bevy_math/bounding/bounded2d/
primitive_impls.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
//! Contains [`Bounded2d`] implementations for [geometric primitives](crate::primitives).

use crate::{
    primitives::{
        Arc2d, BoxedPolygon, BoxedPolyline2d, Capsule2d, Circle, CircularSector, CircularSegment,
        Ellipse, Line2d, Plane2d, Polygon, Polyline2d, Rectangle, RegularPolygon, Rhombus,
        Segment2d, Triangle2d,
    },
    Dir2, Mat2, Rot2, Vec2,
};
use std::f32::consts::{FRAC_PI_2, PI, TAU};

use smallvec::SmallVec;

use super::{Aabb2d, Bounded2d, BoundingCircle};

impl Bounded2d for Circle {
    fn aabb_2d(&self, translation: Vec2, _rotation: impl Into<Rot2>) -> Aabb2d {
        Aabb2d::new(translation, Vec2::splat(self.radius))
    }

    fn bounding_circle(&self, translation: Vec2, _rotation: impl Into<Rot2>) -> BoundingCircle {
        BoundingCircle::new(translation, self.radius)
    }
}

// Compute the axis-aligned bounding points of a rotated arc, used for computing the AABB of arcs and derived shapes.
// The return type has room for 7 points so that the CircularSector code can add an additional point.
#[inline]
fn arc_bounding_points(arc: Arc2d, rotation: impl Into<Rot2>) -> SmallVec<[Vec2; 7]> {
    // Otherwise, the extreme points will always be either the endpoints or the axis-aligned extrema of the arc's circle.
    // We need to compute which axis-aligned extrema are actually contained within the rotated arc.
    let mut bounds = SmallVec::<[Vec2; 7]>::new();
    let rotation = rotation.into();
    bounds.push(rotation * arc.left_endpoint());
    bounds.push(rotation * arc.right_endpoint());

    // The half-angles are measured from a starting point of π/2, being the angle of Vec2::Y.
    // Compute the normalized angles of the endpoints with the rotation taken into account, and then
    // check if we are looking for an angle that is between or outside them.
    let left_angle = (FRAC_PI_2 + arc.half_angle + rotation.as_radians()).rem_euclid(TAU);
    let right_angle = (FRAC_PI_2 - arc.half_angle + rotation.as_radians()).rem_euclid(TAU);
    let inverted = left_angle < right_angle;
    for extremum in [Vec2::X, Vec2::Y, Vec2::NEG_X, Vec2::NEG_Y] {
        let angle = extremum.to_angle().rem_euclid(TAU);
        // If inverted = true, then right_angle > left_angle, so we are looking for an angle that is not between them.
        // There's a chance that this condition fails due to rounding error, if the endpoint angle is juuuust shy of the axis.
        // But in that case, the endpoint itself is within rounding error of the axis and will define the bounds just fine.
        #[allow(clippy::nonminimal_bool)]
        if !inverted && angle >= right_angle && angle <= left_angle
            || inverted && (angle >= right_angle || angle <= left_angle)
        {
            bounds.push(extremum * arc.radius);
        }
    }
    bounds
}

impl Bounded2d for Arc2d {
    fn aabb_2d(&self, translation: Vec2, rotation: impl Into<Rot2>) -> Aabb2d {
        // If our arc covers more than a circle, just return the bounding box of the circle.
        if self.half_angle >= PI {
            return Circle::new(self.radius).aabb_2d(translation, rotation);
        }

        Aabb2d::from_point_cloud(translation, 0.0, &arc_bounding_points(*self, rotation))
    }

    fn bounding_circle(&self, translation: Vec2, rotation: impl Into<Rot2>) -> BoundingCircle {
        // There are two possibilities for the bounding circle.
        if self.is_major() {
            // If the arc is major, then the widest distance between two points is a diameter of the arc's circle;
            // therefore, that circle is the bounding radius.
            BoundingCircle::new(translation, self.radius)
        } else {
            // Otherwise, the widest distance between two points is the chord,
            // so a circle of that diameter around the midpoint will contain the entire arc.
            let center = rotation.into() * self.chord_midpoint();
            BoundingCircle::new(center + translation, self.half_chord_length())
        }
    }
}

impl Bounded2d for CircularSector {
    fn aabb_2d(&self, translation: Vec2, rotation: impl Into<Rot2>) -> Aabb2d {
        // If our sector covers more than a circle, just return the bounding box of the circle.
        if self.half_angle() >= PI {
            return Circle::new(self.radius()).aabb_2d(translation, rotation);
        }

        // Otherwise, we use the same logic as for Arc2d, above, just with the circle's center as an additional possibility.
        let mut bounds = arc_bounding_points(self.arc, rotation);
        bounds.push(Vec2::ZERO);

        Aabb2d::from_point_cloud(translation, 0.0, &bounds)
    }

    fn bounding_circle(&self, translation: Vec2, rotation: impl Into<Rot2>) -> BoundingCircle {
        if self.arc.is_major() {
            // If the arc is major, that is, greater than a semicircle,
            // then bounding circle is just the circle defining the sector.
            BoundingCircle::new(translation, self.arc.radius)
        } else {
            // However, when the arc is minor,
            // we need our bounding circle to include both endpoints of the arc as well as the circle center.
            // This means we need the circumcircle of those three points.
            // The circumcircle will always have a greater curvature than the circle itself, so it will contain
            // the entire circular sector.
            Triangle2d::new(
                Vec2::ZERO,
                self.arc.left_endpoint(),
                self.arc.right_endpoint(),
            )
            .bounding_circle(translation, rotation)
        }
    }
}

impl Bounded2d for CircularSegment {
    fn aabb_2d(&self, translation: Vec2, rotation: impl Into<Rot2>) -> Aabb2d {
        self.arc.aabb_2d(translation, rotation)
    }

    fn bounding_circle(&self, translation: Vec2, rotation: impl Into<Rot2>) -> BoundingCircle {
        self.arc.bounding_circle(translation, rotation)
    }
}

impl Bounded2d for Ellipse {
    fn aabb_2d(&self, translation: Vec2, rotation: impl Into<Rot2>) -> Aabb2d {
        let rotation: Rot2 = rotation.into();

        //           V = (hh * cos(beta), hh * sin(beta))
        //      #####*#####
        //   ###     |     ###
        //  #     hh |        #
        // #         *---------* U = (hw * cos(alpha), hw * sin(alpha))
        //  #            hw   #
        //   ###           ###
        //      ###########

        let (hw, hh) = (self.half_size.x, self.half_size.y);

        // Sine and cosine of rotation angle alpha.
        let (alpha_sin, alpha_cos) = rotation.sin_cos();

        // Sine and cosine of alpha + pi/2. We can avoid the trigonometric functions:
        // sin(beta) = sin(alpha + pi/2) = cos(alpha)
        // cos(beta) = cos(alpha + pi/2) = -sin(alpha)
        let (beta_sin, beta_cos) = (alpha_cos, -alpha_sin);

        // Compute points U and V, the extremes of the ellipse
        let (ux, uy) = (hw * alpha_cos, hw * alpha_sin);
        let (vx, vy) = (hh * beta_cos, hh * beta_sin);

        let half_size = Vec2::new(ux.hypot(vx), uy.hypot(vy));

        Aabb2d::new(translation, half_size)
    }

    fn bounding_circle(&self, translation: Vec2, _rotation: impl Into<Rot2>) -> BoundingCircle {
        BoundingCircle::new(translation, self.semi_major())
    }
}

impl Bounded2d for Rhombus {
    fn aabb_2d(&self, translation: Vec2, rotation: impl Into<Rot2>) -> Aabb2d {
        let rotation_mat = rotation.into();

        let [rotated_x_half_diagonal, rotated_y_half_diagonal] = [
            rotation_mat * Vec2::new(self.half_diagonals.x, 0.0),
            rotation_mat * Vec2::new(0.0, self.half_diagonals.y),
        ];
        let aabb_half_extent = rotated_x_half_diagonal
            .abs()
            .max(rotated_y_half_diagonal.abs());

        Aabb2d {
            min: -aabb_half_extent + translation,
            max: aabb_half_extent + translation,
        }
    }

    fn bounding_circle(&self, translation: Vec2, _rotation: impl Into<Rot2>) -> BoundingCircle {
        BoundingCircle::new(translation, self.circumradius())
    }
}

impl Bounded2d for Plane2d {
    fn aabb_2d(&self, translation: Vec2, rotation: impl Into<Rot2>) -> Aabb2d {
        let rotation: Rot2 = rotation.into();
        let normal = rotation * *self.normal;
        let facing_x = normal == Vec2::X || normal == Vec2::NEG_X;
        let facing_y = normal == Vec2::Y || normal == Vec2::NEG_Y;

        // Dividing `f32::MAX` by 2.0 is helpful so that we can do operations
        // like growing or shrinking the AABB without breaking things.
        let half_width = if facing_x { 0.0 } else { f32::MAX / 2.0 };
        let half_height = if facing_y { 0.0 } else { f32::MAX / 2.0 };
        let half_size = Vec2::new(half_width, half_height);

        Aabb2d::new(translation, half_size)
    }

    fn bounding_circle(&self, translation: Vec2, _rotation: impl Into<Rot2>) -> BoundingCircle {
        BoundingCircle::new(translation, f32::MAX / 2.0)
    }
}

impl Bounded2d for Line2d {
    fn aabb_2d(&self, translation: Vec2, rotation: impl Into<Rot2>) -> Aabb2d {
        let rotation: Rot2 = rotation.into();
        let direction = rotation * *self.direction;

        // Dividing `f32::MAX` by 2.0 is helpful so that we can do operations
        // like growing or shrinking the AABB without breaking things.
        let max = f32::MAX / 2.0;
        let half_width = if direction.x == 0.0 { 0.0 } else { max };
        let half_height = if direction.y == 0.0 { 0.0 } else { max };
        let half_size = Vec2::new(half_width, half_height);

        Aabb2d::new(translation, half_size)
    }

    fn bounding_circle(&self, translation: Vec2, _rotation: impl Into<Rot2>) -> BoundingCircle {
        BoundingCircle::new(translation, f32::MAX / 2.0)
    }
}

impl Bounded2d for Segment2d {
    fn aabb_2d(&self, translation: Vec2, rotation: impl Into<Rot2>) -> Aabb2d {
        // Rotate the segment by `rotation`
        let rotation: Rot2 = rotation.into();
        let direction = rotation * *self.direction;
        let half_size = (self.half_length * direction).abs();

        Aabb2d::new(translation, half_size)
    }

    fn bounding_circle(&self, translation: Vec2, _rotation: impl Into<Rot2>) -> BoundingCircle {
        BoundingCircle::new(translation, self.half_length)
    }
}

impl<const N: usize> Bounded2d for Polyline2d<N> {
    fn aabb_2d(&self, translation: Vec2, rotation: impl Into<Rot2>) -> Aabb2d {
        Aabb2d::from_point_cloud(translation, rotation, &self.vertices)
    }

    fn bounding_circle(&self, translation: Vec2, rotation: impl Into<Rot2>) -> BoundingCircle {
        BoundingCircle::from_point_cloud(translation, rotation, &self.vertices)
    }
}

impl Bounded2d for BoxedPolyline2d {
    fn aabb_2d(&self, translation: Vec2, rotation: impl Into<Rot2>) -> Aabb2d {
        Aabb2d::from_point_cloud(translation, rotation, &self.vertices)
    }

    fn bounding_circle(&self, translation: Vec2, rotation: impl Into<Rot2>) -> BoundingCircle {
        BoundingCircle::from_point_cloud(translation, rotation, &self.vertices)
    }
}

impl Bounded2d for Triangle2d {
    fn aabb_2d(&self, translation: Vec2, rotation: impl Into<Rot2>) -> Aabb2d {
        let rotation: Rot2 = rotation.into();
        let [a, b, c] = self.vertices.map(|vtx| rotation * vtx);

        let min = Vec2::new(a.x.min(b.x).min(c.x), a.y.min(b.y).min(c.y));
        let max = Vec2::new(a.x.max(b.x).max(c.x), a.y.max(b.y).max(c.y));

        Aabb2d {
            min: min + translation,
            max: max + translation,
        }
    }

    fn bounding_circle(&self, translation: Vec2, rotation: impl Into<Rot2>) -> BoundingCircle {
        let rotation: Rot2 = rotation.into();
        let [a, b, c] = self.vertices;

        // The points of the segment opposite to the obtuse or right angle if one exists
        let side_opposite_to_non_acute = if (b - a).dot(c - a) <= 0.0 {
            Some((b, c))
        } else if (c - b).dot(a - b) <= 0.0 {
            Some((c, a))
        } else if (a - c).dot(b - c) <= 0.0 {
            Some((a, b))
        } else {
            // The triangle is acute.
            None
        };

        // Find the minimum bounding circle. If the triangle is obtuse, the circle passes through two vertices.
        // Otherwise, it's the circumcircle and passes through all three.
        if let Some((point1, point2)) = side_opposite_to_non_acute {
            // The triangle is obtuse or right, so the minimum bounding circle's diameter is equal to the longest side.
            // We can compute the minimum bounding circle from the line segment of the longest side.
            let (segment, center) = Segment2d::from_points(point1, point2);
            segment.bounding_circle(rotation * center + translation, rotation)
        } else {
            // The triangle is acute, so the smallest bounding circle is the circumcircle.
            let (Circle { radius }, circumcenter) = self.circumcircle();
            BoundingCircle::new(rotation * circumcenter + translation, radius)
        }
    }
}

impl Bounded2d for Rectangle {
    fn aabb_2d(&self, translation: Vec2, rotation: impl Into<Rot2>) -> Aabb2d {
        let rotation: Rot2 = rotation.into();

        // Compute the AABB of the rotated rectangle by transforming the half-extents
        // by an absolute rotation matrix.
        let (sin, cos) = rotation.sin_cos();
        let abs_rot_mat = Mat2::from_cols_array(&[cos.abs(), sin.abs(), sin.abs(), cos.abs()]);
        let half_size = abs_rot_mat * self.half_size;

        Aabb2d::new(translation, half_size)
    }

    fn bounding_circle(&self, translation: Vec2, _rotation: impl Into<Rot2>) -> BoundingCircle {
        let radius = self.half_size.length();
        BoundingCircle::new(translation, radius)
    }
}

impl<const N: usize> Bounded2d for Polygon<N> {
    fn aabb_2d(&self, translation: Vec2, rotation: impl Into<Rot2>) -> Aabb2d {
        Aabb2d::from_point_cloud(translation, rotation, &self.vertices)
    }

    fn bounding_circle(&self, translation: Vec2, rotation: impl Into<Rot2>) -> BoundingCircle {
        BoundingCircle::from_point_cloud(translation, rotation, &self.vertices)
    }
}

impl Bounded2d for BoxedPolygon {
    fn aabb_2d(&self, translation: Vec2, rotation: impl Into<Rot2>) -> Aabb2d {
        Aabb2d::from_point_cloud(translation, rotation, &self.vertices)
    }

    fn bounding_circle(&self, translation: Vec2, rotation: impl Into<Rot2>) -> BoundingCircle {
        BoundingCircle::from_point_cloud(translation, rotation, &self.vertices)
    }
}

impl Bounded2d for RegularPolygon {
    fn aabb_2d(&self, translation: Vec2, rotation: impl Into<Rot2>) -> Aabb2d {
        let rotation: Rot2 = rotation.into();

        let mut min = Vec2::ZERO;
        let mut max = Vec2::ZERO;

        for vertex in self.vertices(rotation.as_radians()) {
            min = min.min(vertex);
            max = max.max(vertex);
        }

        Aabb2d {
            min: min + translation,
            max: max + translation,
        }
    }

    fn bounding_circle(&self, translation: Vec2, _rotation: impl Into<Rot2>) -> BoundingCircle {
        BoundingCircle::new(translation, self.circumcircle.radius)
    }
}

impl Bounded2d for Capsule2d {
    fn aabb_2d(&self, translation: Vec2, rotation: impl Into<Rot2>) -> Aabb2d {
        let rotation: Rot2 = rotation.into();

        // Get the line segment between the hemicircles of the rotated capsule
        let segment = Segment2d {
            // Multiplying a normalized vector (Vec2::Y) with a rotation returns a normalized vector.
            direction: rotation * Dir2::Y,
            half_length: self.half_length,
        };
        let (a, b) = (segment.point1(), segment.point2());

        // Expand the line segment by the capsule radius to get the capsule half-extents
        let min = a.min(b) - Vec2::splat(self.radius);
        let max = a.max(b) + Vec2::splat(self.radius);

        Aabb2d {
            min: min + translation,
            max: max + translation,
        }
    }

    fn bounding_circle(&self, translation: Vec2, _rotation: impl Into<Rot2>) -> BoundingCircle {
        BoundingCircle::new(translation, self.radius + self.half_length)
    }
}

#[cfg(test)]
mod tests {
    use std::f32::consts::{FRAC_PI_2, FRAC_PI_3, FRAC_PI_4, FRAC_PI_6, TAU};

    use approx::assert_abs_diff_eq;
    use glam::Vec2;

    use crate::{
        bounding::Bounded2d,
        primitives::{
            Arc2d, Capsule2d, Circle, CircularSector, CircularSegment, Ellipse, Line2d, Plane2d,
            Polygon, Polyline2d, Rectangle, RegularPolygon, Rhombus, Segment2d, Triangle2d,
        },
        Dir2,
    };

    #[test]
    fn circle() {
        let circle = Circle { radius: 1.0 };
        let translation = Vec2::new(2.0, 1.0);

        let aabb = circle.aabb_2d(translation, 0.0);
        assert_eq!(aabb.min, Vec2::new(1.0, 0.0));
        assert_eq!(aabb.max, Vec2::new(3.0, 2.0));

        let bounding_circle = circle.bounding_circle(translation, 0.0);
        assert_eq!(bounding_circle.center, translation);
        assert_eq!(bounding_circle.radius(), 1.0);
    }

    #[test]
    // Arcs and circular segments have the same bounding shapes so they share test cases.
    fn arc_and_segment() {
        struct TestCase {
            name: &'static str,
            arc: Arc2d,
            translation: Vec2,
            rotation: f32,
            aabb_min: Vec2,
            aabb_max: Vec2,
            bounding_circle_center: Vec2,
            bounding_circle_radius: f32,
        }

        // The apothem of an arc covering 1/6th of a circle.
        let apothem = f32::sqrt(3.0) / 2.0;
        let tests = [
            // Test case: a basic minor arc
            TestCase {
                name: "1/6th circle untransformed",
                arc: Arc2d::from_radians(1.0, FRAC_PI_3),
                translation: Vec2::ZERO,
                rotation: 0.0,
                aabb_min: Vec2::new(-0.5, apothem),
                aabb_max: Vec2::new(0.5, 1.0),
                bounding_circle_center: Vec2::new(0.0, apothem),
                bounding_circle_radius: 0.5,
            },
            // Test case: a smaller arc, verifying that radius scaling works
            TestCase {
                name: "1/6th circle with radius 0.5",
                arc: Arc2d::from_radians(0.5, FRAC_PI_3),
                translation: Vec2::ZERO,
                rotation: 0.0,
                aabb_min: Vec2::new(-0.25, apothem / 2.0),
                aabb_max: Vec2::new(0.25, 0.5),
                bounding_circle_center: Vec2::new(0.0, apothem / 2.0),
                bounding_circle_radius: 0.25,
            },
            // Test case: a larger arc, verifying that radius scaling works
            TestCase {
                name: "1/6th circle with radius 2.0",
                arc: Arc2d::from_radians(2.0, FRAC_PI_3),
                translation: Vec2::ZERO,
                rotation: 0.0,
                aabb_min: Vec2::new(-1.0, 2.0 * apothem),
                aabb_max: Vec2::new(1.0, 2.0),
                bounding_circle_center: Vec2::new(0.0, 2.0 * apothem),
                bounding_circle_radius: 1.0,
            },
            // Test case: translation of a minor arc
            TestCase {
                name: "1/6th circle translated",
                arc: Arc2d::from_radians(1.0, FRAC_PI_3),
                translation: Vec2::new(2.0, 3.0),
                rotation: 0.0,
                aabb_min: Vec2::new(1.5, 3.0 + apothem),
                aabb_max: Vec2::new(2.5, 4.0),
                bounding_circle_center: Vec2::new(2.0, 3.0 + apothem),
                bounding_circle_radius: 0.5,
            },
            // Test case: rotation of a minor arc
            TestCase {
                name: "1/6th circle rotated",
                arc: Arc2d::from_radians(1.0, FRAC_PI_3),
                translation: Vec2::ZERO,
                // Rotate left by 1/12 of a circle, so the right endpoint is on the y-axis.
                rotation: FRAC_PI_6,
                aabb_min: Vec2::new(-apothem, 0.5),
                aabb_max: Vec2::new(0.0, 1.0),
                // The exact coordinates here are not obvious, but can be computed by constructing
                // an altitude from the midpoint of the chord to the y-axis and using the right triangle
                // similarity theorem.
                bounding_circle_center: Vec2::new(-apothem / 2.0, apothem.powi(2)),
                bounding_circle_radius: 0.5,
            },
            // Test case: handling of axis-aligned extrema
            TestCase {
                name: "1/4er circle rotated to be axis-aligned",
                arc: Arc2d::from_radians(1.0, FRAC_PI_2),
                translation: Vec2::ZERO,
                // Rotate right by 1/8 of a circle, so the right endpoint is on the x-axis and the left endpoint is on the y-axis.
                rotation: -FRAC_PI_4,
                aabb_min: Vec2::ZERO,
                aabb_max: Vec2::splat(1.0),
                bounding_circle_center: Vec2::splat(0.5),
                bounding_circle_radius: f32::sqrt(2.0) / 2.0,
            },
            // Test case: a basic major arc
            TestCase {
                name: "5/6th circle untransformed",
                arc: Arc2d::from_radians(1.0, 5.0 * FRAC_PI_3),
                translation: Vec2::ZERO,
                rotation: 0.0,
                aabb_min: Vec2::new(-1.0, -apothem),
                aabb_max: Vec2::new(1.0, 1.0),
                bounding_circle_center: Vec2::ZERO,
                bounding_circle_radius: 1.0,
            },
            // Test case: a translated major arc
            TestCase {
                name: "5/6th circle translated",
                arc: Arc2d::from_radians(1.0, 5.0 * FRAC_PI_3),
                translation: Vec2::new(2.0, 3.0),
                rotation: 0.0,
                aabb_min: Vec2::new(1.0, 3.0 - apothem),
                aabb_max: Vec2::new(3.0, 4.0),
                bounding_circle_center: Vec2::new(2.0, 3.0),
                bounding_circle_radius: 1.0,
            },
            // Test case: a rotated major arc, with inverted left/right angles
            TestCase {
                name: "5/6th circle rotated",
                arc: Arc2d::from_radians(1.0, 5.0 * FRAC_PI_3),
                translation: Vec2::ZERO,
                // Rotate left by 1/12 of a circle, so the left endpoint is on the y-axis.
                rotation: FRAC_PI_6,
                aabb_min: Vec2::new(-1.0, -1.0),
                aabb_max: Vec2::new(1.0, 1.0),
                bounding_circle_center: Vec2::ZERO,
                bounding_circle_radius: 1.0,
            },
        ];

        for test in tests {
            println!("subtest case: {}", test.name);
            let segment: CircularSegment = test.arc.into();

            let arc_aabb = test.arc.aabb_2d(test.translation, test.rotation);
            assert_abs_diff_eq!(test.aabb_min, arc_aabb.min);
            assert_abs_diff_eq!(test.aabb_max, arc_aabb.max);
            let segment_aabb = segment.aabb_2d(test.translation, test.rotation);
            assert_abs_diff_eq!(test.aabb_min, segment_aabb.min);
            assert_abs_diff_eq!(test.aabb_max, segment_aabb.max);

            let arc_bounding_circle = test.arc.bounding_circle(test.translation, test.rotation);
            assert_abs_diff_eq!(test.bounding_circle_center, arc_bounding_circle.center);
            assert_abs_diff_eq!(test.bounding_circle_radius, arc_bounding_circle.radius());
            let segment_bounding_circle = segment.bounding_circle(test.translation, test.rotation);
            assert_abs_diff_eq!(test.bounding_circle_center, segment_bounding_circle.center);
            assert_abs_diff_eq!(
                test.bounding_circle_radius,
                segment_bounding_circle.radius()
            );
        }
    }

    #[test]
    fn circular_sector() {
        struct TestCase {
            name: &'static str,
            arc: Arc2d,
            translation: Vec2,
            rotation: f32,
            aabb_min: Vec2,
            aabb_max: Vec2,
            bounding_circle_center: Vec2,
            bounding_circle_radius: f32,
        }

        // The apothem of an arc covering 1/6th of a circle.
        let apothem = f32::sqrt(3.0) / 2.0;
        let inv_sqrt_3 = f32::sqrt(3.0).recip();
        let tests = [
            // Test case: An sector whose arc is minor, but whose bounding circle is not the circumcircle of the endpoints and center
            TestCase {
                name: "1/3rd circle",
                arc: Arc2d::from_radians(1.0, TAU / 3.0),
                translation: Vec2::ZERO,
                rotation: 0.0,
                aabb_min: Vec2::new(-apothem, 0.0),
                aabb_max: Vec2::new(apothem, 1.0),
                bounding_circle_center: Vec2::new(0.0, 0.5),
                bounding_circle_radius: apothem,
            },
            // The remaining test cases are selected as for arc_and_segment.
            TestCase {
                name: "1/6th circle untransformed",
                arc: Arc2d::from_radians(1.0, FRAC_PI_3),
                translation: Vec2::ZERO,
                rotation: 0.0,
                aabb_min: Vec2::new(-0.5, 0.0),
                aabb_max: Vec2::new(0.5, 1.0),
                // The bounding circle is a circumcircle of an equilateral triangle with side length 1.
                // The distance from the corner to the center of such a triangle is 1/sqrt(3).
                bounding_circle_center: Vec2::new(0.0, inv_sqrt_3),
                bounding_circle_radius: inv_sqrt_3,
            },
            TestCase {
                name: "1/6th circle with radius 0.5",
                arc: Arc2d::from_radians(0.5, FRAC_PI_3),
                translation: Vec2::ZERO,
                rotation: 0.0,
                aabb_min: Vec2::new(-0.25, 0.0),
                aabb_max: Vec2::new(0.25, 0.5),
                bounding_circle_center: Vec2::new(0.0, inv_sqrt_3 / 2.0),
                bounding_circle_radius: inv_sqrt_3 / 2.0,
            },
            TestCase {
                name: "1/6th circle with radius 2.0",
                arc: Arc2d::from_radians(2.0, FRAC_PI_3),
                translation: Vec2::ZERO,
                rotation: 0.0,
                aabb_min: Vec2::new(-1.0, 0.0),
                aabb_max: Vec2::new(1.0, 2.0),
                bounding_circle_center: Vec2::new(0.0, 2.0 * inv_sqrt_3),
                bounding_circle_radius: 2.0 * inv_sqrt_3,
            },
            TestCase {
                name: "1/6th circle translated",
                arc: Arc2d::from_radians(1.0, FRAC_PI_3),
                translation: Vec2::new(2.0, 3.0),
                rotation: 0.0,
                aabb_min: Vec2::new(1.5, 3.0),
                aabb_max: Vec2::new(2.5, 4.0),
                bounding_circle_center: Vec2::new(2.0, 3.0 + inv_sqrt_3),
                bounding_circle_radius: inv_sqrt_3,
            },
            TestCase {
                name: "1/6th circle rotated",
                arc: Arc2d::from_radians(1.0, FRAC_PI_3),
                translation: Vec2::ZERO,
                // Rotate left by 1/12 of a circle, so the right endpoint is on the y-axis.
                rotation: FRAC_PI_6,
                aabb_min: Vec2::new(-apothem, 0.0),
                aabb_max: Vec2::new(0.0, 1.0),
                // The x-coordinate is now the inradius of the equilateral triangle, which is sqrt(3)/2.
                bounding_circle_center: Vec2::new(-inv_sqrt_3 / 2.0, 0.5),
                bounding_circle_radius: inv_sqrt_3,
            },
            TestCase {
                name: "1/4er circle rotated to be axis-aligned",
                arc: Arc2d::from_radians(1.0, FRAC_PI_2),
                translation: Vec2::ZERO,
                // Rotate right by 1/8 of a circle, so the right endpoint is on the x-axis and the left endpoint is on the y-axis.
                rotation: -FRAC_PI_4,
                aabb_min: Vec2::ZERO,
                aabb_max: Vec2::splat(1.0),
                bounding_circle_center: Vec2::splat(0.5),
                bounding_circle_radius: f32::sqrt(2.0) / 2.0,
            },
            TestCase {
                name: "5/6th circle untransformed",
                arc: Arc2d::from_radians(1.0, 5.0 * FRAC_PI_3),
                translation: Vec2::ZERO,
                rotation: 0.0,
                aabb_min: Vec2::new(-1.0, -apothem),
                aabb_max: Vec2::new(1.0, 1.0),
                bounding_circle_center: Vec2::ZERO,
                bounding_circle_radius: 1.0,
            },
            TestCase {
                name: "5/6th circle translated",
                arc: Arc2d::from_radians(1.0, 5.0 * FRAC_PI_3),
                translation: Vec2::new(2.0, 3.0),
                rotation: 0.0,
                aabb_min: Vec2::new(1.0, 3.0 - apothem),
                aabb_max: Vec2::new(3.0, 4.0),
                bounding_circle_center: Vec2::new(2.0, 3.0),
                bounding_circle_radius: 1.0,
            },
            TestCase {
                name: "5/6th circle rotated",
                arc: Arc2d::from_radians(1.0, 5.0 * FRAC_PI_3),
                translation: Vec2::ZERO,
                // Rotate left by 1/12 of a circle, so the left endpoint is on the y-axis.
                rotation: FRAC_PI_6,
                aabb_min: Vec2::new(-1.0, -1.0),
                aabb_max: Vec2::new(1.0, 1.0),
                bounding_circle_center: Vec2::ZERO,
                bounding_circle_radius: 1.0,
            },
        ];

        for test in tests {
            println!("subtest case: {}", test.name);
            let sector: CircularSector = test.arc.into();

            let aabb = sector.aabb_2d(test.translation, test.rotation);
            assert_abs_diff_eq!(test.aabb_min, aabb.min);
            assert_abs_diff_eq!(test.aabb_max, aabb.max);

            let bounding_circle = sector.bounding_circle(test.translation, test.rotation);
            assert_abs_diff_eq!(test.bounding_circle_center, bounding_circle.center);
            assert_abs_diff_eq!(test.bounding_circle_radius, bounding_circle.radius());
        }
    }

    #[test]
    fn ellipse() {
        let ellipse = Ellipse::new(1.0, 0.5);
        let translation = Vec2::new(2.0, 1.0);

        let aabb = ellipse.aabb_2d(translation, 0.0);
        assert_eq!(aabb.min, Vec2::new(1.0, 0.5));
        assert_eq!(aabb.max, Vec2::new(3.0, 1.5));

        let bounding_circle = ellipse.bounding_circle(translation, 0.0);
        assert_eq!(bounding_circle.center, translation);
        assert_eq!(bounding_circle.radius(), 1.0);
    }

    #[test]
    fn rhombus() {
        let rhombus = Rhombus::new(2.0, 1.0);
        let translation = Vec2::new(2.0, 1.0);

        let aabb = rhombus.aabb_2d(translation, std::f32::consts::FRAC_PI_4);
        assert_eq!(aabb.min, Vec2::new(1.2928932, 0.29289323));
        assert_eq!(aabb.max, Vec2::new(2.7071068, 1.7071068));

        let bounding_circle = rhombus.bounding_circle(translation, std::f32::consts::FRAC_PI_4);
        assert_eq!(bounding_circle.center, translation);
        assert_eq!(bounding_circle.radius(), 1.0);

        let rhombus = Rhombus::new(0.0, 0.0);
        let translation = Vec2::new(0.0, 0.0);

        let aabb = rhombus.aabb_2d(translation, std::f32::consts::FRAC_PI_4);
        assert_eq!(aabb.min, Vec2::new(0.0, 0.0));
        assert_eq!(aabb.max, Vec2::new(0.0, 0.0));

        let bounding_circle = rhombus.bounding_circle(translation, std::f32::consts::FRAC_PI_4);
        assert_eq!(bounding_circle.center, translation);
        assert_eq!(bounding_circle.radius(), 0.0);
    }

    #[test]
    fn plane() {
        let translation = Vec2::new(2.0, 1.0);

        let aabb1 = Plane2d::new(Vec2::X).aabb_2d(translation, 0.0);
        assert_eq!(aabb1.min, Vec2::new(2.0, -f32::MAX / 2.0));
        assert_eq!(aabb1.max, Vec2::new(2.0, f32::MAX / 2.0));

        let aabb2 = Plane2d::new(Vec2::Y).aabb_2d(translation, 0.0);
        assert_eq!(aabb2.min, Vec2::new(-f32::MAX / 2.0, 1.0));
        assert_eq!(aabb2.max, Vec2::new(f32::MAX / 2.0, 1.0));

        let aabb3 = Plane2d::new(Vec2::ONE).aabb_2d(translation, 0.0);
        assert_eq!(aabb3.min, Vec2::new(-f32::MAX / 2.0, -f32::MAX / 2.0));
        assert_eq!(aabb3.max, Vec2::new(f32::MAX / 2.0, f32::MAX / 2.0));

        let bounding_circle = Plane2d::new(Vec2::Y).bounding_circle(translation, 0.0);
        assert_eq!(bounding_circle.center, translation);
        assert_eq!(bounding_circle.radius(), f32::MAX / 2.0);
    }

    #[test]
    fn line() {
        let translation = Vec2::new(2.0, 1.0);

        let aabb1 = Line2d { direction: Dir2::Y }.aabb_2d(translation, 0.0);
        assert_eq!(aabb1.min, Vec2::new(2.0, -f32::MAX / 2.0));
        assert_eq!(aabb1.max, Vec2::new(2.0, f32::MAX / 2.0));

        let aabb2 = Line2d { direction: Dir2::X }.aabb_2d(translation, 0.0);
        assert_eq!(aabb2.min, Vec2::new(-f32::MAX / 2.0, 1.0));
        assert_eq!(aabb2.max, Vec2::new(f32::MAX / 2.0, 1.0));

        let aabb3 = Line2d {
            direction: Dir2::from_xy(1.0, 1.0).unwrap(),
        }
        .aabb_2d(translation, 0.0);
        assert_eq!(aabb3.min, Vec2::new(-f32::MAX / 2.0, -f32::MAX / 2.0));
        assert_eq!(aabb3.max, Vec2::new(f32::MAX / 2.0, f32::MAX / 2.0));

        let bounding_circle = Line2d { direction: Dir2::Y }.bounding_circle(translation, 0.0);
        assert_eq!(bounding_circle.center, translation);
        assert_eq!(bounding_circle.radius(), f32::MAX / 2.0);
    }

    #[test]
    fn segment() {
        let translation = Vec2::new(2.0, 1.0);
        let segment = Segment2d::from_points(Vec2::new(-1.0, -0.5), Vec2::new(1.0, 0.5)).0;

        let aabb = segment.aabb_2d(translation, 0.0);
        assert_eq!(aabb.min, Vec2::new(1.0, 0.5));
        assert_eq!(aabb.max, Vec2::new(3.0, 1.5));

        let bounding_circle = segment.bounding_circle(translation, 0.0);
        assert_eq!(bounding_circle.center, translation);
        assert_eq!(bounding_circle.radius(), 1.0_f32.hypot(0.5));
    }

    #[test]
    fn polyline() {
        let polyline = Polyline2d::<4>::new([
            Vec2::ONE,
            Vec2::new(-1.0, 1.0),
            Vec2::NEG_ONE,
            Vec2::new(1.0, -1.0),
        ]);
        let translation = Vec2::new(2.0, 1.0);

        let aabb = polyline.aabb_2d(translation, 0.0);
        assert_eq!(aabb.min, Vec2::new(1.0, 0.0));
        assert_eq!(aabb.max, Vec2::new(3.0, 2.0));

        let bounding_circle = polyline.bounding_circle(translation, 0.0);
        assert_eq!(bounding_circle.center, translation);
        assert_eq!(bounding_circle.radius(), std::f32::consts::SQRT_2);
    }

    #[test]
    fn acute_triangle() {
        let acute_triangle =
            Triangle2d::new(Vec2::new(0.0, 1.0), Vec2::NEG_ONE, Vec2::new(1.0, -1.0));
        let translation = Vec2::new(2.0, 1.0);

        let aabb = acute_triangle.aabb_2d(translation, 0.0);
        assert_eq!(aabb.min, Vec2::new(1.0, 0.0));
        assert_eq!(aabb.max, Vec2::new(3.0, 2.0));

        // For acute triangles, the center is the circumcenter
        let (Circle { radius }, circumcenter) = acute_triangle.circumcircle();
        let bounding_circle = acute_triangle.bounding_circle(translation, 0.0);
        assert_eq!(bounding_circle.center, circumcenter + translation);
        assert_eq!(bounding_circle.radius(), radius);
    }

    #[test]
    fn obtuse_triangle() {
        let obtuse_triangle = Triangle2d::new(
            Vec2::new(0.0, 1.0),
            Vec2::new(-10.0, -1.0),
            Vec2::new(10.0, -1.0),
        );
        let translation = Vec2::new(2.0, 1.0);

        let aabb = obtuse_triangle.aabb_2d(translation, 0.0);
        assert_eq!(aabb.min, Vec2::new(-8.0, 0.0));
        assert_eq!(aabb.max, Vec2::new(12.0, 2.0));

        // For obtuse and right triangles, the center is the midpoint of the longest side (diameter of bounding circle)
        let bounding_circle = obtuse_triangle.bounding_circle(translation, 0.0);
        assert_eq!(bounding_circle.center, translation - Vec2::Y);
        assert_eq!(bounding_circle.radius(), 10.0);
    }

    #[test]
    fn rectangle() {
        let rectangle = Rectangle::new(2.0, 1.0);
        let translation = Vec2::new(2.0, 1.0);

        let aabb = rectangle.aabb_2d(translation, std::f32::consts::FRAC_PI_4);
        let expected_half_size = Vec2::splat(1.0606601);
        assert_eq!(aabb.min, translation - expected_half_size);
        assert_eq!(aabb.max, translation + expected_half_size);

        let bounding_circle = rectangle.bounding_circle(translation, 0.0);
        assert_eq!(bounding_circle.center, translation);
        assert_eq!(bounding_circle.radius(), 1.0_f32.hypot(0.5));
    }

    #[test]
    fn polygon() {
        let polygon = Polygon::<4>::new([
            Vec2::ONE,
            Vec2::new(-1.0, 1.0),
            Vec2::NEG_ONE,
            Vec2::new(1.0, -1.0),
        ]);
        let translation = Vec2::new(2.0, 1.0);

        let aabb = polygon.aabb_2d(translation, 0.0);
        assert_eq!(aabb.min, Vec2::new(1.0, 0.0));
        assert_eq!(aabb.max, Vec2::new(3.0, 2.0));

        let bounding_circle = polygon.bounding_circle(translation, 0.0);
        assert_eq!(bounding_circle.center, translation);
        assert_eq!(bounding_circle.radius(), std::f32::consts::SQRT_2);
    }

    #[test]
    fn regular_polygon() {
        let regular_polygon = RegularPolygon::new(1.0, 5);
        let translation = Vec2::new(2.0, 1.0);

        let aabb = regular_polygon.aabb_2d(translation, 0.0);
        assert!((aabb.min - (translation - Vec2::new(0.9510565, 0.8090169))).length() < 1e-6);
        assert!((aabb.max - (translation + Vec2::new(0.9510565, 1.0))).length() < 1e-6);

        let bounding_circle = regular_polygon.bounding_circle(translation, 0.0);
        assert_eq!(bounding_circle.center, translation);
        assert_eq!(bounding_circle.radius(), 1.0);
    }

    #[test]
    fn capsule() {
        let capsule = Capsule2d::new(0.5, 2.0);
        let translation = Vec2::new(2.0, 1.0);

        let aabb = capsule.aabb_2d(translation, 0.0);
        assert_eq!(aabb.min, translation - Vec2::new(0.5, 1.5));
        assert_eq!(aabb.max, translation + Vec2::new(0.5, 1.5));

        let bounding_circle = capsule.bounding_circle(translation, 0.0);
        assert_eq!(bounding_circle.center, translation);
        assert_eq!(bounding_circle.radius(), 1.5);
    }
}