1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
use std::f32::consts::FRAC_PI_2;

use glam::{Vec2, Vec3A, Vec3Swizzles};

use crate::bounding::{BoundingCircle, BoundingVolume};
use crate::primitives::{
    BoxedPolygon, BoxedPolyline2d, Capsule2d, Cuboid, Cylinder, Ellipse, Extrusion, Line2d,
    Polygon, Polyline2d, Primitive2d, Rectangle, RegularPolygon, Segment2d, Triangle2d,
};
use crate::{Quat, Vec3};

use crate::{bounding::Bounded2d, primitives::Circle};

use super::{Aabb3d, Bounded3d, BoundingSphere};

impl BoundedExtrusion for Circle {
    fn extrusion_aabb_3d(&self, half_depth: f32, translation: Vec3, rotation: Quat) -> Aabb3d {
        // Reference: http://iquilezles.org/articles/diskbbox/

        let segment_dir = rotation * Vec3::Z;
        let top = (segment_dir * half_depth).abs();

        let e = Vec3::ONE - segment_dir * segment_dir;
        let half_size = self.radius * Vec3::new(e.x.sqrt(), e.y.sqrt(), e.z.sqrt());

        Aabb3d {
            min: (translation - half_size - top).into(),
            max: (translation + half_size + top).into(),
        }
    }
}

impl BoundedExtrusion for Ellipse {
    fn extrusion_aabb_3d(&self, half_depth: f32, translation: Vec3, rotation: Quat) -> Aabb3d {
        let Vec2 { x: a, y: b } = self.half_size;
        let normal = rotation * Vec3::Z;
        let conjugate_rot = rotation.conjugate();

        let [max_x, max_y, max_z] = Vec3::AXES.map(|axis: Vec3| {
            let Some(axis) = (conjugate_rot * axis.reject_from(normal))
                .xy()
                .try_normalize()
            else {
                return Vec3::ZERO;
            };

            if axis.element_product() == 0. {
                return rotation * Vec3::new(a * axis.y, b * axis.x, 0.);
            }
            let m = -axis.x / axis.y;
            let signum = axis.signum();

            let y = signum.y * b * b / (b * b + m * m * a * a).sqrt();
            let x = signum.x * a * (1. - y * y / b / b).sqrt();
            rotation * Vec3::new(x, y, 0.)
        });

        let half_size = Vec3::new(max_x.x, max_y.y, max_z.z).abs() + (normal * half_depth).abs();
        Aabb3d::new(translation, half_size)
    }
}

impl BoundedExtrusion for Line2d {
    fn extrusion_aabb_3d(&self, half_depth: f32, translation: Vec3, rotation: Quat) -> Aabb3d {
        let dir = rotation * self.direction.extend(0.);
        let half_depth = (rotation * Vec3::new(0., 0., half_depth)).abs();

        let max = f32::MAX / 2.;
        let half_size = Vec3::new(
            if dir.x == 0. { half_depth.x } else { max },
            if dir.y == 0. { half_depth.y } else { max },
            if dir.z == 0. { half_depth.z } else { max },
        );

        Aabb3d::new(translation, half_size)
    }
}

impl BoundedExtrusion for Segment2d {
    fn extrusion_aabb_3d(&self, half_depth: f32, translation: Vec3, rotation: Quat) -> Aabb3d {
        let half_size = rotation * self.point1().extend(0.);
        let depth = rotation * Vec3::new(0., 0., half_depth);

        Aabb3d::new(translation, half_size.abs() + depth.abs())
    }
}

impl<const N: usize> BoundedExtrusion for Polyline2d<N> {
    fn extrusion_aabb_3d(&self, half_depth: f32, translation: Vec3, rotation: Quat) -> Aabb3d {
        let aabb = Aabb3d::from_point_cloud(
            translation,
            rotation,
            self.vertices.map(|v| v.extend(0.)).into_iter(),
        );
        let depth = rotation * Vec3A::new(0., 0., half_depth);

        aabb.grow(depth.abs())
    }
}

impl BoundedExtrusion for BoxedPolyline2d {
    fn extrusion_aabb_3d(&self, half_depth: f32, translation: Vec3, rotation: Quat) -> Aabb3d {
        let aabb = Aabb3d::from_point_cloud(
            translation,
            rotation,
            self.vertices.iter().map(|v| v.extend(0.)),
        );
        let depth = rotation * Vec3A::new(0., 0., half_depth);

        aabb.grow(depth.abs())
    }
}

impl BoundedExtrusion for Triangle2d {
    fn extrusion_aabb_3d(&self, half_depth: f32, translation: Vec3, rotation: Quat) -> Aabb3d {
        let aabb = Aabb3d::from_point_cloud(
            translation,
            rotation,
            self.vertices.iter().map(|v| v.extend(0.)),
        );
        let depth = rotation * Vec3A::new(0., 0., half_depth);

        aabb.grow(depth.abs())
    }
}

impl BoundedExtrusion for Rectangle {
    fn extrusion_aabb_3d(&self, half_depth: f32, translation: Vec3, rotation: Quat) -> Aabb3d {
        Cuboid {
            half_size: self.half_size.extend(half_depth),
        }
        .aabb_3d(translation, rotation)
    }
}

impl<const N: usize> BoundedExtrusion for Polygon<N> {
    fn extrusion_aabb_3d(&self, half_depth: f32, translation: Vec3, rotation: Quat) -> Aabb3d {
        let aabb = Aabb3d::from_point_cloud(
            translation,
            rotation,
            self.vertices.map(|v| v.extend(0.)).into_iter(),
        );
        let depth = rotation * Vec3A::new(0., 0., half_depth);

        aabb.grow(depth.abs())
    }
}

impl BoundedExtrusion for BoxedPolygon {
    fn extrusion_aabb_3d(&self, half_depth: f32, translation: Vec3, rotation: Quat) -> Aabb3d {
        let aabb = Aabb3d::from_point_cloud(
            translation,
            rotation,
            self.vertices.iter().map(|v| v.extend(0.)),
        );
        let depth = rotation * Vec3A::new(0., 0., half_depth);

        aabb.grow(depth.abs())
    }
}

impl BoundedExtrusion for RegularPolygon {
    fn extrusion_aabb_3d(&self, half_depth: f32, translation: Vec3, rotation: Quat) -> Aabb3d {
        let aabb = Aabb3d::from_point_cloud(
            translation,
            rotation,
            self.vertices(0.).into_iter().map(|v| v.extend(0.)),
        );
        let depth = rotation * Vec3A::new(0., 0., half_depth);

        aabb.grow(depth.abs())
    }
}

impl BoundedExtrusion for Capsule2d {
    fn extrusion_aabb_3d(&self, half_depth: f32, translation: Vec3, rotation: Quat) -> Aabb3d {
        let aabb = Cylinder {
            half_height: half_depth,
            radius: self.radius,
        }
        .aabb_3d(Vec3::ZERO, rotation * Quat::from_rotation_x(FRAC_PI_2));

        let up = rotation * Vec3::new(0., self.half_length, 0.);
        let half_size = Into::<Vec3>::into(aabb.max) + up.abs();
        Aabb3d::new(translation, half_size)
    }
}

impl<T: BoundedExtrusion> Bounded3d for Extrusion<T> {
    fn aabb_3d(&self, translation: Vec3, rotation: Quat) -> Aabb3d {
        self.base_shape
            .extrusion_aabb_3d(self.half_depth, translation, rotation)
    }

    fn bounding_sphere(&self, translation: Vec3, rotation: Quat) -> BoundingSphere {
        self.base_shape
            .extrusion_bounding_sphere(self.half_depth, translation, rotation)
    }
}

/// A trait implemented on 2D shapes which determines the 3D bounding volumes of their extrusions.
///
/// Since default implementations can be inferred from 2D bounding volumes, this allows a `Bounded2d`
/// implementation on some shape `MyShape` to be extrapolated to a `Bounded3d` implementation on
/// `Extrusion<MyShape>` without supplying any additional data; e.g.:
/// `impl BoundedExtrusion for MyShape {}`
pub trait BoundedExtrusion: Primitive2d + Bounded2d {
    /// Get an axis-aligned bounding box for an extrusion with this shape as a base and the given `half_depth`, transformed by the given `translation` and `rotation`.
    fn extrusion_aabb_3d(&self, half_depth: f32, translation: Vec3, rotation: Quat) -> Aabb3d {
        let cap_normal = rotation * Vec3::Z;
        let conjugate_rot = rotation.conjugate();

        // The `(halfsize, offset)` for each axis
        let axis_values = Vec3::AXES.map(|ax| {
            // This is the direction of the line of intersection of a plane with the `ax` normal and the plane containing the cap of the extrusion.
            let intersect_line = ax.cross(cap_normal);
            if intersect_line.length_squared() <= f32::EPSILON {
                return (0., 0.);
            };

            // This is the normal vector of the intersection line rotated to be in the XY-plane
            let line_normal = (conjugate_rot * intersect_line).yx();
            let angle = line_normal.to_angle();

            // Since the plane containing the caps of the extrusion is not guaranteed to be orthgonal to the `ax` plane, only a certain "scale" factor
            // of the `Aabb2d` will actually go towards the dimensions of the `Aabb3d`
            let scale = cap_normal.reject_from(ax).length();

            // Calculate the `Aabb2d` of the base shape. The shape is rotated so that the line of intersection is parallel to the Y axis in the `Aabb2d` calculations.
            // This guarantees that the X value of the `Aabb2d` is closest to the `ax` plane
            let aabb2d = self.aabb_2d(Vec2::ZERO, angle);
            (aabb2d.half_size().x * scale, aabb2d.center().x * scale)
        });

        let offset = Vec3A::from_array(axis_values.map(|(_, offset)| offset));
        let cap_size = Vec3A::from_array(axis_values.map(|(max_val, _)| max_val)).abs();
        let depth = rotation * Vec3A::new(0., 0., half_depth);

        Aabb3d::new(Vec3A::from(translation) - offset, cap_size + depth.abs())
    }

    /// Get a bounding sphere for an extrusion of the `base_shape` with the given `half_depth` with the given translation and rotation
    fn extrusion_bounding_sphere(
        &self,
        half_depth: f32,
        translation: Vec3,
        rotation: Quat,
    ) -> BoundingSphere {
        // We calculate the bounding circle of the base shape.
        // Since each of the extrusions bases will have the same distance from its center,
        // and they are just shifted along the Z-axis, the minimum bounding sphere will be the bounding sphere
        // of the cylinder defined by the two bounding circles of the bases for any base shape
        let BoundingCircle {
            center,
            circle: Circle { radius },
        } = self.bounding_circle(Vec2::ZERO, 0.);
        let radius = radius.hypot(half_depth);
        let center = translation + rotation * center.extend(0.);

        BoundingSphere::new(center, radius)
    }
}

#[cfg(test)]
mod tests {
    use std::f32::consts::FRAC_PI_4;

    use glam::{EulerRot, Quat, Vec2, Vec3, Vec3A};

    use crate::{
        bounding::{Bounded3d, BoundingVolume},
        primitives::{
            Capsule2d, Circle, Ellipse, Extrusion, Line2d, Polygon, Polyline2d, Rectangle,
            RegularPolygon, Segment2d, Triangle2d,
        },
        Dir2,
    };

    #[test]
    fn circle() {
        let cylinder = Extrusion::new(Circle::new(0.5), 2.0);
        let translation = Vec3::new(2.0, 1.0, 0.0);

        let aabb = cylinder.aabb_3d(translation, Quat::IDENTITY);
        assert_eq!(aabb.center(), Vec3A::from(translation));
        assert_eq!(aabb.half_size(), Vec3A::new(0.5, 0.5, 1.0));

        let bounding_sphere = cylinder.bounding_sphere(translation, Quat::IDENTITY);
        assert_eq!(bounding_sphere.center, translation.into());
        assert_eq!(bounding_sphere.radius(), 1f32.hypot(0.5));
    }

    #[test]
    fn ellipse() {
        let extrusion = Extrusion::new(Ellipse::new(2.0, 0.5), 4.0);
        let translation = Vec3::new(3., 4., 5.);
        let rotation = Quat::from_euler(EulerRot::ZYX, FRAC_PI_4, FRAC_PI_4, FRAC_PI_4);

        let aabb = extrusion.aabb_3d(translation, rotation);
        assert_eq!(aabb.center(), Vec3A::from(translation));
        assert_eq!(aabb.half_size(), Vec3A::new(2.709784, 1.3801551, 2.436141));

        let bounding_sphere = extrusion.bounding_sphere(translation, rotation);
        assert_eq!(bounding_sphere.center, translation.into());
        assert_eq!(bounding_sphere.radius(), 8f32.sqrt());
    }

    #[test]
    fn line() {
        let extrusion = Extrusion::new(
            Line2d {
                direction: Dir2::new_unchecked(Vec2::Y),
            },
            4.,
        );
        let translation = Vec3::new(3., 4., 5.);
        let rotation = Quat::from_rotation_y(FRAC_PI_4);

        let aabb = extrusion.aabb_3d(translation, rotation);
        assert_eq!(aabb.min, Vec3A::new(1.5857864, f32::MIN / 2., 3.5857865));
        assert_eq!(aabb.max, Vec3A::new(4.4142136, f32::MAX / 2., 6.414213));

        let bounding_sphere = extrusion.bounding_sphere(translation, rotation);
        assert_eq!(bounding_sphere.center(), translation.into());
        assert_eq!(bounding_sphere.radius(), f32::MAX / 2.);
    }

    #[test]
    fn rectangle() {
        let extrusion = Extrusion::new(Rectangle::new(2.0, 1.0), 4.0);
        let translation = Vec3::new(3., 4., 5.);
        let rotation = Quat::from_rotation_z(std::f32::consts::FRAC_PI_4);

        let aabb = extrusion.aabb_3d(translation, rotation);
        assert_eq!(aabb.center(), translation.into());
        assert_eq!(aabb.half_size(), Vec3A::new(1.0606602, 1.0606602, 2.));

        let bounding_sphere = extrusion.bounding_sphere(translation, rotation);
        assert_eq!(bounding_sphere.center, translation.into());
        assert_eq!(bounding_sphere.radius(), 2.291288);
    }

    #[test]
    fn segment() {
        let extrusion = Extrusion::new(Segment2d::new(Dir2::new_unchecked(Vec2::NEG_Y), 3.), 4.0);
        let translation = Vec3::new(3., 4., 5.);
        let rotation = Quat::from_rotation_x(FRAC_PI_4);

        let aabb = extrusion.aabb_3d(translation, rotation);
        assert_eq!(aabb.center(), translation.into());
        assert_eq!(aabb.half_size(), Vec3A::new(0., 2.4748735, 2.4748735));

        let bounding_sphere = extrusion.bounding_sphere(translation, rotation);
        assert_eq!(bounding_sphere.center, translation.into());
        assert_eq!(bounding_sphere.radius(), 2.5);
    }

    #[test]
    fn polyline() {
        let polyline = Polyline2d::<4>::new([
            Vec2::ONE,
            Vec2::new(-1.0, 1.0),
            Vec2::NEG_ONE,
            Vec2::new(1.0, -1.0),
        ]);
        let extrusion = Extrusion::new(polyline, 3.0);
        let translation = Vec3::new(3., 4., 5.);
        let rotation = Quat::from_rotation_x(FRAC_PI_4);

        let aabb = extrusion.aabb_3d(translation, rotation);
        assert_eq!(aabb.center(), translation.into());
        assert_eq!(aabb.half_size(), Vec3A::new(1., 1.7677668, 1.7677668));

        let bounding_sphere = extrusion.bounding_sphere(translation, rotation);
        assert_eq!(bounding_sphere.center, translation.into());
        assert_eq!(bounding_sphere.radius(), 2.0615528);
    }

    #[test]
    fn triangle() {
        let triangle = Triangle2d::new(
            Vec2::new(0.0, 1.0),
            Vec2::new(-10.0, -1.0),
            Vec2::new(10.0, -1.0),
        );
        let extrusion = Extrusion::new(triangle, 3.0);
        let translation = Vec3::new(3., 4., 5.);
        let rotation = Quat::from_rotation_x(FRAC_PI_4);

        let aabb = extrusion.aabb_3d(translation, rotation);
        assert_eq!(aabb.center(), translation.into());
        assert_eq!(aabb.half_size(), Vec3A::new(10., 1.7677668, 1.7677668));

        let bounding_sphere = extrusion.bounding_sphere(translation, rotation);
        assert_eq!(
            bounding_sphere.center,
            Vec3A::new(3.0, 3.2928934, 4.2928934)
        );
        assert_eq!(bounding_sphere.radius(), 10.111875);
    }

    #[test]
    fn polygon() {
        let polygon = Polygon::<4>::new([
            Vec2::ONE,
            Vec2::new(-1.0, 1.0),
            Vec2::NEG_ONE,
            Vec2::new(1.0, -1.0),
        ]);
        let extrusion = Extrusion::new(polygon, 3.0);
        let translation = Vec3::new(3., 4., 5.);
        let rotation = Quat::from_rotation_x(FRAC_PI_4);

        let aabb = extrusion.aabb_3d(translation, rotation);
        assert_eq!(aabb.center(), translation.into());
        assert_eq!(aabb.half_size(), Vec3A::new(1., 1.7677668, 1.7677668));

        let bounding_sphere = extrusion.bounding_sphere(translation, rotation);
        assert_eq!(bounding_sphere.center, translation.into());
        assert_eq!(bounding_sphere.radius(), 2.0615528);
    }

    #[test]
    fn regular_polygon() {
        let extrusion = Extrusion::new(RegularPolygon::new(2.0, 7), 4.0);
        let translation = Vec3::new(3., 4., 5.);
        let rotation = Quat::from_rotation_x(FRAC_PI_4);

        let aabb = extrusion.aabb_3d(translation, rotation);
        assert_eq!(
            aabb.center(),
            Vec3A::from(translation) + Vec3A::new(0., 0.0700254, 0.0700254)
        );
        assert_eq!(
            aabb.half_size(),
            Vec3A::new(1.9498558, 2.7584014, 2.7584019)
        );

        let bounding_sphere = extrusion.bounding_sphere(translation, rotation);
        assert_eq!(bounding_sphere.center, translation.into());
        assert_eq!(bounding_sphere.radius(), 8f32.sqrt());
    }

    #[test]
    fn capsule() {
        let extrusion = Extrusion::new(Capsule2d::new(0.5, 2.0), 4.0);
        let translation = Vec3::new(3., 4., 5.);
        let rotation = Quat::from_rotation_x(FRAC_PI_4);

        let aabb = extrusion.aabb_3d(translation, rotation);
        assert_eq!(aabb.center(), translation.into());
        assert_eq!(aabb.half_size(), Vec3A::new(0.5, 2.4748735, 2.4748735));

        let bounding_sphere = extrusion.bounding_sphere(translation, rotation);
        assert_eq!(bounding_sphere.center, translation.into());
        assert_eq!(bounding_sphere.radius(), 2.5);
    }
}