bevy_math/bounding/raycast3d.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
use super::{Aabb3d, BoundingSphere, IntersectsVolume};
use crate::{Dir3A, Ray3d, Vec3A};
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::Reflect;
/// A raycast intersection test for 3D bounding volumes
#[derive(Clone, Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug))]
pub struct RayCast3d {
/// The origin of the ray.
pub origin: Vec3A,
/// The direction of the ray.
pub direction: Dir3A,
/// The maximum distance for the ray
pub max: f32,
/// The multiplicative inverse direction of the ray
direction_recip: Vec3A,
}
impl RayCast3d {
/// Construct a [`RayCast3d`] from an origin, [`Dir3`], and max distance.
pub fn new(origin: impl Into<Vec3A>, direction: impl Into<Dir3A>, max: f32) -> Self {
let direction = direction.into();
Self {
origin: origin.into(),
direction,
direction_recip: direction.recip(),
max,
}
}
/// Construct a [`RayCast3d`] from a [`Ray3d`] and max distance.
pub fn from_ray(ray: Ray3d, max: f32) -> Self {
Self::new(ray.origin, ray.direction, max)
}
/// Get the cached multiplicative inverse of the direction of the ray.
pub fn direction_recip(&self) -> Vec3A {
self.direction_recip
}
/// Get the distance of an intersection with an [`Aabb3d`], if any.
pub fn aabb_intersection_at(&self, aabb: &Aabb3d) -> Option<f32> {
let positive = self.direction.signum().cmpgt(Vec3A::ZERO);
let min = Vec3A::select(positive, aabb.min, aabb.max);
let max = Vec3A::select(positive, aabb.max, aabb.min);
// Calculate the minimum/maximum time for each axis based on how much the direction goes that
// way. These values can get arbitrarily large, or even become NaN, which is handled by the
// min/max operations below
let tmin = (min - self.origin) * self.direction_recip;
let tmax = (max - self.origin) * self.direction_recip;
// An axis that is not relevant to the ray direction will be NaN. When one of the arguments
// to min/max is NaN, the other argument is used.
// An axis for which the direction is the wrong way will return an arbitrarily large
// negative value.
let tmin = tmin.max_element().max(0.);
let tmax = tmax.min_element().min(self.max);
if tmin <= tmax {
Some(tmin)
} else {
None
}
}
/// Get the distance of an intersection with a [`BoundingSphere`], if any.
pub fn sphere_intersection_at(&self, sphere: &BoundingSphere) -> Option<f32> {
let offset = self.origin - sphere.center;
let projected = offset.dot(*self.direction);
let closest_point = offset - projected * *self.direction;
let distance_squared = sphere.radius().powi(2) - closest_point.length_squared();
if distance_squared < 0. || projected.powi(2).copysign(-projected) < -distance_squared {
None
} else {
let toi = -projected - distance_squared.sqrt();
if toi > self.max {
None
} else {
Some(toi.max(0.))
}
}
}
}
impl IntersectsVolume<Aabb3d> for RayCast3d {
fn intersects(&self, volume: &Aabb3d) -> bool {
self.aabb_intersection_at(volume).is_some()
}
}
impl IntersectsVolume<BoundingSphere> for RayCast3d {
fn intersects(&self, volume: &BoundingSphere) -> bool {
self.sphere_intersection_at(volume).is_some()
}
}
/// An intersection test that casts an [`Aabb3d`] along a ray.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug))]
pub struct AabbCast3d {
/// The ray along which to cast the bounding volume
pub ray: RayCast3d,
/// The aabb that is being cast
pub aabb: Aabb3d,
}
impl AabbCast3d {
/// Construct an [`AabbCast3d`] from an [`Aabb3d`], origin, [`Dir3`], and max distance.
pub fn new(
aabb: Aabb3d,
origin: impl Into<Vec3A>,
direction: impl Into<Dir3A>,
max: f32,
) -> Self {
Self {
ray: RayCast3d::new(origin, direction, max),
aabb,
}
}
/// Construct an [`AabbCast3d`] from an [`Aabb3d`], [`Ray3d`], and max distance.
pub fn from_ray(aabb: Aabb3d, ray: Ray3d, max: f32) -> Self {
Self::new(aabb, ray.origin, ray.direction, max)
}
/// Get the distance at which the [`Aabb3d`]s collide, if at all.
pub fn aabb_collision_at(&self, mut aabb: Aabb3d) -> Option<f32> {
aabb.min -= self.aabb.max;
aabb.max -= self.aabb.min;
self.ray.aabb_intersection_at(&aabb)
}
}
impl IntersectsVolume<Aabb3d> for AabbCast3d {
fn intersects(&self, volume: &Aabb3d) -> bool {
self.aabb_collision_at(*volume).is_some()
}
}
/// An intersection test that casts a [`BoundingSphere`] along a ray.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug))]
pub struct BoundingSphereCast {
/// The ray along which to cast the bounding volume
pub ray: RayCast3d,
/// The sphere that is being cast
pub sphere: BoundingSphere,
}
impl BoundingSphereCast {
/// Construct a [`BoundingSphereCast`] from a [`BoundingSphere`], origin, [`Dir3`], and max distance.
pub fn new(
sphere: BoundingSphere,
origin: impl Into<Vec3A>,
direction: impl Into<Dir3A>,
max: f32,
) -> Self {
Self {
ray: RayCast3d::new(origin, direction, max),
sphere,
}
}
/// Construct a [`BoundingSphereCast`] from a [`BoundingSphere`], [`Ray3d`], and max distance.
pub fn from_ray(sphere: BoundingSphere, ray: Ray3d, max: f32) -> Self {
Self::new(sphere, ray.origin, ray.direction, max)
}
/// Get the distance at which the [`BoundingSphere`]s collide, if at all.
pub fn sphere_collision_at(&self, mut sphere: BoundingSphere) -> Option<f32> {
sphere.center -= self.sphere.center;
sphere.sphere.radius += self.sphere.radius();
self.ray.sphere_intersection_at(&sphere)
}
}
impl IntersectsVolume<BoundingSphere> for BoundingSphereCast {
fn intersects(&self, volume: &BoundingSphere) -> bool {
self.sphere_collision_at(*volume).is_some()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{Dir3, Vec3};
const EPSILON: f32 = 0.001;
#[test]
fn test_ray_intersection_sphere_hits() {
for (test, volume, expected_distance) in &[
(
// Hit the center of a centered bounding sphere
RayCast3d::new(Vec3::Y * -5., Dir3::Y, 90.),
BoundingSphere::new(Vec3::ZERO, 1.),
4.,
),
(
// Hit the center of a centered bounding sphere, but from the other side
RayCast3d::new(Vec3::Y * 5., -Dir3::Y, 90.),
BoundingSphere::new(Vec3::ZERO, 1.),
4.,
),
(
// Hit the center of an offset sphere
RayCast3d::new(Vec3::ZERO, Dir3::Y, 90.),
BoundingSphere::new(Vec3::Y * 3., 2.),
1.,
),
(
// Just barely hit the sphere before the max distance
RayCast3d::new(Vec3::X, Dir3::Y, 1.),
BoundingSphere::new(Vec3::new(1., 1., 0.), 0.01),
0.99,
),
(
// Hit a sphere off-center
RayCast3d::new(Vec3::X, Dir3::Y, 90.),
BoundingSphere::new(Vec3::Y * 5., 2.),
3.268,
),
(
// Barely hit a sphere on the side
RayCast3d::new(Vec3::X * 0.99999, Dir3::Y, 90.),
BoundingSphere::new(Vec3::Y * 5., 1.),
4.996,
),
] {
let case = format!(
"Case:\n Test: {:?}\n Volume: {:?}\n Expected distance: {:?}",
test, volume, expected_distance
);
assert!(test.intersects(volume), "{}", case);
let actual_distance = test.sphere_intersection_at(volume).unwrap();
assert!(
(actual_distance - expected_distance).abs() < EPSILON,
"{}\n Actual distance: {}",
case,
actual_distance
);
let inverted_ray = RayCast3d::new(test.origin, -test.direction, test.max);
assert!(!inverted_ray.intersects(volume), "{}", case);
}
}
#[test]
fn test_ray_intersection_sphere_misses() {
for (test, volume) in &[
(
// The ray doesn't go in the right direction
RayCast3d::new(Vec3::ZERO, Dir3::X, 90.),
BoundingSphere::new(Vec3::Y * 2., 1.),
),
(
// Ray's alignment isn't enough to hit the sphere
RayCast3d::new(Vec3::ZERO, Dir3::from_xyz(1., 1., 1.).unwrap(), 90.),
BoundingSphere::new(Vec3::Y * 2., 1.),
),
(
// The ray's maximum distance isn't high enough
RayCast3d::new(Vec3::ZERO, Dir3::Y, 0.5),
BoundingSphere::new(Vec3::Y * 2., 1.),
),
] {
assert!(
!test.intersects(volume),
"Case:\n Test: {:?}\n Volume: {:?}",
test,
volume,
);
}
}
#[test]
fn test_ray_intersection_sphere_inside() {
let volume = BoundingSphere::new(Vec3::splat(0.5), 1.);
for origin in &[Vec3::X, Vec3::Y, Vec3::ONE, Vec3::ZERO] {
for direction in &[Dir3::X, Dir3::Y, Dir3::Z, -Dir3::X, -Dir3::Y, -Dir3::Z] {
for max in &[0., 1., 900.] {
let test = RayCast3d::new(*origin, *direction, *max);
let case = format!(
"Case:\n origin: {:?}\n Direction: {:?}\n Max: {}",
origin, direction, max,
);
assert!(test.intersects(&volume), "{}", case);
let actual_distance = test.sphere_intersection_at(&volume);
assert_eq!(actual_distance, Some(0.), "{}", case,);
}
}
}
}
#[test]
fn test_ray_intersection_aabb_hits() {
for (test, volume, expected_distance) in &[
(
// Hit the center of a centered aabb
RayCast3d::new(Vec3::Y * -5., Dir3::Y, 90.),
Aabb3d::new(Vec3::ZERO, Vec3::ONE),
4.,
),
(
// Hit the center of a centered aabb, but from the other side
RayCast3d::new(Vec3::Y * 5., -Dir3::Y, 90.),
Aabb3d::new(Vec3::ZERO, Vec3::ONE),
4.,
),
(
// Hit the center of an offset aabb
RayCast3d::new(Vec3::ZERO, Dir3::Y, 90.),
Aabb3d::new(Vec3::Y * 3., Vec3::splat(2.)),
1.,
),
(
// Just barely hit the aabb before the max distance
RayCast3d::new(Vec3::X, Dir3::Y, 1.),
Aabb3d::new(Vec3::new(1., 1., 0.), Vec3::splat(0.01)),
0.99,
),
(
// Hit an aabb off-center
RayCast3d::new(Vec3::X, Dir3::Y, 90.),
Aabb3d::new(Vec3::Y * 5., Vec3::splat(2.)),
3.,
),
(
// Barely hit an aabb on corner
RayCast3d::new(Vec3::X * -0.001, Dir3::from_xyz(1., 1., 1.).unwrap(), 90.),
Aabb3d::new(Vec3::Y * 2., Vec3::ONE),
1.732,
),
] {
let case = format!(
"Case:\n Test: {:?}\n Volume: {:?}\n Expected distance: {:?}",
test, volume, expected_distance
);
assert!(test.intersects(volume), "{}", case);
let actual_distance = test.aabb_intersection_at(volume).unwrap();
assert!(
(actual_distance - expected_distance).abs() < EPSILON,
"{}\n Actual distance: {}",
case,
actual_distance
);
let inverted_ray = RayCast3d::new(test.origin, -test.direction, test.max);
assert!(!inverted_ray.intersects(volume), "{}", case);
}
}
#[test]
fn test_ray_intersection_aabb_misses() {
for (test, volume) in &[
(
// The ray doesn't go in the right direction
RayCast3d::new(Vec3::ZERO, Dir3::X, 90.),
Aabb3d::new(Vec3::Y * 2., Vec3::ONE),
),
(
// Ray's alignment isn't enough to hit the aabb
RayCast3d::new(Vec3::ZERO, Dir3::from_xyz(1., 0.99, 1.).unwrap(), 90.),
Aabb3d::new(Vec3::Y * 2., Vec3::ONE),
),
(
// The ray's maximum distance isn't high enough
RayCast3d::new(Vec3::ZERO, Dir3::Y, 0.5),
Aabb3d::new(Vec3::Y * 2., Vec3::ONE),
),
] {
assert!(
!test.intersects(volume),
"Case:\n Test: {:?}\n Volume: {:?}",
test,
volume,
);
}
}
#[test]
fn test_ray_intersection_aabb_inside() {
let volume = Aabb3d::new(Vec3::splat(0.5), Vec3::ONE);
for origin in &[Vec3::X, Vec3::Y, Vec3::ONE, Vec3::ZERO] {
for direction in &[Dir3::X, Dir3::Y, Dir3::Z, -Dir3::X, -Dir3::Y, -Dir3::Z] {
for max in &[0., 1., 900.] {
let test = RayCast3d::new(*origin, *direction, *max);
let case = format!(
"Case:\n origin: {:?}\n Direction: {:?}\n Max: {}",
origin, direction, max,
);
assert!(test.intersects(&volume), "{}", case);
let actual_distance = test.aabb_intersection_at(&volume);
assert_eq!(actual_distance, Some(0.), "{}", case,);
}
}
}
}
#[test]
fn test_aabb_cast_hits() {
for (test, volume, expected_distance) in &[
(
// Hit the center of the aabb, that a ray would've also hit
AabbCast3d::new(Aabb3d::new(Vec3::ZERO, Vec3::ONE), Vec3::ZERO, Dir3::Y, 90.),
Aabb3d::new(Vec3::Y * 5., Vec3::ONE),
3.,
),
(
// Hit the center of the aabb, but from the other side
AabbCast3d::new(
Aabb3d::new(Vec3::ZERO, Vec3::ONE),
Vec3::Y * 10.,
-Dir3::Y,
90.,
),
Aabb3d::new(Vec3::Y * 5., Vec3::ONE),
3.,
),
(
// Hit the edge of the aabb, that a ray would've missed
AabbCast3d::new(
Aabb3d::new(Vec3::ZERO, Vec3::ONE),
Vec3::X * 1.5,
Dir3::Y,
90.,
),
Aabb3d::new(Vec3::Y * 5., Vec3::ONE),
3.,
),
(
// Hit the edge of the aabb, by casting an off-center AABB
AabbCast3d::new(
Aabb3d::new(Vec3::X * -2., Vec3::ONE),
Vec3::X * 3.,
Dir3::Y,
90.,
),
Aabb3d::new(Vec3::Y * 5., Vec3::ONE),
3.,
),
] {
let case = format!(
"Case:\n Test: {:?}\n Volume: {:?}\n Expected distance: {:?}",
test, volume, expected_distance
);
assert!(test.intersects(volume), "{}", case);
let actual_distance = test.aabb_collision_at(*volume).unwrap();
assert!(
(actual_distance - expected_distance).abs() < EPSILON,
"{}\n Actual distance: {}",
case,
actual_distance
);
let inverted_ray = RayCast3d::new(test.ray.origin, -test.ray.direction, test.ray.max);
assert!(!inverted_ray.intersects(volume), "{}", case);
}
}
#[test]
fn test_sphere_cast_hits() {
for (test, volume, expected_distance) in &[
(
// Hit the center of the bounding sphere, that a ray would've also hit
BoundingSphereCast::new(
BoundingSphere::new(Vec3::ZERO, 1.),
Vec3::ZERO,
Dir3::Y,
90.,
),
BoundingSphere::new(Vec3::Y * 5., 1.),
3.,
),
(
// Hit the center of the bounding sphere, but from the other side
BoundingSphereCast::new(
BoundingSphere::new(Vec3::ZERO, 1.),
Vec3::Y * 10.,
-Dir3::Y,
90.,
),
BoundingSphere::new(Vec3::Y * 5., 1.),
3.,
),
(
// Hit the bounding sphere off-center, that a ray would've missed
BoundingSphereCast::new(
BoundingSphere::new(Vec3::ZERO, 1.),
Vec3::X * 1.5,
Dir3::Y,
90.,
),
BoundingSphere::new(Vec3::Y * 5., 1.),
3.677,
),
(
// Hit the bounding sphere off-center, by casting a sphere that is off-center
BoundingSphereCast::new(
BoundingSphere::new(Vec3::X * -1.5, 1.),
Vec3::X * 3.,
Dir3::Y,
90.,
),
BoundingSphere::new(Vec3::Y * 5., 1.),
3.677,
),
] {
let case = format!(
"Case:\n Test: {:?}\n Volume: {:?}\n Expected distance: {:?}",
test, volume, expected_distance
);
assert!(test.intersects(volume), "{}", case);
let actual_distance = test.sphere_collision_at(*volume).unwrap();
assert!(
(actual_distance - expected_distance).abs() < EPSILON,
"{}\n Actual distance: {}",
case,
actual_distance
);
let inverted_ray = RayCast3d::new(test.ray.origin, -test.ray.direction, test.ray.max);
assert!(!inverted_ray.intersects(volume), "{}", case);
}
}
}