bevy_math/bounding/bounded2d/
mod.rs

1mod primitive_impls;
2
3use super::{BoundingVolume, IntersectsVolume};
4use crate::{
5    ops,
6    prelude::{Mat2, Rot2, Vec2},
7    FloatPow, Isometry2d,
8};
9
10#[cfg(feature = "bevy_reflect")]
11use bevy_reflect::Reflect;
12#[cfg(all(feature = "bevy_reflect", feature = "serialize"))]
13use bevy_reflect::{ReflectDeserialize, ReflectSerialize};
14#[cfg(feature = "serialize")]
15use serde::{Deserialize, Serialize};
16
17/// Computes the geometric center of the given set of points.
18#[inline(always)]
19fn point_cloud_2d_center(points: &[Vec2]) -> Vec2 {
20    assert!(
21        !points.is_empty(),
22        "cannot compute the center of an empty set of points"
23    );
24
25    let denom = 1.0 / points.len() as f32;
26    points.iter().fold(Vec2::ZERO, |acc, point| acc + *point) * denom
27}
28
29/// A trait with methods that return 2D bounding volumes for a shape.
30pub trait Bounded2d {
31    /// Get an axis-aligned bounding box for the shape translated and rotated by the given isometry.
32    fn aabb_2d(&self, isometry: impl Into<Isometry2d>) -> Aabb2d;
33    /// Get a bounding circle for the shape translated and rotated by the given isometry.
34    fn bounding_circle(&self, isometry: impl Into<Isometry2d>) -> BoundingCircle;
35}
36
37/// A 2D axis-aligned bounding box, or bounding rectangle
38#[doc(alias = "BoundingRectangle")]
39#[derive(Clone, Copy, Debug, PartialEq)]
40#[cfg_attr(
41    feature = "bevy_reflect",
42    derive(Reflect),
43    reflect(Debug, PartialEq, Clone)
44)]
45#[cfg_attr(feature = "serialize", derive(Serialize), derive(Deserialize))]
46#[cfg_attr(
47    all(feature = "serialize", feature = "bevy_reflect"),
48    reflect(Serialize, Deserialize)
49)]
50pub struct Aabb2d {
51    /// The minimum, conventionally bottom-left, point of the box
52    pub min: Vec2,
53    /// The maximum, conventionally top-right, point of the box
54    pub max: Vec2,
55}
56
57impl Aabb2d {
58    /// Constructs an AABB from its center and half-size.
59    #[inline(always)]
60    pub fn new(center: Vec2, half_size: Vec2) -> Self {
61        debug_assert!(half_size.x >= 0.0 && half_size.y >= 0.0);
62        Self {
63            min: center - half_size,
64            max: center + half_size,
65        }
66    }
67
68    /// Computes the smallest [`Aabb2d`] containing the given set of points,
69    /// transformed by the rotation and translation of the given isometry.
70    ///
71    /// # Panics
72    ///
73    /// Panics if the given set of points is empty.
74    #[inline(always)]
75    pub fn from_point_cloud(isometry: impl Into<Isometry2d>, points: &[Vec2]) -> Aabb2d {
76        let isometry = isometry.into();
77
78        // Transform all points by rotation
79        let mut iter = points.iter().map(|point| isometry.rotation * *point);
80
81        let first = iter
82            .next()
83            .expect("point cloud must contain at least one point for Aabb2d construction");
84
85        let (min, max) = iter.fold((first, first), |(prev_min, prev_max), point| {
86            (point.min(prev_min), point.max(prev_max))
87        });
88
89        Aabb2d {
90            min: min + isometry.translation,
91            max: max + isometry.translation,
92        }
93    }
94
95    /// Computes the smallest [`BoundingCircle`] containing this [`Aabb2d`].
96    #[inline(always)]
97    pub fn bounding_circle(&self) -> BoundingCircle {
98        let radius = self.min.distance(self.max) / 2.0;
99        BoundingCircle::new(self.center(), radius)
100    }
101
102    /// Finds the point on the AABB that is closest to the given `point`.
103    ///
104    /// If the point is outside the AABB, the returned point will be on the perimeter of the AABB.
105    /// Otherwise, it will be inside the AABB and returned as is.
106    #[inline(always)]
107    pub fn closest_point(&self, point: Vec2) -> Vec2 {
108        // Clamp point coordinates to the AABB
109        point.clamp(self.min, self.max)
110    }
111}
112
113impl BoundingVolume for Aabb2d {
114    type Translation = Vec2;
115    type Rotation = Rot2;
116    type HalfSize = Vec2;
117
118    #[inline(always)]
119    fn center(&self) -> Self::Translation {
120        (self.min + self.max) / 2.
121    }
122
123    #[inline(always)]
124    fn half_size(&self) -> Self::HalfSize {
125        (self.max - self.min) / 2.
126    }
127
128    #[inline(always)]
129    fn visible_area(&self) -> f32 {
130        let b = self.max - self.min;
131        b.x * b.y
132    }
133
134    #[inline(always)]
135    fn contains(&self, other: &Self) -> bool {
136        other.min.x >= self.min.x
137            && other.min.y >= self.min.y
138            && other.max.x <= self.max.x
139            && other.max.y <= self.max.y
140    }
141
142    #[inline(always)]
143    fn merge(&self, other: &Self) -> Self {
144        Self {
145            min: self.min.min(other.min),
146            max: self.max.max(other.max),
147        }
148    }
149
150    #[inline(always)]
151    fn grow(&self, amount: impl Into<Self::HalfSize>) -> Self {
152        let amount = amount.into();
153        let b = Self {
154            min: self.min - amount,
155            max: self.max + amount,
156        };
157        debug_assert!(b.min.x <= b.max.x && b.min.y <= b.max.y);
158        b
159    }
160
161    #[inline(always)]
162    fn shrink(&self, amount: impl Into<Self::HalfSize>) -> Self {
163        let amount = amount.into();
164        let b = Self {
165            min: self.min + amount,
166            max: self.max - amount,
167        };
168        debug_assert!(b.min.x <= b.max.x && b.min.y <= b.max.y);
169        b
170    }
171
172    #[inline(always)]
173    fn scale_around_center(&self, scale: impl Into<Self::HalfSize>) -> Self {
174        let scale = scale.into();
175        let b = Self {
176            min: self.center() - (self.half_size() * scale),
177            max: self.center() + (self.half_size() * scale),
178        };
179        debug_assert!(b.min.x <= b.max.x && b.min.y <= b.max.y);
180        b
181    }
182
183    /// Transforms the bounding volume by first rotating it around the origin and then applying a translation.
184    ///
185    /// The result is an Axis-Aligned Bounding Box that encompasses the rotated shape.
186    ///
187    /// Note that the result may not be as tightly fitting as the original, and repeated rotations
188    /// can cause the AABB to grow indefinitely. Avoid applying multiple rotations to the same AABB,
189    /// and consider storing the original AABB and rotating that every time instead.
190    #[inline(always)]
191    fn transformed_by(
192        mut self,
193        translation: impl Into<Self::Translation>,
194        rotation: impl Into<Self::Rotation>,
195    ) -> Self {
196        self.transform_by(translation, rotation);
197        self
198    }
199
200    /// Transforms the bounding volume by first rotating it around the origin and then applying a translation.
201    ///
202    /// The result is an Axis-Aligned Bounding Box that encompasses the rotated shape.
203    ///
204    /// Note that the result may not be as tightly fitting as the original, and repeated rotations
205    /// can cause the AABB to grow indefinitely. Avoid applying multiple rotations to the same AABB,
206    /// and consider storing the original AABB and rotating that every time instead.
207    #[inline(always)]
208    fn transform_by(
209        &mut self,
210        translation: impl Into<Self::Translation>,
211        rotation: impl Into<Self::Rotation>,
212    ) {
213        self.rotate_by(rotation);
214        self.translate_by(translation);
215    }
216
217    #[inline(always)]
218    fn translate_by(&mut self, translation: impl Into<Self::Translation>) {
219        let translation = translation.into();
220        self.min += translation;
221        self.max += translation;
222    }
223
224    /// Rotates the bounding volume around the origin by the given rotation.
225    ///
226    /// The result is an Axis-Aligned Bounding Box that encompasses the rotated shape.
227    ///
228    /// Note that the result may not be as tightly fitting as the original, and repeated rotations
229    /// can cause the AABB to grow indefinitely. Avoid applying multiple rotations to the same AABB,
230    /// and consider storing the original AABB and rotating that every time instead.
231    #[inline(always)]
232    fn rotated_by(mut self, rotation: impl Into<Self::Rotation>) -> Self {
233        self.rotate_by(rotation);
234        self
235    }
236
237    /// Rotates the bounding volume around the origin by the given rotation.
238    ///
239    /// The result is an Axis-Aligned Bounding Box that encompasses the rotated shape.
240    ///
241    /// Note that the result may not be as tightly fitting as the original, and repeated rotations
242    /// can cause the AABB to grow indefinitely. Avoid applying multiple rotations to the same AABB,
243    /// and consider storing the original AABB and rotating that every time instead.
244    #[inline(always)]
245    fn rotate_by(&mut self, rotation: impl Into<Self::Rotation>) {
246        let rotation: Rot2 = rotation.into();
247        let abs_rot_mat = Mat2::from_cols(
248            Vec2::new(rotation.cos, rotation.sin),
249            Vec2::new(rotation.sin, rotation.cos),
250        );
251        let half_size = abs_rot_mat * self.half_size();
252        *self = Self::new(rotation * self.center(), half_size);
253    }
254}
255
256impl IntersectsVolume<Self> for Aabb2d {
257    #[inline(always)]
258    fn intersects(&self, other: &Self) -> bool {
259        let x_overlaps = self.min.x <= other.max.x && self.max.x >= other.min.x;
260        let y_overlaps = self.min.y <= other.max.y && self.max.y >= other.min.y;
261        x_overlaps && y_overlaps
262    }
263}
264
265impl IntersectsVolume<BoundingCircle> for Aabb2d {
266    #[inline(always)]
267    fn intersects(&self, circle: &BoundingCircle) -> bool {
268        let closest_point = self.closest_point(circle.center);
269        let distance_squared = circle.center.distance_squared(closest_point);
270        let radius_squared = circle.radius().squared();
271        distance_squared <= radius_squared
272    }
273}
274
275#[cfg(test)]
276mod aabb2d_tests {
277    use super::Aabb2d;
278    use crate::{
279        bounding::{BoundingCircle, BoundingVolume, IntersectsVolume},
280        ops, Vec2,
281    };
282
283    #[test]
284    fn center() {
285        let aabb = Aabb2d {
286            min: Vec2::new(-0.5, -1.),
287            max: Vec2::new(1., 1.),
288        };
289        assert!((aabb.center() - Vec2::new(0.25, 0.)).length() < f32::EPSILON);
290        let aabb = Aabb2d {
291            min: Vec2::new(5., -10.),
292            max: Vec2::new(10., -5.),
293        };
294        assert!((aabb.center() - Vec2::new(7.5, -7.5)).length() < f32::EPSILON);
295    }
296
297    #[test]
298    fn half_size() {
299        let aabb = Aabb2d {
300            min: Vec2::new(-0.5, -1.),
301            max: Vec2::new(1., 1.),
302        };
303        let half_size = aabb.half_size();
304        assert!((half_size - Vec2::new(0.75, 1.)).length() < f32::EPSILON);
305    }
306
307    #[test]
308    fn area() {
309        let aabb = Aabb2d {
310            min: Vec2::new(-1., -1.),
311            max: Vec2::new(1., 1.),
312        };
313        assert!(ops::abs(aabb.visible_area() - 4.) < f32::EPSILON);
314        let aabb = Aabb2d {
315            min: Vec2::new(0., 0.),
316            max: Vec2::new(1., 0.5),
317        };
318        assert!(ops::abs(aabb.visible_area() - 0.5) < f32::EPSILON);
319    }
320
321    #[test]
322    fn contains() {
323        let a = Aabb2d {
324            min: Vec2::new(-1., -1.),
325            max: Vec2::new(1., 1.),
326        };
327        let b = Aabb2d {
328            min: Vec2::new(-2., -1.),
329            max: Vec2::new(1., 1.),
330        };
331        assert!(!a.contains(&b));
332        let b = Aabb2d {
333            min: Vec2::new(-0.25, -0.8),
334            max: Vec2::new(1., 1.),
335        };
336        assert!(a.contains(&b));
337    }
338
339    #[test]
340    fn merge() {
341        let a = Aabb2d {
342            min: Vec2::new(-1., -1.),
343            max: Vec2::new(1., 0.5),
344        };
345        let b = Aabb2d {
346            min: Vec2::new(-2., -0.5),
347            max: Vec2::new(0.75, 1.),
348        };
349        let merged = a.merge(&b);
350        assert!((merged.min - Vec2::new(-2., -1.)).length() < f32::EPSILON);
351        assert!((merged.max - Vec2::new(1., 1.)).length() < f32::EPSILON);
352        assert!(merged.contains(&a));
353        assert!(merged.contains(&b));
354        assert!(!a.contains(&merged));
355        assert!(!b.contains(&merged));
356    }
357
358    #[test]
359    fn grow() {
360        let a = Aabb2d {
361            min: Vec2::new(-1., -1.),
362            max: Vec2::new(1., 1.),
363        };
364        let padded = a.grow(Vec2::ONE);
365        assert!((padded.min - Vec2::new(-2., -2.)).length() < f32::EPSILON);
366        assert!((padded.max - Vec2::new(2., 2.)).length() < f32::EPSILON);
367        assert!(padded.contains(&a));
368        assert!(!a.contains(&padded));
369    }
370
371    #[test]
372    fn shrink() {
373        let a = Aabb2d {
374            min: Vec2::new(-2., -2.),
375            max: Vec2::new(2., 2.),
376        };
377        let shrunk = a.shrink(Vec2::ONE);
378        assert!((shrunk.min - Vec2::new(-1., -1.)).length() < f32::EPSILON);
379        assert!((shrunk.max - Vec2::new(1., 1.)).length() < f32::EPSILON);
380        assert!(a.contains(&shrunk));
381        assert!(!shrunk.contains(&a));
382    }
383
384    #[test]
385    fn scale_around_center() {
386        let a = Aabb2d {
387            min: Vec2::NEG_ONE,
388            max: Vec2::ONE,
389        };
390        let scaled = a.scale_around_center(Vec2::splat(2.));
391        assert!((scaled.min - Vec2::splat(-2.)).length() < f32::EPSILON);
392        assert!((scaled.max - Vec2::splat(2.)).length() < f32::EPSILON);
393        assert!(!a.contains(&scaled));
394        assert!(scaled.contains(&a));
395    }
396
397    #[test]
398    fn transform() {
399        let a = Aabb2d {
400            min: Vec2::new(-2.0, -2.0),
401            max: Vec2::new(2.0, 2.0),
402        };
403        let transformed = a.transformed_by(Vec2::new(2.0, -2.0), core::f32::consts::FRAC_PI_4);
404        let half_length = ops::hypot(2.0, 2.0);
405        assert_eq!(
406            transformed.min,
407            Vec2::new(2.0 - half_length, -half_length - 2.0)
408        );
409        assert_eq!(
410            transformed.max,
411            Vec2::new(2.0 + half_length, half_length - 2.0)
412        );
413    }
414
415    #[test]
416    fn closest_point() {
417        let aabb = Aabb2d {
418            min: Vec2::NEG_ONE,
419            max: Vec2::ONE,
420        };
421        assert_eq!(aabb.closest_point(Vec2::X * 10.0), Vec2::X);
422        assert_eq!(aabb.closest_point(Vec2::NEG_ONE * 10.0), Vec2::NEG_ONE);
423        assert_eq!(
424            aabb.closest_point(Vec2::new(0.25, 0.1)),
425            Vec2::new(0.25, 0.1)
426        );
427    }
428
429    #[test]
430    fn intersect_aabb() {
431        let aabb = Aabb2d {
432            min: Vec2::NEG_ONE,
433            max: Vec2::ONE,
434        };
435        assert!(aabb.intersects(&aabb));
436        assert!(aabb.intersects(&Aabb2d {
437            min: Vec2::new(0.5, 0.5),
438            max: Vec2::new(2.0, 2.0),
439        }));
440        assert!(aabb.intersects(&Aabb2d {
441            min: Vec2::new(-2.0, -2.0),
442            max: Vec2::new(-0.5, -0.5),
443        }));
444        assert!(!aabb.intersects(&Aabb2d {
445            min: Vec2::new(1.1, 0.0),
446            max: Vec2::new(2.0, 0.5),
447        }));
448    }
449
450    #[test]
451    fn intersect_bounding_circle() {
452        let aabb = Aabb2d {
453            min: Vec2::NEG_ONE,
454            max: Vec2::ONE,
455        };
456        assert!(aabb.intersects(&BoundingCircle::new(Vec2::ZERO, 1.0)));
457        assert!(aabb.intersects(&BoundingCircle::new(Vec2::ONE * 1.5, 1.0)));
458        assert!(aabb.intersects(&BoundingCircle::new(Vec2::NEG_ONE * 1.5, 1.0)));
459        assert!(!aabb.intersects(&BoundingCircle::new(Vec2::ONE * 1.75, 1.0)));
460    }
461}
462
463use crate::primitives::Circle;
464
465/// A bounding circle
466#[derive(Clone, Copy, Debug, PartialEq)]
467#[cfg_attr(
468    feature = "bevy_reflect",
469    derive(Reflect),
470    reflect(Debug, PartialEq, Clone)
471)]
472#[cfg_attr(feature = "serialize", derive(Serialize), derive(Deserialize))]
473#[cfg_attr(
474    all(feature = "serialize", feature = "bevy_reflect"),
475    reflect(Serialize, Deserialize)
476)]
477pub struct BoundingCircle {
478    /// The center of the bounding circle
479    pub center: Vec2,
480    /// The circle
481    pub circle: Circle,
482}
483
484impl BoundingCircle {
485    /// Constructs a bounding circle from its center and radius.
486    #[inline(always)]
487    pub fn new(center: Vec2, radius: f32) -> Self {
488        debug_assert!(radius >= 0.);
489        Self {
490            center,
491            circle: Circle { radius },
492        }
493    }
494
495    /// Computes a [`BoundingCircle`] containing the given set of points,
496    /// transformed by the rotation and translation of the given isometry.
497    ///
498    /// The bounding circle is not guaranteed to be the smallest possible.
499    #[inline(always)]
500    pub fn from_point_cloud(isometry: impl Into<Isometry2d>, points: &[Vec2]) -> BoundingCircle {
501        let isometry = isometry.into();
502
503        let center = point_cloud_2d_center(points);
504        let mut radius_squared = 0.0;
505
506        for point in points {
507            // Get squared version to avoid unnecessary sqrt calls
508            let distance_squared = point.distance_squared(center);
509            if distance_squared > radius_squared {
510                radius_squared = distance_squared;
511            }
512        }
513
514        BoundingCircle::new(isometry * center, ops::sqrt(radius_squared))
515    }
516
517    /// Get the radius of the bounding circle
518    #[inline(always)]
519    pub fn radius(&self) -> f32 {
520        self.circle.radius
521    }
522
523    /// Computes the smallest [`Aabb2d`] containing this [`BoundingCircle`].
524    #[inline(always)]
525    pub fn aabb_2d(&self) -> Aabb2d {
526        Aabb2d {
527            min: self.center - Vec2::splat(self.radius()),
528            max: self.center + Vec2::splat(self.radius()),
529        }
530    }
531
532    /// Finds the point on the bounding circle that is closest to the given `point`.
533    ///
534    /// If the point is outside the circle, the returned point will be on the perimeter of the circle.
535    /// Otherwise, it will be inside the circle and returned as is.
536    #[inline(always)]
537    pub fn closest_point(&self, point: Vec2) -> Vec2 {
538        self.circle.closest_point(point - self.center) + self.center
539    }
540}
541
542impl BoundingVolume for BoundingCircle {
543    type Translation = Vec2;
544    type Rotation = Rot2;
545    type HalfSize = f32;
546
547    #[inline(always)]
548    fn center(&self) -> Self::Translation {
549        self.center
550    }
551
552    #[inline(always)]
553    fn half_size(&self) -> Self::HalfSize {
554        self.radius()
555    }
556
557    #[inline(always)]
558    fn visible_area(&self) -> f32 {
559        core::f32::consts::PI * self.radius() * self.radius()
560    }
561
562    #[inline(always)]
563    fn contains(&self, other: &Self) -> bool {
564        let diff = self.radius() - other.radius();
565        self.center.distance_squared(other.center) <= ops::copysign(diff.squared(), diff)
566    }
567
568    #[inline(always)]
569    fn merge(&self, other: &Self) -> Self {
570        let diff = other.center - self.center;
571        let length = diff.length();
572        if self.radius() >= length + other.radius() {
573            return *self;
574        }
575        if other.radius() >= length + self.radius() {
576            return *other;
577        }
578        let dir = diff / length;
579        Self::new(
580            (self.center + other.center) / 2. + dir * ((other.radius() - self.radius()) / 2.),
581            (length + self.radius() + other.radius()) / 2.,
582        )
583    }
584
585    #[inline(always)]
586    fn grow(&self, amount: impl Into<Self::HalfSize>) -> Self {
587        let amount = amount.into();
588        debug_assert!(amount >= 0.);
589        Self::new(self.center, self.radius() + amount)
590    }
591
592    #[inline(always)]
593    fn shrink(&self, amount: impl Into<Self::HalfSize>) -> Self {
594        let amount = amount.into();
595        debug_assert!(amount >= 0.);
596        debug_assert!(self.radius() >= amount);
597        Self::new(self.center, self.radius() - amount)
598    }
599
600    #[inline(always)]
601    fn scale_around_center(&self, scale: impl Into<Self::HalfSize>) -> Self {
602        let scale = scale.into();
603        debug_assert!(scale >= 0.);
604        Self::new(self.center, self.radius() * scale)
605    }
606
607    #[inline(always)]
608    fn translate_by(&mut self, translation: impl Into<Self::Translation>) {
609        self.center += translation.into();
610    }
611
612    #[inline(always)]
613    fn rotate_by(&mut self, rotation: impl Into<Self::Rotation>) {
614        let rotation: Rot2 = rotation.into();
615        self.center = rotation * self.center;
616    }
617}
618
619impl IntersectsVolume<Self> for BoundingCircle {
620    #[inline(always)]
621    fn intersects(&self, other: &Self) -> bool {
622        let center_distance_squared = self.center.distance_squared(other.center);
623        let radius_sum_squared = (self.radius() + other.radius()).squared();
624        center_distance_squared <= radius_sum_squared
625    }
626}
627
628impl IntersectsVolume<Aabb2d> for BoundingCircle {
629    #[inline(always)]
630    fn intersects(&self, aabb: &Aabb2d) -> bool {
631        aabb.intersects(self)
632    }
633}
634
635#[cfg(test)]
636mod bounding_circle_tests {
637    use super::BoundingCircle;
638    use crate::{
639        bounding::{BoundingVolume, IntersectsVolume},
640        ops, Vec2,
641    };
642
643    #[test]
644    fn area() {
645        let circle = BoundingCircle::new(Vec2::ONE, 5.);
646        // Since this number is messy we check it with a higher threshold
647        assert!(ops::abs(circle.visible_area() - 78.5398) < 0.001);
648    }
649
650    #[test]
651    fn contains() {
652        let a = BoundingCircle::new(Vec2::ONE, 5.);
653        let b = BoundingCircle::new(Vec2::new(5.5, 1.), 1.);
654        assert!(!a.contains(&b));
655        let b = BoundingCircle::new(Vec2::new(1., -3.5), 0.5);
656        assert!(a.contains(&b));
657    }
658
659    #[test]
660    fn contains_identical() {
661        let a = BoundingCircle::new(Vec2::ONE, 5.);
662        assert!(a.contains(&a));
663    }
664
665    #[test]
666    fn merge() {
667        // When merging two circles that don't contain each other, we find a center position that
668        // contains both
669        let a = BoundingCircle::new(Vec2::ONE, 5.);
670        let b = BoundingCircle::new(Vec2::new(1., -4.), 1.);
671        let merged = a.merge(&b);
672        assert!((merged.center - Vec2::new(1., 0.5)).length() < f32::EPSILON);
673        assert!(ops::abs(merged.radius() - 5.5) < f32::EPSILON);
674        assert!(merged.contains(&a));
675        assert!(merged.contains(&b));
676        assert!(!a.contains(&merged));
677        assert!(!b.contains(&merged));
678
679        // When one circle contains the other circle, we use the bigger circle
680        let b = BoundingCircle::new(Vec2::ZERO, 3.);
681        assert!(a.contains(&b));
682        let merged = a.merge(&b);
683        assert_eq!(merged.center, a.center);
684        assert_eq!(merged.radius(), a.radius());
685
686        // When two circles are at the same point, we use the bigger radius
687        let b = BoundingCircle::new(Vec2::ONE, 6.);
688        let merged = a.merge(&b);
689        assert_eq!(merged.center, a.center);
690        assert_eq!(merged.radius(), b.radius());
691    }
692
693    #[test]
694    fn merge_identical() {
695        let a = BoundingCircle::new(Vec2::ONE, 5.);
696        let merged = a.merge(&a);
697        assert_eq!(merged.center, a.center);
698        assert_eq!(merged.radius(), a.radius());
699    }
700
701    #[test]
702    fn grow() {
703        let a = BoundingCircle::new(Vec2::ONE, 5.);
704        let padded = a.grow(1.25);
705        assert!(ops::abs(padded.radius() - 6.25) < f32::EPSILON);
706        assert!(padded.contains(&a));
707        assert!(!a.contains(&padded));
708    }
709
710    #[test]
711    fn shrink() {
712        let a = BoundingCircle::new(Vec2::ONE, 5.);
713        let shrunk = a.shrink(0.5);
714        assert!(ops::abs(shrunk.radius() - 4.5) < f32::EPSILON);
715        assert!(a.contains(&shrunk));
716        assert!(!shrunk.contains(&a));
717    }
718
719    #[test]
720    fn scale_around_center() {
721        let a = BoundingCircle::new(Vec2::ONE, 5.);
722        let scaled = a.scale_around_center(2.);
723        assert!(ops::abs(scaled.radius() - 10.) < f32::EPSILON);
724        assert!(!a.contains(&scaled));
725        assert!(scaled.contains(&a));
726    }
727
728    #[test]
729    fn transform() {
730        let a = BoundingCircle::new(Vec2::ONE, 5.0);
731        let transformed = a.transformed_by(Vec2::new(2.0, -2.0), core::f32::consts::FRAC_PI_4);
732        assert_eq!(
733            transformed.center,
734            Vec2::new(2.0, core::f32::consts::SQRT_2 - 2.0)
735        );
736        assert_eq!(transformed.radius(), 5.0);
737    }
738
739    #[test]
740    fn closest_point() {
741        let circle = BoundingCircle::new(Vec2::ZERO, 1.0);
742        assert_eq!(circle.closest_point(Vec2::X * 10.0), Vec2::X);
743        assert_eq!(
744            circle.closest_point(Vec2::NEG_ONE * 10.0),
745            Vec2::NEG_ONE.normalize()
746        );
747        assert_eq!(
748            circle.closest_point(Vec2::new(0.25, 0.1)),
749            Vec2::new(0.25, 0.1)
750        );
751    }
752
753    #[test]
754    fn intersect_bounding_circle() {
755        let circle = BoundingCircle::new(Vec2::ZERO, 1.0);
756        assert!(circle.intersects(&BoundingCircle::new(Vec2::ZERO, 1.0)));
757        assert!(circle.intersects(&BoundingCircle::new(Vec2::ONE * 1.25, 1.0)));
758        assert!(circle.intersects(&BoundingCircle::new(Vec2::NEG_ONE * 1.25, 1.0)));
759        assert!(!circle.intersects(&BoundingCircle::new(Vec2::ONE * 1.5, 1.0)));
760    }
761}