bevy_math/bounding/
raycast2d.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
use super::{Aabb2d, BoundingCircle, IntersectsVolume};
use crate::{ops::FloatPow, Dir2, Ray2d, Vec2};

#[cfg(feature = "bevy_reflect")]
use bevy_reflect::Reflect;

/// A raycast intersection test for 2D bounding volumes
#[derive(Clone, Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug))]
pub struct RayCast2d {
    /// The ray for the test
    pub ray: Ray2d,
    /// The maximum distance for the ray
    pub max: f32,
    /// The multiplicative inverse direction of the ray
    direction_recip: Vec2,
}

impl RayCast2d {
    /// Construct a [`RayCast2d`] from an origin, [`Dir2`], and max distance.
    pub fn new(origin: Vec2, direction: Dir2, max: f32) -> Self {
        Self::from_ray(Ray2d { origin, direction }, max)
    }

    /// Construct a [`RayCast2d`] from a [`Ray2d`] and max distance.
    pub fn from_ray(ray: Ray2d, max: f32) -> Self {
        Self {
            ray,
            direction_recip: ray.direction.recip(),
            max,
        }
    }

    /// Get the cached multiplicative inverse of the direction of the ray.
    pub fn direction_recip(&self) -> Vec2 {
        self.direction_recip
    }

    /// Get the distance of an intersection with an [`Aabb2d`], if any.
    pub fn aabb_intersection_at(&self, aabb: &Aabb2d) -> Option<f32> {
        let (min_x, max_x) = if self.ray.direction.x.is_sign_positive() {
            (aabb.min.x, aabb.max.x)
        } else {
            (aabb.max.x, aabb.min.x)
        };
        let (min_y, max_y) = if self.ray.direction.y.is_sign_positive() {
            (aabb.min.y, aabb.max.y)
        } else {
            (aabb.max.y, aabb.min.y)
        };

        // Calculate the minimum/maximum time for each axis based on how much the direction goes that
        // way. These values can get arbitrarily large, or even become NaN, which is handled by the
        // min/max operations below
        let tmin_x = (min_x - self.ray.origin.x) * self.direction_recip.x;
        let tmin_y = (min_y - self.ray.origin.y) * self.direction_recip.y;
        let tmax_x = (max_x - self.ray.origin.x) * self.direction_recip.x;
        let tmax_y = (max_y - self.ray.origin.y) * self.direction_recip.y;

        // An axis that is not relevant to the ray direction will be NaN. When one of the arguments
        // to min/max is NaN, the other argument is used.
        // An axis for which the direction is the wrong way will return an arbitrarily large
        // negative value.
        let tmin = tmin_x.max(tmin_y).max(0.);
        let tmax = tmax_y.min(tmax_x).min(self.max);

        if tmin <= tmax {
            Some(tmin)
        } else {
            None
        }
    }

    /// Get the distance of an intersection with a [`BoundingCircle`], if any.
    pub fn circle_intersection_at(&self, circle: &BoundingCircle) -> Option<f32> {
        let offset = self.ray.origin - circle.center;
        let projected = offset.dot(*self.ray.direction);
        let closest_point = offset - projected * *self.ray.direction;
        let distance_squared = circle.radius().squared() - closest_point.length_squared();
        if distance_squared < 0. || projected.squared().copysign(-projected) < -distance_squared {
            None
        } else {
            let toi = -projected - distance_squared.sqrt();
            if toi > self.max {
                None
            } else {
                Some(toi.max(0.))
            }
        }
    }
}

impl IntersectsVolume<Aabb2d> for RayCast2d {
    fn intersects(&self, volume: &Aabb2d) -> bool {
        self.aabb_intersection_at(volume).is_some()
    }
}

impl IntersectsVolume<BoundingCircle> for RayCast2d {
    fn intersects(&self, volume: &BoundingCircle) -> bool {
        self.circle_intersection_at(volume).is_some()
    }
}

/// An intersection test that casts an [`Aabb2d`] along a ray.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug))]
pub struct AabbCast2d {
    /// The ray along which to cast the bounding volume
    pub ray: RayCast2d,
    /// The aabb that is being cast
    pub aabb: Aabb2d,
}

impl AabbCast2d {
    /// Construct an [`AabbCast2d`] from an [`Aabb2d`], origin, [`Dir2`], and max distance.
    pub fn new(aabb: Aabb2d, origin: Vec2, direction: Dir2, max: f32) -> Self {
        Self::from_ray(aabb, Ray2d { origin, direction }, max)
    }

    /// Construct an [`AabbCast2d`] from an [`Aabb2d`], [`Ray2d`], and max distance.
    pub fn from_ray(aabb: Aabb2d, ray: Ray2d, max: f32) -> Self {
        Self {
            ray: RayCast2d::from_ray(ray, max),
            aabb,
        }
    }

    /// Get the distance at which the [`Aabb2d`]s collide, if at all.
    pub fn aabb_collision_at(&self, mut aabb: Aabb2d) -> Option<f32> {
        aabb.min -= self.aabb.max;
        aabb.max -= self.aabb.min;
        self.ray.aabb_intersection_at(&aabb)
    }
}

impl IntersectsVolume<Aabb2d> for AabbCast2d {
    fn intersects(&self, volume: &Aabb2d) -> bool {
        self.aabb_collision_at(*volume).is_some()
    }
}

/// An intersection test that casts a [`BoundingCircle`] along a ray.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug))]
pub struct BoundingCircleCast {
    /// The ray along which to cast the bounding volume
    pub ray: RayCast2d,
    /// The circle that is being cast
    pub circle: BoundingCircle,
}

impl BoundingCircleCast {
    /// Construct a [`BoundingCircleCast`] from a [`BoundingCircle`], origin, [`Dir2`], and max distance.
    pub fn new(circle: BoundingCircle, origin: Vec2, direction: Dir2, max: f32) -> Self {
        Self::from_ray(circle, Ray2d { origin, direction }, max)
    }

    /// Construct a [`BoundingCircleCast`] from a [`BoundingCircle`], [`Ray2d`], and max distance.
    pub fn from_ray(circle: BoundingCircle, ray: Ray2d, max: f32) -> Self {
        Self {
            ray: RayCast2d::from_ray(ray, max),
            circle,
        }
    }

    /// Get the distance at which the [`BoundingCircle`]s collide, if at all.
    pub fn circle_collision_at(&self, mut circle: BoundingCircle) -> Option<f32> {
        circle.center -= self.circle.center;
        circle.circle.radius += self.circle.radius();
        self.ray.circle_intersection_at(&circle)
    }
}

impl IntersectsVolume<BoundingCircle> for BoundingCircleCast {
    fn intersects(&self, volume: &BoundingCircle) -> bool {
        self.circle_collision_at(*volume).is_some()
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    const EPSILON: f32 = 0.001;

    #[test]
    fn test_ray_intersection_circle_hits() {
        for (test, volume, expected_distance) in &[
            (
                // Hit the center of a centered bounding circle
                RayCast2d::new(Vec2::Y * -5., Dir2::Y, 90.),
                BoundingCircle::new(Vec2::ZERO, 1.),
                4.,
            ),
            (
                // Hit the center of a centered bounding circle, but from the other side
                RayCast2d::new(Vec2::Y * 5., -Dir2::Y, 90.),
                BoundingCircle::new(Vec2::ZERO, 1.),
                4.,
            ),
            (
                // Hit the center of an offset circle
                RayCast2d::new(Vec2::ZERO, Dir2::Y, 90.),
                BoundingCircle::new(Vec2::Y * 3., 2.),
                1.,
            ),
            (
                // Just barely hit the circle before the max distance
                RayCast2d::new(Vec2::X, Dir2::Y, 1.),
                BoundingCircle::new(Vec2::ONE, 0.01),
                0.99,
            ),
            (
                // Hit a circle off-center
                RayCast2d::new(Vec2::X, Dir2::Y, 90.),
                BoundingCircle::new(Vec2::Y * 5., 2.),
                3.268,
            ),
            (
                // Barely hit a circle on the side
                RayCast2d::new(Vec2::X * 0.99999, Dir2::Y, 90.),
                BoundingCircle::new(Vec2::Y * 5., 1.),
                4.996,
            ),
        ] {
            let case = format!(
                "Case:\n  Test: {:?}\n  Volume: {:?}\n  Expected distance: {:?}",
                test, volume, expected_distance
            );
            assert!(test.intersects(volume), "{}", case);
            let actual_distance = test.circle_intersection_at(volume).unwrap();
            assert!(
                (actual_distance - expected_distance).abs() < EPSILON,
                "{}\n  Actual distance: {}",
                case,
                actual_distance
            );

            let inverted_ray = RayCast2d::new(test.ray.origin, -test.ray.direction, test.max);
            assert!(!inverted_ray.intersects(volume), "{}", case);
        }
    }

    #[test]
    fn test_ray_intersection_circle_misses() {
        for (test, volume) in &[
            (
                // The ray doesn't go in the right direction
                RayCast2d::new(Vec2::ZERO, Dir2::X, 90.),
                BoundingCircle::new(Vec2::Y * 2., 1.),
            ),
            (
                // Ray's alignment isn't enough to hit the circle
                RayCast2d::new(Vec2::ZERO, Dir2::from_xy(1., 1.).unwrap(), 90.),
                BoundingCircle::new(Vec2::Y * 2., 1.),
            ),
            (
                // The ray's maximum distance isn't high enough
                RayCast2d::new(Vec2::ZERO, Dir2::Y, 0.5),
                BoundingCircle::new(Vec2::Y * 2., 1.),
            ),
        ] {
            assert!(
                !test.intersects(volume),
                "Case:\n  Test: {:?}\n  Volume: {:?}",
                test,
                volume,
            );
        }
    }

    #[test]
    fn test_ray_intersection_circle_inside() {
        let volume = BoundingCircle::new(Vec2::splat(0.5), 1.);
        for origin in &[Vec2::X, Vec2::Y, Vec2::ONE, Vec2::ZERO] {
            for direction in &[Dir2::X, Dir2::Y, -Dir2::X, -Dir2::Y] {
                for max in &[0., 1., 900.] {
                    let test = RayCast2d::new(*origin, *direction, *max);

                    let case = format!(
                        "Case:\n  origin: {:?}\n  Direction: {:?}\n  Max: {}",
                        origin, direction, max,
                    );
                    assert!(test.intersects(&volume), "{}", case);

                    let actual_distance = test.circle_intersection_at(&volume);
                    assert_eq!(actual_distance, Some(0.), "{}", case);
                }
            }
        }
    }

    #[test]
    fn test_ray_intersection_aabb_hits() {
        for (test, volume, expected_distance) in &[
            (
                // Hit the center of a centered aabb
                RayCast2d::new(Vec2::Y * -5., Dir2::Y, 90.),
                Aabb2d::new(Vec2::ZERO, Vec2::ONE),
                4.,
            ),
            (
                // Hit the center of a centered aabb, but from the other side
                RayCast2d::new(Vec2::Y * 5., -Dir2::Y, 90.),
                Aabb2d::new(Vec2::ZERO, Vec2::ONE),
                4.,
            ),
            (
                // Hit the center of an offset aabb
                RayCast2d::new(Vec2::ZERO, Dir2::Y, 90.),
                Aabb2d::new(Vec2::Y * 3., Vec2::splat(2.)),
                1.,
            ),
            (
                // Just barely hit the aabb before the max distance
                RayCast2d::new(Vec2::X, Dir2::Y, 1.),
                Aabb2d::new(Vec2::ONE, Vec2::splat(0.01)),
                0.99,
            ),
            (
                // Hit an aabb off-center
                RayCast2d::new(Vec2::X, Dir2::Y, 90.),
                Aabb2d::new(Vec2::Y * 5., Vec2::splat(2.)),
                3.,
            ),
            (
                // Barely hit an aabb on corner
                RayCast2d::new(Vec2::X * -0.001, Dir2::from_xy(1., 1.).unwrap(), 90.),
                Aabb2d::new(Vec2::Y * 2., Vec2::ONE),
                1.414,
            ),
        ] {
            let case = format!(
                "Case:\n  Test: {:?}\n  Volume: {:?}\n  Expected distance: {:?}",
                test, volume, expected_distance
            );
            assert!(test.intersects(volume), "{}", case);
            let actual_distance = test.aabb_intersection_at(volume).unwrap();
            assert!(
                (actual_distance - expected_distance).abs() < EPSILON,
                "{}\n  Actual distance: {}",
                case,
                actual_distance
            );

            let inverted_ray = RayCast2d::new(test.ray.origin, -test.ray.direction, test.max);
            assert!(!inverted_ray.intersects(volume), "{}", case);
        }
    }

    #[test]
    fn test_ray_intersection_aabb_misses() {
        for (test, volume) in &[
            (
                // The ray doesn't go in the right direction
                RayCast2d::new(Vec2::ZERO, Dir2::X, 90.),
                Aabb2d::new(Vec2::Y * 2., Vec2::ONE),
            ),
            (
                // Ray's alignment isn't enough to hit the aabb
                RayCast2d::new(Vec2::ZERO, Dir2::from_xy(1., 0.99).unwrap(), 90.),
                Aabb2d::new(Vec2::Y * 2., Vec2::ONE),
            ),
            (
                // The ray's maximum distance isn't high enough
                RayCast2d::new(Vec2::ZERO, Dir2::Y, 0.5),
                Aabb2d::new(Vec2::Y * 2., Vec2::ONE),
            ),
        ] {
            assert!(
                !test.intersects(volume),
                "Case:\n  Test: {:?}\n  Volume: {:?}",
                test,
                volume,
            );
        }
    }

    #[test]
    fn test_ray_intersection_aabb_inside() {
        let volume = Aabb2d::new(Vec2::splat(0.5), Vec2::ONE);
        for origin in &[Vec2::X, Vec2::Y, Vec2::ONE, Vec2::ZERO] {
            for direction in &[Dir2::X, Dir2::Y, -Dir2::X, -Dir2::Y] {
                for max in &[0., 1., 900.] {
                    let test = RayCast2d::new(*origin, *direction, *max);

                    let case = format!(
                        "Case:\n  origin: {:?}\n  Direction: {:?}\n  Max: {}",
                        origin, direction, max,
                    );
                    assert!(test.intersects(&volume), "{}", case);

                    let actual_distance = test.aabb_intersection_at(&volume);
                    assert_eq!(actual_distance, Some(0.), "{}", case,);
                }
            }
        }
    }

    #[test]
    fn test_aabb_cast_hits() {
        for (test, volume, expected_distance) in &[
            (
                // Hit the center of the aabb, that a ray would've also hit
                AabbCast2d::new(Aabb2d::new(Vec2::ZERO, Vec2::ONE), Vec2::ZERO, Dir2::Y, 90.),
                Aabb2d::new(Vec2::Y * 5., Vec2::ONE),
                3.,
            ),
            (
                // Hit the center of the aabb, but from the other side
                AabbCast2d::new(
                    Aabb2d::new(Vec2::ZERO, Vec2::ONE),
                    Vec2::Y * 10.,
                    -Dir2::Y,
                    90.,
                ),
                Aabb2d::new(Vec2::Y * 5., Vec2::ONE),
                3.,
            ),
            (
                // Hit the edge of the aabb, that a ray would've missed
                AabbCast2d::new(
                    Aabb2d::new(Vec2::ZERO, Vec2::ONE),
                    Vec2::X * 1.5,
                    Dir2::Y,
                    90.,
                ),
                Aabb2d::new(Vec2::Y * 5., Vec2::ONE),
                3.,
            ),
            (
                // Hit the edge of the aabb, by casting an off-center AABB
                AabbCast2d::new(
                    Aabb2d::new(Vec2::X * -2., Vec2::ONE),
                    Vec2::X * 3.,
                    Dir2::Y,
                    90.,
                ),
                Aabb2d::new(Vec2::Y * 5., Vec2::ONE),
                3.,
            ),
        ] {
            let case = format!(
                "Case:\n  Test: {:?}\n  Volume: {:?}\n  Expected distance: {:?}",
                test, volume, expected_distance
            );
            assert!(test.intersects(volume), "{}", case);
            let actual_distance = test.aabb_collision_at(*volume).unwrap();
            assert!(
                (actual_distance - expected_distance).abs() < EPSILON,
                "{}\n  Actual distance: {}",
                case,
                actual_distance
            );

            let inverted_ray =
                RayCast2d::new(test.ray.ray.origin, -test.ray.ray.direction, test.ray.max);
            assert!(!inverted_ray.intersects(volume), "{}", case);
        }
    }

    #[test]
    fn test_circle_cast_hits() {
        for (test, volume, expected_distance) in &[
            (
                // Hit the center of the bounding circle, that a ray would've also hit
                BoundingCircleCast::new(
                    BoundingCircle::new(Vec2::ZERO, 1.),
                    Vec2::ZERO,
                    Dir2::Y,
                    90.,
                ),
                BoundingCircle::new(Vec2::Y * 5., 1.),
                3.,
            ),
            (
                // Hit the center of the bounding circle, but from the other side
                BoundingCircleCast::new(
                    BoundingCircle::new(Vec2::ZERO, 1.),
                    Vec2::Y * 10.,
                    -Dir2::Y,
                    90.,
                ),
                BoundingCircle::new(Vec2::Y * 5., 1.),
                3.,
            ),
            (
                // Hit the bounding circle off-center, that a ray would've missed
                BoundingCircleCast::new(
                    BoundingCircle::new(Vec2::ZERO, 1.),
                    Vec2::X * 1.5,
                    Dir2::Y,
                    90.,
                ),
                BoundingCircle::new(Vec2::Y * 5., 1.),
                3.677,
            ),
            (
                // Hit the bounding circle off-center, by casting a circle that is off-center
                BoundingCircleCast::new(
                    BoundingCircle::new(Vec2::X * -1.5, 1.),
                    Vec2::X * 3.,
                    Dir2::Y,
                    90.,
                ),
                BoundingCircle::new(Vec2::Y * 5., 1.),
                3.677,
            ),
        ] {
            let case = format!(
                "Case:\n  Test: {:?}\n  Volume: {:?}\n  Expected distance: {:?}",
                test, volume, expected_distance
            );
            assert!(test.intersects(volume), "{}", case);
            let actual_distance = test.circle_collision_at(*volume).unwrap();
            assert!(
                (actual_distance - expected_distance).abs() < EPSILON,
                "{}\n  Actual distance: {}",
                case,
                actual_distance
            );

            let inverted_ray =
                RayCast2d::new(test.ray.ray.origin, -test.ray.ray.direction, test.ray.max);
            assert!(!inverted_ray.intersects(volume), "{}", case);
        }
    }
}