bevy_math/
common_traits.rs

1//! This module contains abstract mathematical traits shared by types used in `bevy_math`.
2
3use crate::{ops, DVec2, DVec3, DVec4, Dir2, Dir3, Dir3A, Quat, Rot2, Vec2, Vec3, Vec3A, Vec4};
4use core::{
5    convert::Infallible,
6    fmt::Debug,
7    ops::{Add, Div, Mul, Neg, Sub},
8};
9use thiserror::Error;
10use variadics_please::all_tuples_enumerated;
11
12/// A type that supports the mathematical operations of a real vector space, irrespective of dimension.
13/// In particular, this means that the implementing type supports:
14/// - Scalar multiplication and division on the right by elements of `Self::Scalar`
15/// - Negation
16/// - Addition and subtraction
17/// - Zero
18///
19/// Within the limitations of floating point arithmetic, all the following are required to hold:
20/// - (Associativity of addition) For all `u, v, w: Self`, `(u + v) + w == u + (v + w)`.
21/// - (Commutativity of addition) For all `u, v: Self`, `u + v == v + u`.
22/// - (Additive identity) For all `v: Self`, `v + Self::ZERO == v`.
23/// - (Additive inverse) For all `v: Self`, `v - v == v + (-v) == Self::ZERO`.
24/// - (Compatibility of multiplication) For all `a, b: Self::Scalar`, `v: Self`, `v * (a * b) == (v * a) * b`.
25/// - (Multiplicative identity) For all `v: Self`, `v * 1.0 == v`.
26/// - (Distributivity for vector addition) For all `a: Self::Scalar`, `u, v: Self`, `(u + v) * a == u * a + v * a`.
27/// - (Distributivity for scalar addition) For all `a, b: Self::Scalar`, `v: Self`, `v * (a + b) == v * a + v * b`.
28///
29/// Note that, because implementing types use floating point arithmetic, they are not required to actually
30/// implement `PartialEq` or `Eq`.
31pub trait VectorSpace:
32    Mul<Self::Scalar, Output = Self>
33    + Div<Self::Scalar, Output = Self>
34    + Add<Self, Output = Self>
35    + Sub<Self, Output = Self>
36    + Neg<Output = Self>
37    + Default
38    + Debug
39    + Clone
40    + Copy
41{
42    /// The scalar type of this vector space.
43    type Scalar: ScalarField;
44
45    /// The zero vector, which is the identity of addition for the vector space type.
46    const ZERO: Self;
47
48    /// Perform vector space linear interpolation between this element and another, based
49    /// on the parameter `t`. When `t` is `0`, `self` is recovered. When `t` is `1`, `rhs`
50    /// is recovered.
51    ///
52    /// Note that the value of `t` is not clamped by this function, so extrapolating outside
53    /// of the interval `[0,1]` is allowed.
54    #[inline]
55    fn lerp(self, rhs: Self, t: Self::Scalar) -> Self {
56        self * (Self::Scalar::ONE - t) + rhs * t
57    }
58}
59
60impl VectorSpace for Vec4 {
61    type Scalar = f32;
62    const ZERO: Self = Vec4::ZERO;
63}
64
65impl VectorSpace for Vec3 {
66    type Scalar = f32;
67    const ZERO: Self = Vec3::ZERO;
68}
69
70impl VectorSpace for Vec3A {
71    type Scalar = f32;
72    const ZERO: Self = Vec3A::ZERO;
73}
74
75impl VectorSpace for Vec2 {
76    type Scalar = f32;
77    const ZERO: Self = Vec2::ZERO;
78}
79
80impl VectorSpace for DVec4 {
81    type Scalar = f64;
82    const ZERO: Self = DVec4::ZERO;
83}
84
85impl VectorSpace for DVec3 {
86    type Scalar = f64;
87    const ZERO: Self = DVec3::ZERO;
88}
89
90impl VectorSpace for DVec2 {
91    type Scalar = f64;
92    const ZERO: Self = DVec2::ZERO;
93}
94
95// Every scalar field is a 1-dimensional vector space over itself.
96impl<T: ScalarField> VectorSpace for T {
97    type Scalar = Self;
98    const ZERO: Self = Self::ZERO;
99}
100
101/// A type that supports the operations of a scalar field. An implementation should support:
102/// - Addition and subtraction
103/// - Multiplication and division
104/// - Negation
105/// - Zero (additive identity)
106/// - One (multiplicative identity)
107///
108/// Within the limitations of floating point arithmetic, all the following are required to hold:
109/// - (Associativity of addition) For all `u, v, w: Self`, `(u + v) + w == u + (v + w)`.
110/// - (Commutativity of addition) For all `u, v: Self`, `u + v == v + u`.
111/// - (Additive identity) For all `v: Self`, `v + Self::ZERO == v`.
112/// - (Additive inverse) For all `v: Self`, `v - v == v + (-v) == Self::ZERO`.
113/// - (Associativity of multiplication) For all `u, v, w: Self`, `(u * v) * w == u * (v * w)`.
114/// - (Commutativity of multiplication) For all `u, v: Self`, `u * v == v * u`.
115/// - (Multiplicative identity) For all `v: Self`, `v * Self::ONE == v`.
116/// - (Multiplicative inverse) For all `v: Self`, `v / v == v * v.inverse() == Self::ONE`.
117/// - (Distributivity over addition) For all `a, b: Self`, `u, v: Self`, `(u + v) * a == u * a + v * a`.
118pub trait ScalarField:
119    Mul<Self, Output = Self>
120    + Div<Self, Output = Self>
121    + Add<Self, Output = Self>
122    + Sub<Self, Output = Self>
123    + Neg<Output = Self>
124    + Default
125    + Debug
126    + Clone
127    + Copy
128{
129    /// The additive identity.
130    const ZERO: Self;
131    /// The multiplicative identity.
132    const ONE: Self;
133
134    /// The multiplicative inverse of this element. This is equivalent to `1.0 / self`.
135    fn recip(self) -> Self {
136        Self::ONE / self
137    }
138}
139
140impl ScalarField for f32 {
141    const ZERO: Self = 0.0;
142    const ONE: Self = 1.0;
143}
144
145impl ScalarField for f64 {
146    const ZERO: Self = 0.0;
147    const ONE: Self = 1.0;
148}
149
150/// A type consisting of formal sums of elements from `V` and `W`. That is,
151/// each value `Sum(v, w)` is thought of as `v + w`, with no available
152/// simplification. In particular, if `V` and `W` are [vector spaces], then
153/// `Sum<V, W>` is a vector space whose dimension is the sum of those of `V`
154/// and `W`, and the field accessors `.0` and `.1` are vector space projections.
155///
156/// [vector spaces]: VectorSpace
157#[derive(Debug, Clone, Copy)]
158#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
159#[cfg_attr(feature = "bevy_reflect", derive(bevy_reflect::Reflect))]
160pub struct Sum<V, W>(pub V, pub W);
161
162impl<F: ScalarField, V, W> Mul<F> for Sum<V, W>
163where
164    V: VectorSpace<Scalar = F>,
165    W: VectorSpace<Scalar = F>,
166{
167    type Output = Self;
168    fn mul(self, rhs: F) -> Self::Output {
169        Sum(self.0 * rhs, self.1 * rhs)
170    }
171}
172
173impl<F: ScalarField, V, W> Div<F> for Sum<V, W>
174where
175    V: VectorSpace<Scalar = F>,
176    W: VectorSpace<Scalar = F>,
177{
178    type Output = Self;
179    fn div(self, rhs: F) -> Self::Output {
180        Sum(self.0 / rhs, self.1 / rhs)
181    }
182}
183
184impl<V, W> Add<Self> for Sum<V, W>
185where
186    V: VectorSpace,
187    W: VectorSpace,
188{
189    type Output = Self;
190    fn add(self, other: Self) -> Self::Output {
191        Sum(self.0 + other.0, self.1 + other.1)
192    }
193}
194
195impl<V, W> Sub<Self> for Sum<V, W>
196where
197    V: VectorSpace,
198    W: VectorSpace,
199{
200    type Output = Self;
201    fn sub(self, other: Self) -> Self::Output {
202        Sum(self.0 - other.0, self.1 - other.1)
203    }
204}
205
206impl<V, W> Neg for Sum<V, W>
207where
208    V: VectorSpace,
209    W: VectorSpace,
210{
211    type Output = Self;
212    fn neg(self) -> Self::Output {
213        Sum(-self.0, -self.1)
214    }
215}
216
217impl<V, W> Default for Sum<V, W>
218where
219    V: VectorSpace,
220    W: VectorSpace,
221{
222    fn default() -> Self {
223        Sum(V::default(), W::default())
224    }
225}
226
227impl<F: ScalarField, V, W> VectorSpace for Sum<V, W>
228where
229    V: VectorSpace<Scalar = F>,
230    W: VectorSpace<Scalar = F>,
231{
232    type Scalar = F;
233    const ZERO: Self = Sum(V::ZERO, W::ZERO);
234}
235
236/// A type that supports the operations of a normed vector space; i.e. a norm operation in addition
237/// to those of [`VectorSpace`]. Specifically, the implementor must guarantee that the following
238/// relationships hold, within the limitations of floating point arithmetic:
239/// - (Nonnegativity) For all `v: Self`, `v.norm() >= 0.0`.
240/// - (Positive definiteness) For all `v: Self`, `v.norm() == 0.0` implies `v == Self::ZERO`.
241/// - (Absolute homogeneity) For all `c: Self::Scalar`, `v: Self`, `(v * c).norm() == v.norm() * c.abs()`.
242/// - (Triangle inequality) For all `v, w: Self`, `(v + w).norm() <= v.norm() + w.norm()`.
243///
244/// Note that, because implementing types use floating point arithmetic, they are not required to actually
245/// implement `PartialEq` or `Eq`.
246pub trait NormedVectorSpace: VectorSpace {
247    /// The size of this element. The return value should always be nonnegative.
248    fn norm(self) -> Self::Scalar;
249
250    /// The squared norm of this element. Computing this is often faster than computing
251    /// [`NormedVectorSpace::norm`].
252    #[inline]
253    fn norm_squared(self) -> Self::Scalar {
254        self.norm() * self.norm()
255    }
256
257    /// The distance between this element and another, as determined by the norm.
258    #[inline]
259    fn distance(self, rhs: Self) -> Self::Scalar {
260        (rhs - self).norm()
261    }
262
263    /// The squared distance between this element and another, as determined by the norm. Note that
264    /// this is often faster to compute in practice than [`NormedVectorSpace::distance`].
265    #[inline]
266    fn distance_squared(self, rhs: Self) -> Self::Scalar {
267        (rhs - self).norm_squared()
268    }
269}
270
271impl NormedVectorSpace for Vec4 {
272    #[inline]
273    fn norm(self) -> f32 {
274        self.length()
275    }
276
277    #[inline]
278    fn norm_squared(self) -> f32 {
279        self.length_squared()
280    }
281}
282
283impl NormedVectorSpace for Vec3 {
284    #[inline]
285    fn norm(self) -> f32 {
286        self.length()
287    }
288
289    #[inline]
290    fn norm_squared(self) -> f32 {
291        self.length_squared()
292    }
293}
294
295impl NormedVectorSpace for Vec3A {
296    #[inline]
297    fn norm(self) -> f32 {
298        self.length()
299    }
300
301    #[inline]
302    fn norm_squared(self) -> f32 {
303        self.length_squared()
304    }
305}
306
307impl NormedVectorSpace for Vec2 {
308    #[inline]
309    fn norm(self) -> f32 {
310        self.length()
311    }
312
313    #[inline]
314    fn norm_squared(self) -> f32 {
315        self.length_squared()
316    }
317}
318
319impl NormedVectorSpace for f32 {
320    #[inline]
321    fn norm(self) -> f32 {
322        ops::abs(self)
323    }
324}
325
326impl NormedVectorSpace for DVec4 {
327    #[inline]
328    fn norm(self) -> f64 {
329        self.length()
330    }
331
332    #[inline]
333    fn norm_squared(self) -> f64 {
334        self.length_squared()
335    }
336}
337
338impl NormedVectorSpace for DVec3 {
339    #[inline]
340    fn norm(self) -> f64 {
341        self.length()
342    }
343
344    #[inline]
345    fn norm_squared(self) -> f64 {
346        self.length_squared()
347    }
348}
349
350impl NormedVectorSpace for DVec2 {
351    #[inline]
352    fn norm(self) -> f64 {
353        self.length()
354    }
355
356    #[inline]
357    fn norm_squared(self) -> f64 {
358        self.length_squared()
359    }
360}
361
362impl NormedVectorSpace for f64 {
363    #[inline]
364    #[cfg(feature = "std")]
365    fn norm(self) -> f64 {
366        f64::abs(self)
367    }
368
369    #[inline]
370    #[cfg(all(any(feature = "libm", feature = "nostd-libm"), not(feature = "std")))]
371    fn norm(self) -> f64 {
372        libm::fabs(self)
373    }
374}
375
376/// A type with a natural interpolation that provides strong subdivision guarantees.
377///
378/// Although the only required method is `interpolate_stable`, many things are expected of it:
379///
380/// 1. The notion of interpolation should follow naturally from the semantics of the type, so
381///    that inferring the interpolation mode from the type alone is sensible.
382///
383/// 2. The interpolation recovers something equivalent to the starting value at `t = 0.0`
384///    and likewise with the ending value at `t = 1.0`. They do not have to be data-identical, but
385///    they should be semantically identical. For example, [`Quat::slerp`] doesn't always yield its
386///    second rotation input exactly at `t = 1.0`, but it always returns an equivalent rotation.
387///
388/// 3. Importantly, the interpolation must be *subdivision-stable*: for any interpolation curve
389///    between two (unnamed) values and any parameter-value pairs `(t0, p)` and `(t1, q)`, the
390///    interpolation curve between `p` and `q` must be the *linear* reparameterization of the original
391///    interpolation curve restricted to the interval `[t0, t1]`.
392///
393/// The last of these conditions is very strong and indicates something like constant speed. It
394/// is called "subdivision stability" because it guarantees that breaking up the interpolation
395/// into segments and joining them back together has no effect.
396///
397/// Here is a diagram depicting it:
398/// ```text
399/// top curve = u.interpolate_stable(v, t)
400///
401///              t0 => p   t1 => q
402///   |-------------|---------|-------------|
403/// 0 => u         /           \          1 => v
404///              /               \
405///            /                   \
406///          /        linear         \
407///        /     reparameterization    \
408///      /   t = t0 * (1 - s) + t1 * s   \
409///    /                                   \
410///   |-------------------------------------|
411/// 0 => p                                1 => q
412///
413/// bottom curve = p.interpolate_stable(q, s)
414/// ```
415///
416/// Note that some common forms of interpolation do not satisfy this criterion. For example,
417/// [`Quat::lerp`] and [`Rot2::nlerp`] are not subdivision-stable.
418///
419/// Furthermore, this is not to be used as a general trait for abstract interpolation.
420/// Consumers rely on the strong guarantees in order for behavior based on this trait to be
421/// well-behaved.
422///
423/// [`Quat::slerp`]: crate::Quat::slerp
424/// [`Quat::lerp`]: crate::Quat::lerp
425/// [`Rot2::nlerp`]: crate::Rot2::nlerp
426pub trait StableInterpolate: Clone {
427    /// Interpolate between this value and the `other` given value using the parameter `t`. At
428    /// `t = 0.0`, a value equivalent to `self` is recovered, while `t = 1.0` recovers a value
429    /// equivalent to `other`, with intermediate values interpolating between the two.
430    /// See the [trait-level documentation] for details.
431    ///
432    /// [trait-level documentation]: StableInterpolate
433    fn interpolate_stable(&self, other: &Self, t: f32) -> Self;
434
435    /// A version of [`interpolate_stable`] that assigns the result to `self` for convenience.
436    ///
437    /// [`interpolate_stable`]: StableInterpolate::interpolate_stable
438    fn interpolate_stable_assign(&mut self, other: &Self, t: f32) {
439        *self = self.interpolate_stable(other, t);
440    }
441
442    /// Smoothly nudge this value towards the `target` at a given decay rate. The `decay_rate`
443    /// parameter controls how fast the distance between `self` and `target` decays relative to
444    /// the units of `delta`; the intended usage is for `decay_rate` to generally remain fixed,
445    /// while `delta` is something like `delta_time` from an updating system. This produces a
446    /// smooth following of the target that is independent of framerate.
447    ///
448    /// More specifically, when this is called repeatedly, the result is that the distance between
449    /// `self` and a fixed `target` attenuates exponentially, with the rate of this exponential
450    /// decay given by `decay_rate`.
451    ///
452    /// For example, at `decay_rate = 0.0`, this has no effect.
453    /// At `decay_rate = f32::INFINITY`, `self` immediately snaps to `target`.
454    /// In general, higher rates mean that `self` moves more quickly towards `target`.
455    ///
456    /// # Example
457    /// ```
458    /// # use bevy_math::{Vec3, StableInterpolate};
459    /// # let delta_time: f32 = 1.0 / 60.0;
460    /// let mut object_position: Vec3 = Vec3::ZERO;
461    /// let target_position: Vec3 = Vec3::new(2.0, 3.0, 5.0);
462    /// // Decay rate of ln(10) => after 1 second, remaining distance is 1/10th
463    /// let decay_rate = f32::ln(10.0);
464    /// // Calling this repeatedly will move `object_position` towards `target_position`:
465    /// object_position.smooth_nudge(&target_position, decay_rate, delta_time);
466    /// ```
467    fn smooth_nudge(&mut self, target: &Self, decay_rate: f32, delta: f32) {
468        self.interpolate_stable_assign(target, 1.0 - ops::exp(-decay_rate * delta));
469    }
470}
471
472// Conservatively, we presently only apply this for normed vector spaces, where the notion
473// of being constant-speed is literally true. The technical axioms are satisfied for any
474// VectorSpace type, but the "natural from the semantics" part is less clear in general.
475impl<V> StableInterpolate for V
476where
477    V: NormedVectorSpace<Scalar = f32>,
478{
479    #[inline]
480    fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
481        self.lerp(*other, t)
482    }
483}
484
485impl StableInterpolate for Rot2 {
486    #[inline]
487    fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
488        self.slerp(*other, t)
489    }
490}
491
492impl StableInterpolate for Quat {
493    #[inline]
494    fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
495        self.slerp(*other, t)
496    }
497}
498
499impl StableInterpolate for Dir2 {
500    #[inline]
501    fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
502        self.slerp(*other, t)
503    }
504}
505
506impl StableInterpolate for Dir3 {
507    #[inline]
508    fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
509        self.slerp(*other, t)
510    }
511}
512
513impl StableInterpolate for Dir3A {
514    #[inline]
515    fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
516        self.slerp(*other, t)
517    }
518}
519
520macro_rules! impl_stable_interpolate_tuple {
521    ($(#[$meta:meta])* $(($n:tt, $T:ident)),*) => {
522        $(#[$meta])*
523        impl<$($T: StableInterpolate),*> StableInterpolate for ($($T,)*) {
524            fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
525                (
526                    $(
527                        <$T as StableInterpolate>::interpolate_stable(&self.$n, &other.$n, t),
528                    )*
529                )
530            }
531        }
532    };
533}
534
535all_tuples_enumerated!(
536    #[doc(fake_variadic)]
537    impl_stable_interpolate_tuple,
538    1,
539    11,
540    T
541);
542
543/// Error produced when the values to be interpolated are not in the same units.
544#[derive(Clone, Debug, Error)]
545#[error("cannot interpolate between two values of different units")]
546pub struct MismatchedUnitsError;
547
548/// A trait that indicates that a value _may_ be interpolable via [`StableInterpolate`]. An
549/// interpolation may fail if the values have different units - for example, attempting to
550/// interpolate between [`Val::Px`] and [`Val::Percent`] will fail,
551/// even though they are the same Rust type.
552///
553/// Fallible interpolation can be used for animated transitions, which can be set up to fail
554/// gracefully if the the values cannot be interpolated. For example, the a transition could smoothly
555/// go from `Val::Px(10)` to `Val::Px(20)`, but if the user attempts to go from `Val::Px(10)` to
556/// `Val::Percent(10)`, the animation player can detect the failure and simply snap to the new
557/// value without interpolating.
558///
559/// An animation clip system can incorporate fallible interpolation to support a broad set of
560/// sequenced parameter values. This can include numeric types, which always interpolate,
561/// enum types, which may or may not interpolate depending on the units, and non-interpolable
562/// types, which always jump immediately to the new value without interpolation. This meaas, for
563/// example, that you can have an animation track whose value type is a boolean or a string.
564///
565/// Interpolation for simple number and coordinate types will always succeed, as will any type
566/// that implements [`StableInterpolate`]. Types which have different variants such as
567/// [`Val`] and [`Color`] will only fail if the units are different.
568/// Note that [`Color`] has its own, non-fallible mixing methods, but those entail
569/// automatically converting between different color spaces, and is both expensive and complex.
570/// [`TryStableInterpolate`] is more conservative, and doesn't automatically convert between
571/// color spaces. This produces a color interpolation that has more predictable performance.
572///
573/// [`Val::Px`]: https://docs.rs/bevy/latest/bevy/ui/enum.Val.html#variant.Px
574/// [`Val::Percent`]: https://docs.rs/bevy/latest/bevy/ui/enum.Val.html#variant.Percent
575/// [`Val`]: https://docs.rs/bevy/latest/bevy/ui/enum.Val.html
576/// [`Color`]: https://docs.rs/bevy/latest/bevy/color/enum.Color.html
577pub trait TryStableInterpolate: Clone {
578    /// Error produced when the value cannot be interpolated.
579    type Error;
580
581    /// Attempt to interpolate the value. This may fail if the two interpolation values have
582    /// different units, or if the type is not interpolable.
583    fn try_interpolate_stable(&self, other: &Self, t: f32) -> Result<Self, Self::Error>;
584}
585
586impl<T: StableInterpolate> TryStableInterpolate for T {
587    type Error = Infallible;
588    fn try_interpolate_stable(&self, other: &Self, t: f32) -> Result<Self, Self::Error> {
589        Ok(self.interpolate_stable(other, t))
590    }
591}
592
593/// A type that has tangents.
594pub trait HasTangent {
595    /// The tangent type.
596    type Tangent: VectorSpace;
597}
598
599/// A value with its derivative.
600#[derive(Debug, Clone, Copy)]
601#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
602#[cfg_attr(feature = "bevy_reflect", derive(bevy_reflect::Reflect))]
603pub struct WithDerivative<T>
604where
605    T: HasTangent,
606{
607    /// The underlying value.
608    pub value: T,
609
610    /// The derivative at `value`.
611    pub derivative: T::Tangent,
612}
613
614/// A value together with its first and second derivatives.
615#[derive(Debug, Clone, Copy)]
616#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
617#[cfg_attr(feature = "bevy_reflect", derive(bevy_reflect::Reflect))]
618pub struct WithTwoDerivatives<T>
619where
620    T: HasTangent,
621{
622    /// The underlying value.
623    pub value: T,
624
625    /// The derivative at `value`.
626    pub derivative: T::Tangent,
627
628    /// The second derivative at `value`.
629    pub second_derivative: <T::Tangent as HasTangent>::Tangent,
630}
631
632impl<V: VectorSpace> HasTangent for V {
633    type Tangent = V;
634}
635
636impl<F, U, V, M, N> HasTangent for (M, N)
637where
638    F: ScalarField,
639    U: VectorSpace<Scalar = F>,
640    V: VectorSpace<Scalar = F>,
641    M: HasTangent<Tangent = U>,
642    N: HasTangent<Tangent = V>,
643{
644    type Tangent = Sum<M::Tangent, N::Tangent>;
645}