bevy_math/bounding/bounded3d/
primitive_impls.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
//! Contains [`Bounded3d`] implementations for [geometric primitives](crate::primitives).

use glam::Vec3A;

use crate::{
    bounding::{Bounded2d, BoundingCircle},
    ops,
    primitives::{
        BoxedPolyline3d, Capsule3d, Cone, ConicalFrustum, Cuboid, Cylinder, InfinitePlane3d,
        Line3d, Polyline3d, Segment3d, Sphere, Torus, Triangle2d, Triangle3d,
    },
    Isometry2d, Isometry3d, Mat3, Vec2, Vec3,
};

use super::{Aabb3d, Bounded3d, BoundingSphere};

impl Bounded3d for Sphere {
    fn aabb_3d(&self, isometry: impl Into<Isometry3d>) -> Aabb3d {
        let isometry = isometry.into();
        Aabb3d::new(isometry.translation, Vec3::splat(self.radius))
    }

    fn bounding_sphere(&self, isometry: impl Into<Isometry3d>) -> BoundingSphere {
        let isometry = isometry.into();
        BoundingSphere::new(isometry.translation, self.radius)
    }
}

impl Bounded3d for InfinitePlane3d {
    fn aabb_3d(&self, isometry: impl Into<Isometry3d>) -> Aabb3d {
        let isometry = isometry.into();

        let normal = isometry.rotation * *self.normal;
        let facing_x = normal == Vec3::X || normal == Vec3::NEG_X;
        let facing_y = normal == Vec3::Y || normal == Vec3::NEG_Y;
        let facing_z = normal == Vec3::Z || normal == Vec3::NEG_Z;

        // Dividing `f32::MAX` by 2.0 is helpful so that we can do operations
        // like growing or shrinking the AABB without breaking things.
        let half_width = if facing_x { 0.0 } else { f32::MAX / 2.0 };
        let half_height = if facing_y { 0.0 } else { f32::MAX / 2.0 };
        let half_depth = if facing_z { 0.0 } else { f32::MAX / 2.0 };
        let half_size = Vec3A::new(half_width, half_height, half_depth);

        Aabb3d::new(isometry.translation, half_size)
    }

    fn bounding_sphere(&self, isometry: impl Into<Isometry3d>) -> BoundingSphere {
        let isometry = isometry.into();
        BoundingSphere::new(isometry.translation, f32::MAX / 2.0)
    }
}

impl Bounded3d for Line3d {
    fn aabb_3d(&self, isometry: impl Into<Isometry3d>) -> Aabb3d {
        let isometry = isometry.into();
        let direction = isometry.rotation * *self.direction;

        // Dividing `f32::MAX` by 2.0 is helpful so that we can do operations
        // like growing or shrinking the AABB without breaking things.
        let max = f32::MAX / 2.0;
        let half_width = if direction.x == 0.0 { 0.0 } else { max };
        let half_height = if direction.y == 0.0 { 0.0 } else { max };
        let half_depth = if direction.z == 0.0 { 0.0 } else { max };
        let half_size = Vec3A::new(half_width, half_height, half_depth);

        Aabb3d::new(isometry.translation, half_size)
    }

    fn bounding_sphere(&self, isometry: impl Into<Isometry3d>) -> BoundingSphere {
        let isometry = isometry.into();
        BoundingSphere::new(isometry.translation, f32::MAX / 2.0)
    }
}

impl Bounded3d for Segment3d {
    fn aabb_3d(&self, isometry: impl Into<Isometry3d>) -> Aabb3d {
        let isometry = isometry.into();

        // Rotate the segment by `rotation`
        let direction = isometry.rotation * *self.direction;
        let half_size = (self.half_length * direction).abs();

        Aabb3d::new(isometry.translation, half_size)
    }

    fn bounding_sphere(&self, isometry: impl Into<Isometry3d>) -> BoundingSphere {
        let isometry = isometry.into();
        BoundingSphere::new(isometry.translation, self.half_length)
    }
}

impl<const N: usize> Bounded3d for Polyline3d<N> {
    fn aabb_3d(&self, isometry: impl Into<Isometry3d>) -> Aabb3d {
        Aabb3d::from_point_cloud(isometry, self.vertices.iter().copied())
    }

    fn bounding_sphere(&self, isometry: impl Into<Isometry3d>) -> BoundingSphere {
        BoundingSphere::from_point_cloud(isometry, &self.vertices)
    }
}

impl Bounded3d for BoxedPolyline3d {
    fn aabb_3d(&self, isometry: impl Into<Isometry3d>) -> Aabb3d {
        Aabb3d::from_point_cloud(isometry, self.vertices.iter().copied())
    }

    fn bounding_sphere(&self, isometry: impl Into<Isometry3d>) -> BoundingSphere {
        BoundingSphere::from_point_cloud(isometry, &self.vertices)
    }
}

impl Bounded3d for Cuboid {
    fn aabb_3d(&self, isometry: impl Into<Isometry3d>) -> Aabb3d {
        let isometry = isometry.into();

        // Compute the AABB of the rotated cuboid by transforming the half-size
        // by an absolute rotation matrix.
        let rot_mat = Mat3::from_quat(isometry.rotation);
        let abs_rot_mat = Mat3::from_cols(
            rot_mat.x_axis.abs(),
            rot_mat.y_axis.abs(),
            rot_mat.z_axis.abs(),
        );
        let half_size = abs_rot_mat * self.half_size;

        Aabb3d::new(isometry.translation, half_size)
    }

    fn bounding_sphere(&self, isometry: impl Into<Isometry3d>) -> BoundingSphere {
        let isometry = isometry.into();
        BoundingSphere::new(isometry.translation, self.half_size.length())
    }
}

impl Bounded3d for Cylinder {
    fn aabb_3d(&self, isometry: impl Into<Isometry3d>) -> Aabb3d {
        // Reference: http://iquilezles.org/articles/diskbbox/

        let isometry = isometry.into();

        let segment_dir = isometry.rotation * Vec3A::Y;
        let top = segment_dir * self.half_height;
        let bottom = -top;

        let e = (Vec3A::ONE - segment_dir * segment_dir).max(Vec3A::ZERO);
        let half_size = self.radius * Vec3A::new(e.x.sqrt(), e.y.sqrt(), e.z.sqrt());

        Aabb3d {
            min: isometry.translation + (top - half_size).min(bottom - half_size),
            max: isometry.translation + (top + half_size).max(bottom + half_size),
        }
    }

    fn bounding_sphere(&self, isometry: impl Into<Isometry3d>) -> BoundingSphere {
        let isometry = isometry.into();
        let radius = ops::hypot(self.radius, self.half_height);
        BoundingSphere::new(isometry.translation, radius)
    }
}

impl Bounded3d for Capsule3d {
    fn aabb_3d(&self, isometry: impl Into<Isometry3d>) -> Aabb3d {
        let isometry = isometry.into();

        // Get the line segment between the hemispheres of the rotated capsule
        let segment_dir = isometry.rotation * Vec3A::Y;
        let top = segment_dir * self.half_length;
        let bottom = -top;

        // Expand the line segment by the capsule radius to get the capsule half-extents
        let min = bottom.min(top) - Vec3A::splat(self.radius);
        let max = bottom.max(top) + Vec3A::splat(self.radius);

        Aabb3d {
            min: min + isometry.translation,
            max: max + isometry.translation,
        }
    }

    fn bounding_sphere(&self, isometry: impl Into<Isometry3d>) -> BoundingSphere {
        let isometry = isometry.into();
        BoundingSphere::new(isometry.translation, self.radius + self.half_length)
    }
}

impl Bounded3d for Cone {
    fn aabb_3d(&self, isometry: impl Into<Isometry3d>) -> Aabb3d {
        // Reference: http://iquilezles.org/articles/diskbbox/

        let isometry = isometry.into();

        let segment_dir = isometry.rotation * Vec3A::Y;
        let top = segment_dir * 0.5 * self.height;
        let bottom = -top;

        let e = (Vec3A::ONE - segment_dir * segment_dir).max(Vec3A::ZERO);
        let half_extents = Vec3A::new(e.x.sqrt(), e.y.sqrt(), e.z.sqrt());

        Aabb3d {
            min: isometry.translation + top.min(bottom - self.radius * half_extents),
            max: isometry.translation + top.max(bottom + self.radius * half_extents),
        }
    }

    fn bounding_sphere(&self, isometry: impl Into<Isometry3d>) -> BoundingSphere {
        let isometry = isometry.into();

        // Get the triangular cross-section of the cone.
        let half_height = 0.5 * self.height;
        let triangle = Triangle2d::new(
            half_height * Vec2::Y,
            Vec2::new(-self.radius, -half_height),
            Vec2::new(self.radius, -half_height),
        );

        // Because of circular symmetry, we can use the bounding circle of the triangle
        // for the bounding sphere of the cone.
        let BoundingCircle { circle, center } = triangle.bounding_circle(Isometry2d::IDENTITY);

        BoundingSphere::new(
            isometry.rotation * Vec3A::from(center.extend(0.0)) + isometry.translation,
            circle.radius,
        )
    }
}

impl Bounded3d for ConicalFrustum {
    fn aabb_3d(&self, isometry: impl Into<Isometry3d>) -> Aabb3d {
        // Reference: http://iquilezles.org/articles/diskbbox/

        let isometry = isometry.into();

        let segment_dir = isometry.rotation * Vec3A::Y;
        let top = segment_dir * 0.5 * self.height;
        let bottom = -top;

        let e = (Vec3A::ONE - segment_dir * segment_dir).max(Vec3A::ZERO);
        let half_extents = Vec3A::new(e.x.sqrt(), e.y.sqrt(), e.z.sqrt());

        Aabb3d {
            min: isometry.translation
                + (top - self.radius_top * half_extents)
                    .min(bottom - self.radius_bottom * half_extents),
            max: isometry.translation
                + (top + self.radius_top * half_extents)
                    .max(bottom + self.radius_bottom * half_extents),
        }
    }

    fn bounding_sphere(&self, isometry: impl Into<Isometry3d>) -> BoundingSphere {
        let isometry = isometry.into();
        let half_height = 0.5 * self.height;

        // To compute the bounding sphere, we'll get the center and radius of the circumcircle
        // passing through all four vertices of the trapezoidal cross-section of the conical frustum.
        //
        // If the circumcenter is inside the trapezoid, we can use that for the bounding sphere.
        // Otherwise, we clamp it to the longer parallel side to get a more tightly fitting bounding sphere.
        //
        // The circumcenter is at the intersection of the bisectors perpendicular to the sides.
        // For the isosceles trapezoid, the X coordinate is zero at the center, so a single bisector is enough.
        //
        //       A
        //       *-------*
        //      /    |    \
        //     /     |     \
        // AB / \    |    / \
        //   /     \ | /     \
        //  /        C        \
        // *-------------------*
        // B

        let a = Vec2::new(-self.radius_top, half_height);
        let b = Vec2::new(-self.radius_bottom, -half_height);
        let ab = a - b;
        let ab_midpoint = b + 0.5 * ab;
        let bisector = ab.perp();

        // Compute intersection between bisector and vertical line at x = 0.
        //
        // x = ab_midpoint.x + t * bisector.x = 0
        // y = ab_midpoint.y + t * bisector.y = ?
        //
        // Because ab_midpoint.y = 0 for our conical frustum, we get:
        // y = t * bisector.y
        //
        // Solve x for t:
        // t = -ab_midpoint.x / bisector.x
        //
        // Substitute t to solve for y:
        // y = -ab_midpoint.x / bisector.x * bisector.y
        let circumcenter_y = -ab_midpoint.x / bisector.x * bisector.y;

        // If the circumcenter is outside the trapezoid, the bounding circle is too large.
        // In those cases, we clamp it to the longer parallel side.
        let (center, radius) = if circumcenter_y <= -half_height {
            (Vec2::new(0.0, -half_height), self.radius_bottom)
        } else if circumcenter_y >= half_height {
            (Vec2::new(0.0, half_height), self.radius_top)
        } else {
            let circumcenter = Vec2::new(0.0, circumcenter_y);
            // We can use the distance from an arbitrary vertex because they all lie on the circumcircle.
            (circumcenter, a.distance(circumcenter))
        };

        BoundingSphere::new(
            isometry.translation + isometry.rotation * Vec3A::from(center.extend(0.0)),
            radius,
        )
    }
}

impl Bounded3d for Torus {
    fn aabb_3d(&self, isometry: impl Into<Isometry3d>) -> Aabb3d {
        let isometry = isometry.into();

        // Compute the AABB of a flat disc with the major radius of the torus.
        // Reference: http://iquilezles.org/articles/diskbbox/
        let normal = isometry.rotation * Vec3A::Y;
        let e = (Vec3A::ONE - normal * normal).max(Vec3A::ZERO);
        let disc_half_size = self.major_radius * Vec3A::new(e.x.sqrt(), e.y.sqrt(), e.z.sqrt());

        // Expand the disc by the minor radius to get the torus half-size
        let half_size = disc_half_size + Vec3A::splat(self.minor_radius);

        Aabb3d::new(isometry.translation, half_size)
    }

    fn bounding_sphere(&self, isometry: impl Into<Isometry3d>) -> BoundingSphere {
        let isometry = isometry.into();
        BoundingSphere::new(isometry.translation, self.outer_radius())
    }
}

impl Bounded3d for Triangle3d {
    /// Get the bounding box of the triangle.
    fn aabb_3d(&self, isometry: impl Into<Isometry3d>) -> Aabb3d {
        let isometry = isometry.into();
        let [a, b, c] = self.vertices;

        let a = isometry.rotation * a;
        let b = isometry.rotation * b;
        let c = isometry.rotation * c;

        let min = Vec3A::from(a.min(b).min(c));
        let max = Vec3A::from(a.max(b).max(c));

        let bounding_center = (max + min) / 2.0 + isometry.translation;
        let half_extents = (max - min) / 2.0;

        Aabb3d::new(bounding_center, half_extents)
    }

    /// Get the bounding sphere of the triangle.
    ///
    /// The [`Triangle3d`] implements the minimal bounding sphere calculation. For acute triangles, the circumcenter is used as
    /// the center of the sphere. For the others, the bounding sphere is the minimal sphere
    /// that contains the largest side of the triangle.
    fn bounding_sphere(&self, isometry: impl Into<Isometry3d>) -> BoundingSphere {
        let isometry = isometry.into();

        if self.is_degenerate() || self.is_obtuse() {
            let (p1, p2) = self.largest_side();
            let (p1, p2) = (Vec3A::from(p1), Vec3A::from(p2));
            let mid_point = (p1 + p2) / 2.0;
            let radius = mid_point.distance(p1);
            BoundingSphere::new(mid_point + isometry.translation, radius)
        } else {
            let [a, _, _] = self.vertices;

            let circumcenter = self.circumcenter();
            let radius = circumcenter.distance(a);
            BoundingSphere::new(Vec3A::from(circumcenter) + isometry.translation, radius)
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::{bounding::BoundingVolume, ops, Isometry3d};
    use glam::{Quat, Vec3, Vec3A};

    use crate::{
        bounding::Bounded3d,
        primitives::{
            Capsule3d, Cone, ConicalFrustum, Cuboid, Cylinder, InfinitePlane3d, Line3d, Polyline3d,
            Segment3d, Sphere, Torus, Triangle3d,
        },
        Dir3,
    };

    #[test]
    fn sphere() {
        let sphere = Sphere { radius: 1.0 };
        let translation = Vec3::new(2.0, 1.0, 0.0);

        let aabb = sphere.aabb_3d(translation);
        assert_eq!(aabb.min, Vec3A::new(1.0, 0.0, -1.0));
        assert_eq!(aabb.max, Vec3A::new(3.0, 2.0, 1.0));

        let bounding_sphere = sphere.bounding_sphere(translation);
        assert_eq!(bounding_sphere.center, translation.into());
        assert_eq!(bounding_sphere.radius(), 1.0);
    }

    #[test]
    fn plane() {
        let translation = Vec3::new(2.0, 1.0, 0.0);

        let aabb1 = InfinitePlane3d::new(Vec3::X).aabb_3d(translation);
        assert_eq!(aabb1.min, Vec3A::new(2.0, -f32::MAX / 2.0, -f32::MAX / 2.0));
        assert_eq!(aabb1.max, Vec3A::new(2.0, f32::MAX / 2.0, f32::MAX / 2.0));

        let aabb2 = InfinitePlane3d::new(Vec3::Y).aabb_3d(translation);
        assert_eq!(aabb2.min, Vec3A::new(-f32::MAX / 2.0, 1.0, -f32::MAX / 2.0));
        assert_eq!(aabb2.max, Vec3A::new(f32::MAX / 2.0, 1.0, f32::MAX / 2.0));

        let aabb3 = InfinitePlane3d::new(Vec3::Z).aabb_3d(translation);
        assert_eq!(aabb3.min, Vec3A::new(-f32::MAX / 2.0, -f32::MAX / 2.0, 0.0));
        assert_eq!(aabb3.max, Vec3A::new(f32::MAX / 2.0, f32::MAX / 2.0, 0.0));

        let aabb4 = InfinitePlane3d::new(Vec3::ONE).aabb_3d(translation);
        assert_eq!(aabb4.min, Vec3A::splat(-f32::MAX / 2.0));
        assert_eq!(aabb4.max, Vec3A::splat(f32::MAX / 2.0));

        let bounding_sphere = InfinitePlane3d::new(Vec3::Y).bounding_sphere(translation);
        assert_eq!(bounding_sphere.center, translation.into());
        assert_eq!(bounding_sphere.radius(), f32::MAX / 2.0);
    }

    #[test]
    fn line() {
        let translation = Vec3::new(2.0, 1.0, 0.0);

        let aabb1 = Line3d { direction: Dir3::Y }.aabb_3d(translation);
        assert_eq!(aabb1.min, Vec3A::new(2.0, -f32::MAX / 2.0, 0.0));
        assert_eq!(aabb1.max, Vec3A::new(2.0, f32::MAX / 2.0, 0.0));

        let aabb2 = Line3d { direction: Dir3::X }.aabb_3d(translation);
        assert_eq!(aabb2.min, Vec3A::new(-f32::MAX / 2.0, 1.0, 0.0));
        assert_eq!(aabb2.max, Vec3A::new(f32::MAX / 2.0, 1.0, 0.0));

        let aabb3 = Line3d { direction: Dir3::Z }.aabb_3d(translation);
        assert_eq!(aabb3.min, Vec3A::new(2.0, 1.0, -f32::MAX / 2.0));
        assert_eq!(aabb3.max, Vec3A::new(2.0, 1.0, f32::MAX / 2.0));

        let aabb4 = Line3d {
            direction: Dir3::from_xyz(1.0, 1.0, 1.0).unwrap(),
        }
        .aabb_3d(translation);
        assert_eq!(aabb4.min, Vec3A::splat(-f32::MAX / 2.0));
        assert_eq!(aabb4.max, Vec3A::splat(f32::MAX / 2.0));

        let bounding_sphere = Line3d { direction: Dir3::Y }.bounding_sphere(translation);
        assert_eq!(bounding_sphere.center, translation.into());
        assert_eq!(bounding_sphere.radius(), f32::MAX / 2.0);
    }

    #[test]
    fn segment() {
        let translation = Vec3::new(2.0, 1.0, 0.0);

        let segment =
            Segment3d::from_points(Vec3::new(-1.0, -0.5, 0.0), Vec3::new(1.0, 0.5, 0.0)).0;

        let aabb = segment.aabb_3d(translation);
        assert_eq!(aabb.min, Vec3A::new(1.0, 0.5, 0.0));
        assert_eq!(aabb.max, Vec3A::new(3.0, 1.5, 0.0));

        let bounding_sphere = segment.bounding_sphere(translation);
        assert_eq!(bounding_sphere.center, translation.into());
        assert_eq!(bounding_sphere.radius(), ops::hypot(1.0, 0.5));
    }

    #[test]
    fn polyline() {
        let polyline = Polyline3d::<4>::new([
            Vec3::ONE,
            Vec3::new(-1.0, 1.0, 1.0),
            Vec3::NEG_ONE,
            Vec3::new(1.0, -1.0, -1.0),
        ]);
        let translation = Vec3::new(2.0, 1.0, 0.0);

        let aabb = polyline.aabb_3d(translation);
        assert_eq!(aabb.min, Vec3A::new(1.0, 0.0, -1.0));
        assert_eq!(aabb.max, Vec3A::new(3.0, 2.0, 1.0));

        let bounding_sphere = polyline.bounding_sphere(translation);
        assert_eq!(bounding_sphere.center, translation.into());
        assert_eq!(
            bounding_sphere.radius(),
            ops::hypot(ops::hypot(1.0, 1.0), 1.0)
        );
    }

    #[test]
    fn cuboid() {
        let cuboid = Cuboid::new(2.0, 1.0, 1.0);
        let translation = Vec3::new(2.0, 1.0, 0.0);

        let aabb = cuboid.aabb_3d(Isometry3d::new(
            translation,
            Quat::from_rotation_z(core::f32::consts::FRAC_PI_4),
        ));
        let expected_half_size = Vec3A::new(1.0606601, 1.0606601, 0.5);
        assert_eq!(aabb.min, Vec3A::from(translation) - expected_half_size);
        assert_eq!(aabb.max, Vec3A::from(translation) + expected_half_size);

        let bounding_sphere = cuboid.bounding_sphere(translation);
        assert_eq!(bounding_sphere.center, translation.into());
        assert_eq!(
            bounding_sphere.radius(),
            ops::hypot(ops::hypot(1.0, 0.5), 0.5)
        );
    }

    #[test]
    fn cylinder() {
        let cylinder = Cylinder::new(0.5, 2.0);
        let translation = Vec3::new(2.0, 1.0, 0.0);

        let aabb = cylinder.aabb_3d(translation);
        assert_eq!(
            aabb.min,
            Vec3A::from(translation) - Vec3A::new(0.5, 1.0, 0.5)
        );
        assert_eq!(
            aabb.max,
            Vec3A::from(translation) + Vec3A::new(0.5, 1.0, 0.5)
        );

        let bounding_sphere = cylinder.bounding_sphere(translation);
        assert_eq!(bounding_sphere.center, translation.into());
        assert_eq!(bounding_sphere.radius(), ops::hypot(1.0, 0.5));
    }

    #[test]
    fn capsule() {
        let capsule = Capsule3d::new(0.5, 2.0);
        let translation = Vec3::new(2.0, 1.0, 0.0);

        let aabb = capsule.aabb_3d(translation);
        assert_eq!(
            aabb.min,
            Vec3A::from(translation) - Vec3A::new(0.5, 1.5, 0.5)
        );
        assert_eq!(
            aabb.max,
            Vec3A::from(translation) + Vec3A::new(0.5, 1.5, 0.5)
        );

        let bounding_sphere = capsule.bounding_sphere(translation);
        assert_eq!(bounding_sphere.center, translation.into());
        assert_eq!(bounding_sphere.radius(), 1.5);
    }

    #[test]
    fn cone() {
        let cone = Cone {
            radius: 1.0,
            height: 2.0,
        };
        let translation = Vec3::new(2.0, 1.0, 0.0);

        let aabb = cone.aabb_3d(translation);
        assert_eq!(aabb.min, Vec3A::new(1.0, 0.0, -1.0));
        assert_eq!(aabb.max, Vec3A::new(3.0, 2.0, 1.0));

        let bounding_sphere = cone.bounding_sphere(translation);
        assert_eq!(
            bounding_sphere.center,
            Vec3A::from(translation) + Vec3A::NEG_Y * 0.25
        );
        assert_eq!(bounding_sphere.radius(), 1.25);
    }

    #[test]
    fn conical_frustum() {
        let conical_frustum = ConicalFrustum {
            radius_top: 0.5,
            radius_bottom: 1.0,
            height: 2.0,
        };
        let translation = Vec3::new(2.0, 1.0, 0.0);

        let aabb = conical_frustum.aabb_3d(translation);
        assert_eq!(aabb.min, Vec3A::new(1.0, 0.0, -1.0));
        assert_eq!(aabb.max, Vec3A::new(3.0, 2.0, 1.0));

        let bounding_sphere = conical_frustum.bounding_sphere(translation);
        assert_eq!(
            bounding_sphere.center,
            Vec3A::from(translation) + Vec3A::NEG_Y * 0.1875
        );
        assert_eq!(bounding_sphere.radius(), 1.2884705);
    }

    #[test]
    fn wide_conical_frustum() {
        let conical_frustum = ConicalFrustum {
            radius_top: 0.5,
            radius_bottom: 5.0,
            height: 1.0,
        };
        let translation = Vec3::new(2.0, 1.0, 0.0);

        let aabb = conical_frustum.aabb_3d(translation);
        assert_eq!(aabb.min, Vec3A::new(-3.0, 0.5, -5.0));
        assert_eq!(aabb.max, Vec3A::new(7.0, 1.5, 5.0));

        // For wide conical frusta like this, the circumcenter can be outside the frustum,
        // so the center and radius should be clamped to the longest side.
        let bounding_sphere = conical_frustum.bounding_sphere(translation);
        assert_eq!(
            bounding_sphere.center,
            Vec3A::from(translation) + Vec3A::NEG_Y * 0.5
        );
        assert_eq!(bounding_sphere.radius(), 5.0);
    }

    #[test]
    fn torus() {
        let torus = Torus {
            minor_radius: 0.5,
            major_radius: 1.0,
        };
        let translation = Vec3::new(2.0, 1.0, 0.0);

        let aabb = torus.aabb_3d(translation);
        assert_eq!(aabb.min, Vec3A::new(0.5, 0.5, -1.5));
        assert_eq!(aabb.max, Vec3A::new(3.5, 1.5, 1.5));

        let bounding_sphere = torus.bounding_sphere(translation);
        assert_eq!(bounding_sphere.center, translation.into());
        assert_eq!(bounding_sphere.radius(), 1.5);
    }

    #[test]
    fn triangle3d() {
        let zero_degenerate_triangle = Triangle3d::new(Vec3::ZERO, Vec3::ZERO, Vec3::ZERO);

        let br = zero_degenerate_triangle.aabb_3d(Isometry3d::IDENTITY);
        assert_eq!(
            br.center(),
            Vec3::ZERO.into(),
            "incorrect bounding box center"
        );
        assert_eq!(
            br.half_size(),
            Vec3::ZERO.into(),
            "incorrect bounding box half extents"
        );

        let bs = zero_degenerate_triangle.bounding_sphere(Isometry3d::IDENTITY);
        assert_eq!(
            bs.center,
            Vec3::ZERO.into(),
            "incorrect bounding sphere center"
        );
        assert_eq!(bs.sphere.radius, 0.0, "incorrect bounding sphere radius");

        let dup_degenerate_triangle = Triangle3d::new(Vec3::ZERO, Vec3::X, Vec3::X);
        let bs = dup_degenerate_triangle.bounding_sphere(Isometry3d::IDENTITY);
        assert_eq!(
            bs.center,
            Vec3::new(0.5, 0.0, 0.0).into(),
            "incorrect bounding sphere center"
        );
        assert_eq!(bs.sphere.radius, 0.5, "incorrect bounding sphere radius");
        let br = dup_degenerate_triangle.aabb_3d(Isometry3d::IDENTITY);
        assert_eq!(
            br.center(),
            Vec3::new(0.5, 0.0, 0.0).into(),
            "incorrect bounding box center"
        );
        assert_eq!(
            br.half_size(),
            Vec3::new(0.5, 0.0, 0.0).into(),
            "incorrect bounding box half extents"
        );

        let collinear_degenerate_triangle = Triangle3d::new(Vec3::NEG_X, Vec3::ZERO, Vec3::X);
        let bs = collinear_degenerate_triangle.bounding_sphere(Isometry3d::IDENTITY);
        assert_eq!(
            bs.center,
            Vec3::ZERO.into(),
            "incorrect bounding sphere center"
        );
        assert_eq!(bs.sphere.radius, 1.0, "incorrect bounding sphere radius");
        let br = collinear_degenerate_triangle.aabb_3d(Isometry3d::IDENTITY);
        assert_eq!(
            br.center(),
            Vec3::ZERO.into(),
            "incorrect bounding box center"
        );
        assert_eq!(
            br.half_size(),
            Vec3::new(1.0, 0.0, 0.0).into(),
            "incorrect bounding box half extents"
        );
    }
}