bevy_math/common_traits.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
//! This module contains abstract mathematical traits shared by types used in `bevy_math`.
use crate::{ops, Dir2, Dir3, Dir3A, Quat, Rot2, Vec2, Vec3, Vec3A, Vec4};
use core::{
fmt::Debug,
ops::{Add, Div, Mul, Neg, Sub},
};
/// A type that supports the mathematical operations of a real vector space, irrespective of dimension.
/// In particular, this means that the implementing type supports:
/// - Scalar multiplication and division on the right by elements of `f32`
/// - Negation
/// - Addition and subtraction
/// - Zero
///
/// Within the limitations of floating point arithmetic, all the following are required to hold:
/// - (Associativity of addition) For all `u, v, w: Self`, `(u + v) + w == u + (v + w)`.
/// - (Commutativity of addition) For all `u, v: Self`, `u + v == v + u`.
/// - (Additive identity) For all `v: Self`, `v + Self::ZERO == v`.
/// - (Additive inverse) For all `v: Self`, `v - v == v + (-v) == Self::ZERO`.
/// - (Compatibility of multiplication) For all `a, b: f32`, `v: Self`, `v * (a * b) == (v * a) * b`.
/// - (Multiplicative identity) For all `v: Self`, `v * 1.0 == v`.
/// - (Distributivity for vector addition) For all `a: f32`, `u, v: Self`, `(u + v) * a == u * a + v * a`.
/// - (Distributivity for scalar addition) For all `a, b: f32`, `v: Self`, `v * (a + b) == v * a + v * b`.
///
/// Note that, because implementing types use floating point arithmetic, they are not required to actually
/// implement `PartialEq` or `Eq`.
pub trait VectorSpace:
Mul<f32, Output = Self>
+ Div<f32, Output = Self>
+ Add<Self, Output = Self>
+ Sub<Self, Output = Self>
+ Neg
+ Default
+ Debug
+ Clone
+ Copy
{
/// The zero vector, which is the identity of addition for the vector space type.
const ZERO: Self;
/// Perform vector space linear interpolation between this element and another, based
/// on the parameter `t`. When `t` is `0`, `self` is recovered. When `t` is `1`, `rhs`
/// is recovered.
///
/// Note that the value of `t` is not clamped by this function, so extrapolating outside
/// of the interval `[0,1]` is allowed.
#[inline]
fn lerp(self, rhs: Self, t: f32) -> Self {
self * (1. - t) + rhs * t
}
}
impl VectorSpace for Vec4 {
const ZERO: Self = Vec4::ZERO;
}
impl VectorSpace for Vec3 {
const ZERO: Self = Vec3::ZERO;
}
impl VectorSpace for Vec3A {
const ZERO: Self = Vec3A::ZERO;
}
impl VectorSpace for Vec2 {
const ZERO: Self = Vec2::ZERO;
}
impl VectorSpace for f32 {
const ZERO: Self = 0.0;
}
/// A type that supports the operations of a normed vector space; i.e. a norm operation in addition
/// to those of [`VectorSpace`]. Specifically, the implementor must guarantee that the following
/// relationships hold, within the limitations of floating point arithmetic:
/// - (Nonnegativity) For all `v: Self`, `v.norm() >= 0.0`.
/// - (Positive definiteness) For all `v: Self`, `v.norm() == 0.0` implies `v == Self::ZERO`.
/// - (Absolute homogeneity) For all `c: f32`, `v: Self`, `(v * c).norm() == v.norm() * c.abs()`.
/// - (Triangle inequality) For all `v, w: Self`, `(v + w).norm() <= v.norm() + w.norm()`.
///
/// Note that, because implementing types use floating point arithmetic, they are not required to actually
/// implement `PartialEq` or `Eq`.
pub trait NormedVectorSpace: VectorSpace {
/// The size of this element. The return value should always be nonnegative.
fn norm(self) -> f32;
/// The squared norm of this element. Computing this is often faster than computing
/// [`NormedVectorSpace::norm`].
#[inline]
fn norm_squared(self) -> f32 {
self.norm() * self.norm()
}
/// The distance between this element and another, as determined by the norm.
#[inline]
fn distance(self, rhs: Self) -> f32 {
(rhs - self).norm()
}
/// The squared distance between this element and another, as determined by the norm. Note that
/// this is often faster to compute in practice than [`NormedVectorSpace::distance`].
#[inline]
fn distance_squared(self, rhs: Self) -> f32 {
(rhs - self).norm_squared()
}
}
impl NormedVectorSpace for Vec4 {
#[inline]
fn norm(self) -> f32 {
self.length()
}
#[inline]
fn norm_squared(self) -> f32 {
self.length_squared()
}
}
impl NormedVectorSpace for Vec3 {
#[inline]
fn norm(self) -> f32 {
self.length()
}
#[inline]
fn norm_squared(self) -> f32 {
self.length_squared()
}
}
impl NormedVectorSpace for Vec3A {
#[inline]
fn norm(self) -> f32 {
self.length()
}
#[inline]
fn norm_squared(self) -> f32 {
self.length_squared()
}
}
impl NormedVectorSpace for Vec2 {
#[inline]
fn norm(self) -> f32 {
self.length()
}
#[inline]
fn norm_squared(self) -> f32 {
self.length_squared()
}
}
impl NormedVectorSpace for f32 {
#[inline]
fn norm(self) -> f32 {
self.abs()
}
#[inline]
fn norm_squared(self) -> f32 {
self * self
}
}
/// A type with a natural interpolation that provides strong subdivision guarantees.
///
/// Although the only required method is `interpolate_stable`, many things are expected of it:
///
/// 1. The notion of interpolation should follow naturally from the semantics of the type, so
/// that inferring the interpolation mode from the type alone is sensible.
///
/// 2. The interpolation recovers something equivalent to the starting value at `t = 0.0`
/// and likewise with the ending value at `t = 1.0`. They do not have to be data-identical, but
/// they should be semantically identical. For example, [`Quat::slerp`] doesn't always yield its
/// second rotation input exactly at `t = 1.0`, but it always returns an equivalent rotation.
///
/// 3. Importantly, the interpolation must be *subdivision-stable*: for any interpolation curve
/// between two (unnamed) values and any parameter-value pairs `(t0, p)` and `(t1, q)`, the
/// interpolation curve between `p` and `q` must be the *linear* reparametrization of the original
/// interpolation curve restricted to the interval `[t0, t1]`.
///
/// The last of these conditions is very strong and indicates something like constant speed. It
/// is called "subdivision stability" because it guarantees that breaking up the interpolation
/// into segments and joining them back together has no effect.
///
/// Here is a diagram depicting it:
/// ```text
/// top curve = u.interpolate_stable(v, t)
///
/// t0 => p t1 => q
/// |-------------|---------|-------------|
/// 0 => u / \ 1 => v
/// / \
/// / \
/// / linear \
/// / reparametrization \
/// / t = t0 * (1 - s) + t1 * s \
/// / \
/// |-------------------------------------|
/// 0 => p 1 => q
///
/// bottom curve = p.interpolate_stable(q, s)
/// ```
///
/// Note that some common forms of interpolation do not satisfy this criterion. For example,
/// [`Quat::lerp`] and [`Rot2::nlerp`] are not subdivision-stable.
///
/// Furthermore, this is not to be used as a general trait for abstract interpolation.
/// Consumers rely on the strong guarantees in order for behavior based on this trait to be
/// well-behaved.
///
/// [`Quat::slerp`]: crate::Quat::slerp
/// [`Quat::lerp`]: crate::Quat::lerp
/// [`Rot2::nlerp`]: crate::Rot2::nlerp
pub trait StableInterpolate: Clone {
/// Interpolate between this value and the `other` given value using the parameter `t`. At
/// `t = 0.0`, a value equivalent to `self` is recovered, while `t = 1.0` recovers a value
/// equivalent to `other`, with intermediate values interpolating between the two.
/// See the [trait-level documentation] for details.
///
/// [trait-level documentation]: StableInterpolate
fn interpolate_stable(&self, other: &Self, t: f32) -> Self;
/// A version of [`interpolate_stable`] that assigns the result to `self` for convenience.
///
/// [`interpolate_stable`]: StableInterpolate::interpolate_stable
fn interpolate_stable_assign(&mut self, other: &Self, t: f32) {
*self = self.interpolate_stable(other, t);
}
/// Smoothly nudge this value towards the `target` at a given decay rate. The `decay_rate`
/// parameter controls how fast the distance between `self` and `target` decays relative to
/// the units of `delta`; the intended usage is for `decay_rate` to generally remain fixed,
/// while `delta` is something like `delta_time` from an updating system. This produces a
/// smooth following of the target that is independent of framerate.
///
/// More specifically, when this is called repeatedly, the result is that the distance between
/// `self` and a fixed `target` attenuates exponentially, with the rate of this exponential
/// decay given by `decay_rate`.
///
/// For example, at `decay_rate = 0.0`, this has no effect.
/// At `decay_rate = f32::INFINITY`, `self` immediately snaps to `target`.
/// In general, higher rates mean that `self` moves more quickly towards `target`.
///
/// # Example
/// ```
/// # use bevy_math::{Vec3, StableInterpolate};
/// # let delta_time: f32 = 1.0 / 60.0;
/// let mut object_position: Vec3 = Vec3::ZERO;
/// let target_position: Vec3 = Vec3::new(2.0, 3.0, 5.0);
/// // Decay rate of ln(10) => after 1 second, remaining distance is 1/10th
/// let decay_rate = f32::ln(10.0);
/// // Calling this repeatedly will move `object_position` towards `target_position`:
/// object_position.smooth_nudge(&target_position, decay_rate, delta_time);
/// ```
fn smooth_nudge(&mut self, target: &Self, decay_rate: f32, delta: f32) {
self.interpolate_stable_assign(target, 1.0 - ops::exp(-decay_rate * delta));
}
}
// Conservatively, we presently only apply this for normed vector spaces, where the notion
// of being constant-speed is literally true. The technical axioms are satisfied for any
// VectorSpace type, but the "natural from the semantics" part is less clear in general.
impl<V> StableInterpolate for V
where
V: NormedVectorSpace,
{
#[inline]
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
self.lerp(*other, t)
}
}
impl StableInterpolate for Rot2 {
#[inline]
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
self.slerp(*other, t)
}
}
impl StableInterpolate for Quat {
#[inline]
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
self.slerp(*other, t)
}
}
impl StableInterpolate for Dir2 {
#[inline]
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
self.slerp(*other, t)
}
}
impl StableInterpolate for Dir3 {
#[inline]
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
self.slerp(*other, t)
}
}
impl StableInterpolate for Dir3A {
#[inline]
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
self.slerp(*other, t)
}
}
// If you're confused about how #[doc(fake_variadic)] works,
// then the `all_tuples` macro is nicely documented (it can be found in the `bevy_utils` crate).
// tl;dr: `#[doc(fake_variadic)]` goes on the impl of tuple length one.
// the others have to be hidden using `#[doc(hidden)]`.
macro_rules! impl_stable_interpolate_tuple {
(($T:ident, $n:tt)) => {
impl_stable_interpolate_tuple! {
@impl
#[cfg_attr(any(docsrs, docsrs_dep), doc(fake_variadic))]
#[cfg_attr(
any(docsrs, docsrs_dep),
doc = "This trait is implemented for tuples up to 11 items long."
)]
($T, $n)
}
};
($(($T:ident, $n:tt)),*) => {
impl_stable_interpolate_tuple! {
@impl
#[cfg_attr(any(docsrs, docsrs_dep), doc(hidden))]
$(($T, $n)),*
}
};
(@impl $(#[$($meta:meta)*])* $(($T:ident, $n:tt)),*) => {
$(#[$($meta)*])*
impl<$($T: StableInterpolate),*> StableInterpolate for ($($T,)*) {
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
(
$(
<$T as StableInterpolate>::interpolate_stable(&self.$n, &other.$n, t),
)*
)
}
}
};
}
// (See `macro_metavar_expr`, which might make this better.)
// This currently implements `StableInterpolate` for tuples of up to 11 elements.
impl_stable_interpolate_tuple!((T, 0));
impl_stable_interpolate_tuple!((T0, 0), (T1, 1));
impl_stable_interpolate_tuple!((T0, 0), (T1, 1), (T2, 2));
impl_stable_interpolate_tuple!((T0, 0), (T1, 1), (T2, 2), (T3, 3));
impl_stable_interpolate_tuple!((T0, 0), (T1, 1), (T2, 2), (T3, 3), (T4, 4));
impl_stable_interpolate_tuple!((T0, 0), (T1, 1), (T2, 2), (T3, 3), (T4, 4), (T5, 5));
impl_stable_interpolate_tuple!(
(T0, 0),
(T1, 1),
(T2, 2),
(T3, 3),
(T4, 4),
(T5, 5),
(T6, 6)
);
impl_stable_interpolate_tuple!(
(T0, 0),
(T1, 1),
(T2, 2),
(T3, 3),
(T4, 4),
(T5, 5),
(T6, 6),
(T7, 7)
);
impl_stable_interpolate_tuple!(
(T0, 0),
(T1, 1),
(T2, 2),
(T3, 3),
(T4, 4),
(T5, 5),
(T6, 6),
(T7, 7),
(T8, 8)
);
impl_stable_interpolate_tuple!(
(T0, 0),
(T1, 1),
(T2, 2),
(T3, 3),
(T4, 4),
(T5, 5),
(T6, 6),
(T7, 7),
(T8, 8),
(T9, 9)
);
impl_stable_interpolate_tuple!(
(T0, 0),
(T1, 1),
(T2, 2),
(T3, 3),
(T4, 4),
(T5, 5),
(T6, 6),
(T7, 7),
(T8, 8),
(T9, 9),
(T10, 10)
);