> gives this safe Send/Sync impls
    marker: PhantomData<fn() -> Marker>,
}

impl<Marker, F> FunctionSystem<Marker, F>
where
    F: SystemParamFunction<Marker>,
{
    // Create a [`FunctionSystem`] from a [`SystemBuilder`]
    pub(crate) fn from_builder(builder: SystemBuilder<F::Param>, func: F) -> Self {
        Self {
            func,
            param_state: Some(builder.state),
            system_meta: builder.meta,
            world_id: Some(builder.world.id()),
            archetype_generation: ArchetypeGeneration::initial(),
            marker: PhantomData,
        }
    }
}

// De-initializes the cloned system.
impl<Marker, F> Clone for FunctionSystem<Marker, F>
where
    F: SystemParamFunction<Marker> + Clone,
{
    fn clone(&self) -> Self {
        Self {
            func: self.func.clone(),
            param_state: None,
            system_meta: SystemMeta::new::<F>(),
            world_id: None,
            archetype_generation: ArchetypeGeneration::initial(),
            marker: PhantomData,
        }
    }
}

/// A marker type used to distinguish regular function systems from exclusive function systems.
#[doc(hidden)]
pub struct IsFunctionSystem;

impl<Marker, F> IntoSystem<F::In, F::Out, (IsFunctionSystem, Marker)> for F
where
    Marker: 'static,
    F: SystemParamFunction<Marker>,
{
    type System = FunctionSystem<Marker, F>;
    fn into_system(func: Self) -> Self::System {
        FunctionSystem {
            func,
            param_state: None,
            system_meta: SystemMeta::new::<F>(),
            world_id: None,
            archetype_generation: ArchetypeGeneration::initial(),
            marker: PhantomData,
        }
    }
}

impl<Marker, F> FunctionSystem<Marker, F>
where
    F: SystemParamFunction<Marker>,
{
    /// Message shown when a system isn't initialised
    // When lines get too long, rustfmt can sometimes refuse to format them.
    // Work around this by storing the message separately.
    const PARAM_MESSAGE: &'static str = "System's param_state was not found. Did you forget to initialize this system before running it?";
}

impl<Marker, F> System for FunctionSystem<Marker, F>
where
    Marker: 'static,
    F: SystemParamFunction<Marker>,
{
    type In = F::In;
    type Out = F::Out;

    #[inline]
    fn name(&self) -> Cow<'static, str> {
        self.system_meta.name.clone()
    }

    #[inline]
    fn component_access(&self) -> &Access<ComponentId> {
        self.system_meta.component_access_set.combined_access()
    }

    #[inline]
    fn archetype_component_access(&self) -> &Access<ArchetypeComponentId> {
        &self.system_meta.archetype_component_access
    }

    #[inline]
    fn is_send(&self) -> bool {
        self.system_meta.is_send
    }

    #[inline]
    fn is_exclusive(&self) -> bool {
        false
    }

    #[inline]
    fn has_deferred(&self) -> bool {
        self.system_meta.has_deferred
    }

    #[inline]
    unsafe fn run_unsafe(&mut self, input: Self::In, world: UnsafeWorldCell) -> Self::Out {
        #[cfg(feature = "trace")]
        let _span_guard = self.system_meta.system_span.enter();

        let change_tick = world.increment_change_tick();

        // SAFETY:
        // - The caller has invoked `update_archetype_component_access`, which will panic
        //   if the world does not match.
        // - All world accesses used by `F::Param` have been registered, so the caller
        //   will ensure that there are no data access conflicts.
        let params = unsafe {
            F::Param::get_param(
                self.param_state.as_mut().expect(Self::PARAM_MESSAGE),
                &self.system_meta,
                world,
                change_tick,
            )
        };
        let out = self.func.run(input, params);
        self.system_meta.last_run = change_tick;
        out
    }

    #[inline]
    fn apply_deferred(&mut self, world: &mut World) {
        let param_state = self.param_state.as_mut().expect(Self::PARAM_MESSAGE);
        F::Param::apply(param_state, &self.system_meta, world);
    }

    #[inline]
    fn queue_deferred(&mut self, world: DeferredWorld) {
        let param_state = self.param_state.as_mut().expect(Self::PARAM_MESSAGE);
        F::Param::queue(param_state, &self.system_meta, world);
    }

    #[inline]
    fn initialize(&mut self, world: &mut World) {
        if let Some(id) = self.world_id {
            assert_eq!(
                id,
                world.id(),
                "System built with a different world than the one it was added to.",
            );
        } else {
            self.world_id = Some(world.id());
            self.param_state = Some(F::Param::init_state(world, &mut self.system_meta));
        }
        self.system_meta.last_run = world.change_tick().relative_to(Tick::MAX);
    }

    fn update_archetype_component_access(&mut self, world: UnsafeWorldCell) {
        assert_eq!(self.world_id, Some(world.id()), "Encountered a mismatched World. A System cannot be used with Worlds other than the one it was initialized with.");
        let archetypes = world.archetypes();
        let old_generation =
            std::mem::replace(&mut self.archetype_generation, archetypes.generation());

        for archetype in &archetypes[old_generation..] {
            let param_state = self.param_state.as_mut().unwrap();
            // SAFETY: The assertion above ensures that the param_state was initialized from `world`.
            unsafe { F::Param::new_archetype(param_state, archetype, &mut self.system_meta) };
        }
    }

    #[inline]
    fn check_change_tick(&mut self, change_tick: Tick) {
        check_system_change_tick(
            &mut self.system_meta.last_run,
            change_tick,
            self.system_meta.name.as_ref(),
        );
    }

    fn default_system_sets(&self) -> Vec<InternedSystemSet> {
        let set = crate::schedule::SystemTypeSet::<Self>::new();
        vec![set.intern()]
    }

    fn get_last_run(&self) -> Tick {
        self.system_meta.last_run
    }

    fn set_last_run(&mut self, last_run: Tick) {
        self.system_meta.last_run = last_run;
    }
}

/// SAFETY: `F`'s param is [`ReadOnlySystemParam`], so this system will only read from the world.
unsafe impl<Marker, F> ReadOnlySystem for FunctionSystem<Marker, F>
where
    Marker: 'static,
    F: SystemParamFunction<Marker>,
    F::Param: ReadOnlySystemParam,
{
}

/// A trait implemented for all functions that can be used as [`System`]s.
///
/// This trait can be useful for making your own systems which accept other systems,
/// sometimes called higher order systems.
///
/// This should be used in combination with [`ParamSet`] when calling other systems
/// within your system.
/// Using [`ParamSet`] in this case avoids [`SystemParam`] collisions.
///
/// # Example
///
/// To create something like [`PipeSystem`], but in entirely safe code.
///
/// ```
/// use std::num::ParseIntError;
///
/// use bevy_ecs::prelude::*;
///
/// /// Pipe creates a new system which calls `a`, then calls `b` with the output of `a`
/// pub fn pipe<A, B, AMarker, BMarker>(
///     mut a: A,
///     mut b: B,
/// ) -> impl FnMut(In<A::In>, ParamSet<(A::Param, B::Param)>) -> B::Out
/// where
///     // We need A and B to be systems, add those bounds
///     A: SystemParamFunction<AMarker>,
///     B: SystemParamFunction<BMarker, In = A::Out>,
/// {
///     // The type of `params` is inferred based on the return of this function above
///     move |In(a_in), mut params| {
///         let shared = a.run(a_in, params.p0());
///         b.run(shared, params.p1())
///     }
/// }
///
/// // Usage example for `pipe`:
/// fn main() {
///     let mut world = World::default();
///     world.insert_resource(Message("42".to_string()));
///
///     // pipe the `parse_message_system`'s output into the `filter_system`s input
///     let mut piped_system = IntoSystem::into_system(pipe(parse_message, filter));
///     piped_system.initialize(&mut world);
///     assert_eq!(piped_system.run((), &mut world), Some(42));
/// }
///
/// #[derive(Resource)]
/// struct Message(String);
///
/// fn parse_message(message: Res<Message>) -> Result<usize, ParseIntError> {
///     message.0.parse::<usize>()
/// }
///
/// fn filter(In(result): In<Result<usize, ParseIntError>>) -> Option<usize> {
///     result.ok().filter(|&n| n < 100)
/// }
/// ```
/// [`PipeSystem`]: crate::system::PipeSystem
/// [`ParamSet`]: crate::system::ParamSet
#[diagnostic::on_unimplemented(
    message = "`{Self}` is not a valid system",
    label = "invalid system"
)]
pub trait SystemParamFunction<Marker>: Send + Sync + 'static {
    /// The input type to this system. See [`System::In`].
    type In;

    /// The return type of this system. See [`System::Out`].
    type Out;

    /// The [`SystemParam`]/s used by this system to access the [`World`].
    type Param: SystemParam;

    /// Executes this system once. See [`System::run`] or [`System::run_unsafe`].
    fn run(&mut self, input: Self::In, param_value: SystemParamItem<Self::Param>) -> Self::Out;
}

macro_rules! impl_system_function {
    ($($param: ident),*) => {
        #[allow(non_snake_case)]
        impl<Out, Func: Send + Sync + 'static, $($param: SystemParam),*> SystemParamFunction<fn($($param,)*) -> Out> for Func
        where
        for <'a> &'a mut Func:
                FnMut($($param),*) -> Out +
                FnMut($(SystemParamItem<$param>),*) -> Out, Out: 'static
        {
            type In = ();
            type Out = Out;
            type Param = ($($param,)*);
            #[inline]
            fn run(&mut self, _input: (), param_value: SystemParamItem< ($($param,)*)>) -> Out {
                // Yes, this is strange, but `rustc` fails to compile this impl
                // without using this function. It fails to recognize that `func`
                // is a function, potentially because of the multiple impls of `FnMut`
                #[allow(clippy::too_many_arguments)]
                fn call_inner<Out, $($param,)*>(
                    mut f: impl FnMut($($param,)*)->Out,
                    $($param: $param,)*
                )->Out{
                    f($($param,)*)
                }
                let ($($param,)*) = param_value;
                call_inner(self, $($param),*)
            }
        }

        #[allow(non_snake_case)]
        impl<Input, Out, Func: Send + Sync + 'static, $($param: SystemParam),*> SystemParamFunction<fn(In<Input>, $($param,)*) -> Out> for Func
        where
        for <'a> &'a mut Func:
                FnMut(In<Input>, $($param),*) -> Out +
                FnMut(In<Input>, $(SystemParamItem<$param>),*) -> Out, Out: 'static
        {
            type In = Input;
            type Out = Out;
            type Param = ($($param,)*);
            #[inline]
            fn run(&mut self, input: Input, param_value: SystemParamItem< ($($param,)*)>) -> Out {
                #[allow(clippy::too_many_arguments)]
                fn call_inner<Input, Out, $($param,)*>(
                    mut f: impl FnMut(In<Input>, $($param,)*)->Out,
                    input: In<Input>,
                    $($param: $param,)*
                )->Out{
                    f(input, $($param,)*)
                }
                let ($($param,)*) = param_value;
                call_inner(self, In(input), $($param),*)
            }
        }
    };
}

// Note that we rely on the highest impl to be <= the highest order of the tuple impls
// of `SystemParam` created.
all_tuples!(impl_system_function, 0, 16, F);

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn into_system_type_id_consistency() {
        fn test<T, In, Out, Marker>(function: T)
        where
            T: IntoSystem<In, Out, Marker> + Copy,
        {
            fn reference_system() {}

            use std::any::TypeId;

            let system = IntoSystem::into_system(function);

            assert_eq!(
                system.type_id(),
                function.system_type_id(),
                "System::type_id should be consistent with IntoSystem::system_type_id"
            );

            assert_eq!(
                system.type_id(),
                TypeId::of::<T::System>(),
                "System::type_id should be consistent with TypeId::of::<T::System>()"
            );

            assert_ne!(
                system.type_id(),
                IntoSystem::into_system(reference_system).type_id(),
                "Different systems should have different TypeIds"
            );
        }

        fn function_system() {}

        test(function_system);
    }
}