bevy_math/
cubic_splines.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
//! Provides types for building cubic splines for rendering curves and use with animation easing.

use std::{fmt::Debug, iter::once};

use crate::{Vec2, VectorSpace};

use thiserror::Error;

#[cfg(feature = "bevy_reflect")]
use bevy_reflect::{std_traits::ReflectDefault, Reflect};

/// A spline composed of a single cubic Bezier curve.
///
/// Useful for user-drawn curves with local control, or animation easing. See
/// [`CubicSegment::new_bezier`] for use in easing.
///
/// ### Interpolation
/// The curve only passes through the first and last control point in each set of four points. The curve
/// is divided into "segments" by every fourth control point.
///
/// ### Tangency
/// Tangents are manually defined by the two intermediate control points within each set of four points.
/// You can think of the control points the curve passes through as "anchors", and as the intermediate
/// control points as the anchors displaced along their tangent vectors
///
/// ### Continuity
/// A Bezier curve is at minimum C0 continuous, meaning it has no holes or jumps. Each curve segment is
/// C2, meaning the tangent vector changes smoothly between each set of four control points, but this
/// doesn't hold at the control points between segments. Making the whole curve C1 or C2 requires moving
/// the intermediate control points to align the tangent vectors between segments, and can result in a
/// loss of local control.
///
/// ### Usage
///
/// ```
/// # use bevy_math::{*, prelude::*};
/// let points = [[
///     vec2(-1.0, -20.0),
///     vec2(3.0, 2.0),
///     vec2(5.0, 3.0),
///     vec2(9.0, 8.0),
/// ]];
/// let bezier = CubicBezier::new(points).to_curve();
/// let positions: Vec<_> = bezier.iter_positions(100).collect();
/// ```
#[derive(Clone, Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug))]
pub struct CubicBezier<P: VectorSpace> {
    /// The control points of the Bezier curve
    pub control_points: Vec<[P; 4]>,
}

impl<P: VectorSpace> CubicBezier<P> {
    /// Create a new cubic Bezier curve from sets of control points.
    pub fn new(control_points: impl Into<Vec<[P; 4]>>) -> Self {
        Self {
            control_points: control_points.into(),
        }
    }
}
impl<P: VectorSpace> CubicGenerator<P> for CubicBezier<P> {
    #[inline]
    fn to_curve(&self) -> CubicCurve<P> {
        // A derivation for this matrix can be found in "General Matrix Representations for B-splines" by Kaihuai Qin.
        // <https://xiaoxingchen.github.io/2020/03/02/bspline_in_so3/general_matrix_representation_for_bsplines.pdf>
        // See section 4.2 and equation 11.
        let char_matrix = [
            [1., 0., 0., 0.],
            [-3., 3., 0., 0.],
            [3., -6., 3., 0.],
            [-1., 3., -3., 1.],
        ];

        let segments = self
            .control_points
            .iter()
            .map(|p| CubicSegment::coefficients(*p, char_matrix))
            .collect();

        CubicCurve { segments }
    }
}

/// A spline interpolated continuously between the nearest two control points, with the position and
/// velocity of the curve specified at both control points. This curve passes through all control
/// points, with the specified velocity which includes direction and parametric speed.
///
/// Useful for smooth interpolation when you know the position and velocity at two points in time,
/// such as network prediction.
///
/// ### Interpolation
/// The curve passes through every control point.
///
/// ### Tangency
/// Tangents are explicitly defined at each control point.
///
/// ### Continuity
/// The curve is at minimum C0 continuous, meaning it has no holes or jumps. It is also C1, meaning the
/// tangent vector has no sudden jumps.
///
/// ### Usage
///
/// ```
/// # use bevy_math::{*, prelude::*};
/// let points = [
///     vec2(-1.0, -20.0),
///     vec2(3.0, 2.0),
///     vec2(5.0, 3.0),
///     vec2(9.0, 8.0),
/// ];
/// let tangents = [
///     vec2(0.0, 1.0),
///     vec2(0.0, 1.0),
///     vec2(0.0, 1.0),
///     vec2(0.0, 1.0),
/// ];
/// let hermite = CubicHermite::new(points, tangents).to_curve();
/// let positions: Vec<_> = hermite.iter_positions(100).collect();
/// ```
#[derive(Clone, Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug))]
pub struct CubicHermite<P: VectorSpace> {
    /// The control points of the Hermite curve
    pub control_points: Vec<(P, P)>,
}
impl<P: VectorSpace> CubicHermite<P> {
    /// Create a new Hermite curve from sets of control points.
    pub fn new(
        control_points: impl IntoIterator<Item = P>,
        tangents: impl IntoIterator<Item = P>,
    ) -> Self {
        Self {
            control_points: control_points.into_iter().zip(tangents).collect(),
        }
    }
}
impl<P: VectorSpace> CubicGenerator<P> for CubicHermite<P> {
    #[inline]
    fn to_curve(&self) -> CubicCurve<P> {
        let char_matrix = [
            [1., 0., 0., 0.],
            [0., 1., 0., 0.],
            [-3., -2., 3., -1.],
            [2., 1., -2., 1.],
        ];

        let segments = self
            .control_points
            .windows(2)
            .map(|p| {
                let (p0, v0, p1, v1) = (p[0].0, p[0].1, p[1].0, p[1].1);
                CubicSegment::coefficients([p0, v0, p1, v1], char_matrix)
            })
            .collect();

        CubicCurve { segments }
    }
}

/// A spline interpolated continuously across the nearest four control points, with the position of
/// the curve specified at every control point and the tangents computed automatically. The associated [`CubicCurve`]
/// has one segment between each pair of adjacent control points.
///
/// **Note** the Catmull-Rom spline is a special case of Cardinal spline where the tension is 0.5.
///
/// ### Interpolation
/// The curve passes through every control point.
///
/// ### Tangency
/// Tangents are automatically computed based on the positions of control points.
///
/// ### Continuity
/// The curve is at minimum C1, meaning that it is continuous (it has no holes or jumps), and its tangent
/// vector is also well-defined everywhere, without sudden jumps.
///
/// ### Usage
///
/// ```
/// # use bevy_math::{*, prelude::*};
/// let points = [
///     vec2(-1.0, -20.0),
///     vec2(3.0, 2.0),
///     vec2(5.0, 3.0),
///     vec2(9.0, 8.0),
/// ];
/// let cardinal = CubicCardinalSpline::new(0.3, points).to_curve();
/// let positions: Vec<_> = cardinal.iter_positions(100).collect();
/// ```
#[derive(Clone, Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug))]
pub struct CubicCardinalSpline<P: VectorSpace> {
    /// Tension
    pub tension: f32,
    /// The control points of the Cardinal spline
    pub control_points: Vec<P>,
}

impl<P: VectorSpace> CubicCardinalSpline<P> {
    /// Build a new Cardinal spline.
    pub fn new(tension: f32, control_points: impl Into<Vec<P>>) -> Self {
        Self {
            tension,
            control_points: control_points.into(),
        }
    }

    /// Build a new Catmull-Rom spline, the special case of a Cardinal spline where tension = 1/2.
    pub fn new_catmull_rom(control_points: impl Into<Vec<P>>) -> Self {
        Self {
            tension: 0.5,
            control_points: control_points.into(),
        }
    }
}
impl<P: VectorSpace> CubicGenerator<P> for CubicCardinalSpline<P> {
    #[inline]
    fn to_curve(&self) -> CubicCurve<P> {
        let s = self.tension;
        let char_matrix = [
            [0., 1., 0., 0.],
            [-s, 0., s, 0.],
            [2. * s, s - 3., 3. - 2. * s, -s],
            [-s, 2. - s, s - 2., s],
        ];

        let length = self.control_points.len();

        // Early return to avoid accessing an invalid index
        if length < 2 {
            return CubicCurve { segments: vec![] };
        }

        // Extend the list of control points by mirroring the last second-to-last control points on each end;
        // this allows tangents for the endpoints to be provided, and the overall effect is that the tangent
        // at an endpoint is proportional to twice the vector between it and its adjacent control point.
        //
        // The expression used here is P_{-1} := P_0 - (P_1 - P_0) = 2P_0 - P_1. (Analogously at the other end.)
        let mirrored_first = self.control_points[0] * 2. - self.control_points[1];
        let mirrored_last = self.control_points[length - 1] * 2. - self.control_points[length - 2];
        let extended_control_points = once(&mirrored_first)
            .chain(self.control_points.iter())
            .chain(once(&mirrored_last))
            .collect::<Vec<_>>();

        let segments = extended_control_points
            .windows(4)
            .map(|p| CubicSegment::coefficients([*p[0], *p[1], *p[2], *p[3]], char_matrix))
            .collect();

        CubicCurve { segments }
    }
}

/// A spline interpolated continuously across the nearest four control points. The curve does not
/// pass through any of the control points.
///
/// ### Interpolation
/// The curve does not pass through control points.
///
/// ### Tangency
/// Tangents are automatically computed based on the position of control points.
///
/// ### Continuity
/// The curve is C2 continuous, meaning it has no holes or jumps, and the tangent vector changes smoothly along
/// the entire curve length. The acceleration continuity of this spline makes it useful for camera paths.
///
/// ### Usage
///
/// ```
/// # use bevy_math::{*, prelude::*};
/// let points = [
///     vec2(-1.0, -20.0),
///     vec2(3.0, 2.0),
///     vec2(5.0, 3.0),
///     vec2(9.0, 8.0),
/// ];
/// let b_spline = CubicBSpline::new(points).to_curve();
/// let positions: Vec<_> = b_spline.iter_positions(100).collect();
/// ```
#[derive(Clone, Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug))]
pub struct CubicBSpline<P: VectorSpace> {
    /// The control points of the spline
    pub control_points: Vec<P>,
}
impl<P: VectorSpace> CubicBSpline<P> {
    /// Build a new B-Spline.
    pub fn new(control_points: impl Into<Vec<P>>) -> Self {
        Self {
            control_points: control_points.into(),
        }
    }
}
impl<P: VectorSpace> CubicGenerator<P> for CubicBSpline<P> {
    #[inline]
    fn to_curve(&self) -> CubicCurve<P> {
        // A derivation for this matrix can be found in "General Matrix Representations for B-splines" by Kaihuai Qin.
        // <https://xiaoxingchen.github.io/2020/03/02/bspline_in_so3/general_matrix_representation_for_bsplines.pdf>
        // See section 4.1 and equations 7 and 8.
        let mut char_matrix = [
            [1.0, 4.0, 1.0, 0.0],
            [-3.0, 0.0, 3.0, 0.0],
            [3.0, -6.0, 3.0, 0.0],
            [-1.0, 3.0, -3.0, 1.0],
        ];

        char_matrix
            .iter_mut()
            .for_each(|r| r.iter_mut().for_each(|c| *c /= 6.0));

        let segments = self
            .control_points
            .windows(4)
            .map(|p| CubicSegment::coefficients([p[0], p[1], p[2], p[3]], char_matrix))
            .collect();

        CubicCurve { segments }
    }
}

/// Error during construction of [`CubicNurbs`]
#[derive(Clone, Debug, Error)]
pub enum CubicNurbsError {
    /// Provided the wrong number of knots.
    #[error("Wrong number of knots: expected {expected}, provided {provided}")]
    KnotsNumberMismatch {
        /// Expected number of knots
        expected: usize,
        /// Provided number of knots
        provided: usize,
    },
    /// The provided knots had a descending knot pair. Subsequent knots must
    /// either increase or stay the same.
    #[error("Invalid knots: contains descending knot pair")]
    DescendingKnots,
    /// The provided knots were all equal. Knots must contain at least one increasing pair.
    #[error("Invalid knots: all knots are equal")]
    ConstantKnots,
    /// Provided a different number of weights and control points.
    #[error("Incorrect number of weights: expected {expected}, provided {provided}")]
    WeightsNumberMismatch {
        /// Expected number of weights
        expected: usize,
        /// Provided number of weights
        provided: usize,
    },
    /// The number of control points provided is less than 4.
    #[error("Not enough control points, at least 4 are required, {provided} were provided")]
    NotEnoughControlPoints {
        /// The number of control points provided
        provided: usize,
    },
}

/// Non-uniform Rational B-Splines (NURBS) are a powerful generalization of the [`CubicBSpline`] which can
/// represent a much more diverse class of curves (like perfect circles and ellipses).
///
/// ### Non-uniformity
/// The 'NU' part of NURBS stands for "Non-Uniform". This has to do with a parameter called 'knots'.
/// The knots are a non-decreasing sequence of floating point numbers. The first and last three pairs of
/// knots control the behavior of the curve as it approaches its endpoints. The intermediate pairs
/// each control the length of one segment of the curve. Multiple repeated knot values are called
/// "knot multiplicity". Knot multiplicity in the intermediate knots causes a "zero-length" segment,
/// and can create sharp corners.
///
/// ### Rationality
/// The 'R' part of NURBS stands for "Rational". This has to do with NURBS allowing each control point to
/// be assigned a weighting, which controls how much it affects the curve compared to the other points.
///
/// ### Interpolation
/// The curve will not pass through the control points except where a knot has multiplicity four.
///
/// ### Tangency
/// Tangents are automatically computed based on the position of control points.
///
/// ### Continuity
/// When there is no knot multiplicity, the curve is C2 continuous, meaning it has no holes or jumps and the
/// tangent vector changes smoothly along the entire curve length. Like the [`CubicBSpline`], the acceleration
/// continuity makes it useful for camera paths. Knot multiplicity of 2 in intermediate knots reduces the
/// continuity to C2, and knot multiplicity of 3 reduces the continuity to C0. The curve is always at least
/// C0, meaning it has no jumps or holes.
///
/// ### Usage
///
/// ```
/// # use bevy_math::{*, prelude::*};
/// let points = [
///     vec2(-1.0, -20.0),
///     vec2(3.0, 2.0),
///     vec2(5.0, 3.0),
///     vec2(9.0, 8.0),
/// ];
/// let weights = [1.0, 1.0, 2.0, 1.0];
/// let knots = [0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 5.0];
/// let nurbs = CubicNurbs::new(points, Some(weights), Some(knots))
///     .expect("NURBS construction failed!")
///     .to_curve();
/// let positions: Vec<_> = nurbs.iter_positions(100).collect();
/// ```
#[derive(Clone, Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug))]
pub struct CubicNurbs<P: VectorSpace> {
    /// The control points of the NURBS
    pub control_points: Vec<P>,
    /// Weights
    pub weights: Vec<f32>,
    /// Knots
    pub knots: Vec<f32>,
}
impl<P: VectorSpace> CubicNurbs<P> {
    /// Build a Non-Uniform Rational B-Spline.
    ///
    /// If provided, weights must be the same length as the control points. Defaults to equal weights.
    ///
    /// If provided, the number of knots must be n + 4 elements, where n is the amount of control
    /// points. Defaults to open uniform knots: [`Self::open_uniform_knots`]. Knots cannot
    /// all be equal.
    ///
    /// At least 4 points must be provided, otherwise an error will be returned.
    pub fn new(
        control_points: impl Into<Vec<P>>,
        weights: Option<impl Into<Vec<f32>>>,
        knots: Option<impl Into<Vec<f32>>>,
    ) -> Result<Self, CubicNurbsError> {
        let mut control_points: Vec<P> = control_points.into();
        let control_points_len = control_points.len();

        if control_points_len < 4 {
            return Err(CubicNurbsError::NotEnoughControlPoints {
                provided: control_points_len,
            });
        }

        let weights = weights
            .map(Into::into)
            .unwrap_or_else(|| vec![1.0; control_points_len]);

        let mut knots: Vec<f32> = knots.map(Into::into).unwrap_or_else(|| {
            Self::open_uniform_knots(control_points_len)
                .expect("The amount of control points was checked")
        });

        let expected_knots_len = Self::knots_len(control_points_len);

        // Check the number of knots is correct
        if knots.len() != expected_knots_len {
            return Err(CubicNurbsError::KnotsNumberMismatch {
                expected: expected_knots_len,
                provided: knots.len(),
            });
        }

        // Ensure the knots are non-descending (previous element is less than or equal
        // to the next)
        if knots.windows(2).any(|win| win[0] > win[1]) {
            return Err(CubicNurbsError::DescendingKnots);
        }

        // Ensure the knots are non-constant
        if knots.windows(2).all(|win| win[0] == win[1]) {
            return Err(CubicNurbsError::ConstantKnots);
        }

        // Check that the number of weights equals the number of control points
        if weights.len() != control_points_len {
            return Err(CubicNurbsError::WeightsNumberMismatch {
                expected: control_points_len,
                provided: weights.len(),
            });
        }

        // To align the evaluation behavior of nurbs with the other splines,
        // make the intervals between knots form an exact cover of [0, N], where N is
        // the number of segments of the final curve.
        let curve_length = (control_points.len() - 3) as f32;
        let min = *knots.first().unwrap();
        let max = *knots.last().unwrap();
        let knot_delta = max - min;
        knots = knots
            .into_iter()
            .map(|k| k - min)
            .map(|k| k * curve_length / knot_delta)
            .collect();

        control_points
            .iter_mut()
            .zip(weights.iter())
            .for_each(|(p, w)| *p = *p * *w);

        Ok(Self {
            control_points,
            weights,
            knots,
        })
    }

    /// Generates uniform knots that will generate the same curve as [`CubicBSpline`].
    ///
    /// "Uniform" means that the difference between two subsequent knots is the same.
    ///
    /// Will return `None` if there are less than 4 control points.
    pub fn uniform_knots(control_points: usize) -> Option<Vec<f32>> {
        if control_points < 4 {
            return None;
        }
        Some(
            (0..Self::knots_len(control_points))
                .map(|v| v as f32)
                .collect(),
        )
    }

    /// Generates open uniform knots, which makes the ends of the curve pass through the
    /// start and end points.
    ///
    /// The start and end knots have multiplicity 4, and intermediate knots have multiplicity 0 and
    /// difference of 1.
    ///
    /// Will return `None` if there are less than 4 control points.
    pub fn open_uniform_knots(control_points: usize) -> Option<Vec<f32>> {
        if control_points < 4 {
            return None;
        }
        let last_knots_value = control_points - 3;
        Some(
            std::iter::repeat(0.0)
                .take(4)
                .chain((1..last_knots_value).map(|v| v as f32))
                .chain(std::iter::repeat(last_knots_value as f32).take(4))
                .collect(),
        )
    }

    #[inline(always)]
    const fn knots_len(control_points_len: usize) -> usize {
        control_points_len + 4
    }

    /// Generates a non-uniform B-spline characteristic matrix from a sequence of six knots. Each six
    /// knots describe the relationship between four successive control points. For padding reasons,
    /// this takes a vector of 8 knots, but only six are actually used.
    fn generate_matrix(knots: &[f32; 8]) -> [[f32; 4]; 4] {
        // A derivation for this matrix can be found in "General Matrix Representations for B-splines" by Kaihuai Qin.
        // <https://xiaoxingchen.github.io/2020/03/02/bspline_in_so3/general_matrix_representation_for_bsplines.pdf>
        // See section 3.1.

        let t = knots;
        // In the notation of the paper:
        // t[1] := t_i-2
        // t[2] := t_i-1
        // t[3] := t_i   (the lower extent of the current knot span)
        // t[4] := t_i+1 (the upper extent of the current knot span)
        // t[5] := t_i+2
        // t[6] := t_i+3

        let m00 = (t[4] - t[3]).powi(2) / ((t[4] - t[2]) * (t[4] - t[1]));
        let m02 = (t[3] - t[2]).powi(2) / ((t[5] - t[2]) * (t[4] - t[2]));
        let m12 = (3.0 * (t[4] - t[3]) * (t[3] - t[2])) / ((t[5] - t[2]) * (t[4] - t[2]));
        let m22 = 3.0 * (t[4] - t[3]).powi(2) / ((t[5] - t[2]) * (t[4] - t[2]));
        let m33 = (t[4] - t[3]).powi(2) / ((t[6] - t[3]) * (t[5] - t[3]));
        let m32 = -m22 / 3.0 - m33 - (t[4] - t[3]).powi(2) / ((t[5] - t[3]) * (t[5] - t[2]));
        [
            [m00, 1.0 - m00 - m02, m02, 0.0],
            [-3.0 * m00, 3.0 * m00 - m12, m12, 0.0],
            [3.0 * m00, -3.0 * m00 - m22, m22, 0.0],
            [-m00, m00 - m32 - m33, m32, m33],
        ]
    }
}
impl<P: VectorSpace> RationalGenerator<P> for CubicNurbs<P> {
    #[inline]
    fn to_curve(&self) -> RationalCurve<P> {
        let segments = self
            .control_points
            .windows(4)
            .zip(self.weights.windows(4))
            .zip(self.knots.windows(8))
            .filter(|(_, knots)| knots[4] - knots[3] > 0.0)
            .map(|((points, weights), knots)| {
                // This is curve segment i. It uses control points P_i, P_i+2, P_i+2 and P_i+3,
                // It is associated with knot span i+3 (which is the interval between knots i+3
                // and i+4) and its characteristic matrix uses knots i+1 through i+6 (because
                // those define the two knot spans on either side).
                let span = knots[4] - knots[3];
                let coefficient_knots = knots.try_into().expect("Knot windows are of length 6");
                let matrix = Self::generate_matrix(coefficient_knots);
                RationalSegment::coefficients(
                    points.try_into().expect("Point windows are of length 4"),
                    weights.try_into().expect("Weight windows are of length 4"),
                    span,
                    matrix,
                )
            })
            .collect();
        RationalCurve { segments }
    }
}

/// A spline interpolated linearly between the nearest 2 points.
///
/// ### Interpolation
/// The curve passes through every control point.
///
/// ### Tangency
/// The curve is not generally differentiable at control points.
///
/// ### Continuity
/// The curve is C0 continuous, meaning it has no holes or jumps.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug))]
pub struct LinearSpline<P: VectorSpace> {
    /// The control points of the NURBS
    pub points: Vec<P>,
}
impl<P: VectorSpace> LinearSpline<P> {
    /// Create a new linear spline
    pub fn new(points: impl Into<Vec<P>>) -> Self {
        Self {
            points: points.into(),
        }
    }
}
impl<P: VectorSpace> CubicGenerator<P> for LinearSpline<P> {
    #[inline]
    fn to_curve(&self) -> CubicCurve<P> {
        let segments = self
            .points
            .windows(2)
            .map(|points| {
                let a = points[0];
                let b = points[1];
                CubicSegment {
                    coeff: [a, b - a, P::default(), P::default()],
                }
            })
            .collect();
        CubicCurve { segments }
    }
}

/// Implement this on cubic splines that can generate a cubic curve from their spline parameters.
pub trait CubicGenerator<P: VectorSpace> {
    /// Build a [`CubicCurve`] by computing the interpolation coefficients for each curve segment.
    fn to_curve(&self) -> CubicCurve<P>;
}

/// A segment of a cubic curve, used to hold precomputed coefficients for fast interpolation.
/// Can be evaluated as a parametric curve over the domain `[0, 1)`.
///
/// Segments can be chained together to form a longer compound curve.
#[derive(Copy, Clone, Debug, Default, PartialEq)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, Default))]
pub struct CubicSegment<P: VectorSpace> {
    /// Coefficients of the segment
    pub coeff: [P; 4],
}

impl<P: VectorSpace> CubicSegment<P> {
    /// Instantaneous position of a point at parametric value `t`.
    #[inline]
    pub fn position(&self, t: f32) -> P {
        let [a, b, c, d] = self.coeff;
        // Evaluate `a + bt + ct^2 + dt^3`, avoiding exponentiation
        a + (b + (c + d * t) * t) * t
    }

    /// Instantaneous velocity of a point at parametric value `t`.
    #[inline]
    pub fn velocity(&self, t: f32) -> P {
        let [_, b, c, d] = self.coeff;
        // Evaluate the derivative, which is `b + 2ct + 3dt^2`, avoiding exponentiation
        b + (c * 2.0 + d * 3.0 * t) * t
    }

    /// Instantaneous acceleration of a point at parametric value `t`.
    #[inline]
    pub fn acceleration(&self, t: f32) -> P {
        let [_, _, c, d] = self.coeff;
        // Evaluate the second derivative, which is `2c + 6dt`
        c * 2.0 + d * 6.0 * t
    }

    /// Calculate polynomial coefficients for the cubic curve using a characteristic matrix.
    #[inline]
    fn coefficients(p: [P; 4], char_matrix: [[f32; 4]; 4]) -> Self {
        let [c0, c1, c2, c3] = char_matrix;
        // These are the polynomial coefficients, computed by multiplying the characteristic
        // matrix by the point matrix.
        let coeff = [
            p[0] * c0[0] + p[1] * c0[1] + p[2] * c0[2] + p[3] * c0[3],
            p[0] * c1[0] + p[1] * c1[1] + p[2] * c1[2] + p[3] * c1[3],
            p[0] * c2[0] + p[1] * c2[1] + p[2] * c2[2] + p[3] * c2[3],
            p[0] * c3[0] + p[1] * c3[1] + p[2] * c3[2] + p[3] * c3[3],
        ];
        Self { coeff }
    }
}

/// The `CubicSegment<Vec2>` can be used as a 2-dimensional easing curve for animation.
///
/// The x-axis of the curve is time, and the y-axis is the output value. This struct provides
/// methods for extremely fast solves for y given x.
impl CubicSegment<Vec2> {
    /// Construct a cubic Bezier curve for animation easing, with control points `p1` and `p2`. A
    /// cubic Bezier easing curve has control point `p0` at (0, 0) and `p3` at (1, 1), leaving only
    /// `p1` and `p2` as the remaining degrees of freedom. The first and last control points are
    /// fixed to ensure the animation begins at 0, and ends at 1.
    ///
    /// This is a very common tool for UI animations that accelerate and decelerate smoothly. For
    /// example, the ubiquitous "ease-in-out" is defined as `(0.25, 0.1), (0.25, 1.0)`.
    pub fn new_bezier(p1: impl Into<Vec2>, p2: impl Into<Vec2>) -> Self {
        let (p0, p3) = (Vec2::ZERO, Vec2::ONE);
        let bezier = CubicBezier::new([[p0, p1.into(), p2.into(), p3]]).to_curve();
        bezier.segments[0]
    }

    /// Maximum allowable error for iterative Bezier solve
    const MAX_ERROR: f32 = 1e-5;

    /// Maximum number of iterations during Bezier solve
    const MAX_ITERS: u8 = 8;

    /// Given a `time` within `0..=1`, returns an eased value that follows the cubic curve instead
    /// of a straight line. This eased result may be outside the range `0..=1`, however it will
    /// always start at 0 and end at 1: `ease(0) = 0` and `ease(1) = 1`.
    ///
    /// ```
    /// # use bevy_math::prelude::*;
    /// let cubic_bezier = CubicSegment::new_bezier((0.25, 0.1), (0.25, 1.0));
    /// assert_eq!(cubic_bezier.ease(0.0), 0.0);
    /// assert_eq!(cubic_bezier.ease(1.0), 1.0);
    /// ```
    ///
    /// # How cubic easing works
    ///
    /// Easing is generally accomplished with the help of "shaping functions". These are curves that
    /// start at (0,0) and end at (1,1). The x-axis of this plot is the current `time` of the
    /// animation, from 0 to 1. The y-axis is how far along the animation is, also from 0 to 1. You
    /// can imagine that if the shaping function is a straight line, there is a 1:1 mapping between
    /// the `time` and how far along your animation is. If the `time` = 0.5, the animation is
    /// halfway through. This is known as linear interpolation, and results in objects animating
    /// with a constant velocity, and no smooth acceleration or deceleration at the start or end.
    ///
    /// ```text
    /// y
    /// │         ●
    /// │       ⬈
    /// │     ⬈    
    /// │   ⬈
    /// │ ⬈
    /// ●─────────── x (time)
    /// ```
    ///
    /// Using cubic Beziers, we have a curve that starts at (0,0), ends at (1,1), and follows a path
    /// determined by the two remaining control points (handles). These handles allow us to define a
    /// smooth curve. As `time` (x-axis) progresses, we now follow the curve, and use the `y` value
    /// to determine how far along the animation is.
    ///
    /// ```text
    /// y
    ///          ⬈➔●
    /// │      ⬈   
    /// │     ↑      
    /// │     ↑
    /// │    ⬈
    /// ●➔⬈───────── x (time)
    /// ```
    ///
    /// To accomplish this, we need to be able to find the position `y` on a curve, given the `x`
    /// value. Cubic curves are implicit parametric functions like B(t) = (x,y). To find `y`, we
    /// first solve for `t` that corresponds to the given `x` (`time`). We use the Newton-Raphson
    /// root-finding method to quickly find a value of `t` that is very near the desired value of
    /// `x`. Once we have this we can easily plug that `t` into our curve's `position` function, to
    /// find the `y` component, which is how far along our animation should be. In other words:
    ///
    /// > Given `time` in `0..=1`
    ///
    /// > Use Newton's method to find a value of `t` that results in B(t) = (x,y) where `x == time`
    ///
    /// > Once a solution is found, use the resulting `y` value as the final result
    #[inline]
    pub fn ease(&self, time: f32) -> f32 {
        let x = time.clamp(0.0, 1.0);
        self.find_y_given_x(x)
    }

    /// Find the `y` value of the curve at the given `x` value using the Newton-Raphson method.
    #[inline]
    fn find_y_given_x(&self, x: f32) -> f32 {
        let mut t_guess = x;
        let mut pos_guess = Vec2::ZERO;
        for _ in 0..Self::MAX_ITERS {
            pos_guess = self.position(t_guess);
            let error = pos_guess.x - x;
            if error.abs() <= Self::MAX_ERROR {
                break;
            }
            // Using Newton's method, use the tangent line to estimate a better guess value.
            let slope = self.velocity(t_guess).x; // dx/dt
            t_guess -= error / slope;
        }
        pos_guess.y
    }
}

/// A collection of [`CubicSegment`]s chained into a single parametric curve. Has domain `[0, N)`
/// where `N` is the number of attached segments.
///
/// Use any struct that implements the [`CubicGenerator`] trait to create a new curve, such as
/// [`CubicBezier`].
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug))]
pub struct CubicCurve<P: VectorSpace> {
    /// Segments of the curve
    pub segments: Vec<CubicSegment<P>>,
}

impl<P: VectorSpace> CubicCurve<P> {
    /// Compute the position of a point on the cubic curve at the parametric value `t`.
    ///
    /// Note that `t` varies from `0..=(n_points - 3)`.
    #[inline]
    pub fn position(&self, t: f32) -> P {
        let (segment, t) = self.segment(t);
        segment.position(t)
    }

    /// Compute the first derivative with respect to t at `t`. This is the instantaneous velocity of
    /// a point on the cubic curve at `t`.
    ///
    /// Note that `t` varies from `0..=(n_points - 3)`.
    #[inline]
    pub fn velocity(&self, t: f32) -> P {
        let (segment, t) = self.segment(t);
        segment.velocity(t)
    }

    /// Compute the second derivative with respect to t at `t`. This is the instantaneous
    /// acceleration of a point on the cubic curve at `t`.
    ///
    /// Note that `t` varies from `0..=(n_points - 3)`.
    #[inline]
    pub fn acceleration(&self, t: f32) -> P {
        let (segment, t) = self.segment(t);
        segment.acceleration(t)
    }

    /// A flexible iterator used to sample curves with arbitrary functions.
    ///
    /// This splits the curve into `subdivisions` of evenly spaced `t` values across the
    /// length of the curve from start (t = 0) to end (t = n), where `n = self.segment_count()`,
    /// returning an iterator evaluating the curve with the supplied `sample_function` at each `t`.
    ///
    /// For `subdivisions = 2`, this will split the curve into two lines, or three points, and
    /// return an iterator with 3 items, the three points, one at the start, middle, and end.
    #[inline]
    pub fn iter_samples<'a, 'b: 'a>(
        &'b self,
        subdivisions: usize,
        mut sample_function: impl FnMut(&Self, f32) -> P + 'a,
    ) -> impl Iterator<Item = P> + 'a {
        self.iter_uniformly(subdivisions)
            .map(move |t| sample_function(self, t))
    }

    /// An iterator that returns values of `t` uniformly spaced over `0..=subdivisions`.
    #[inline]
    fn iter_uniformly(&self, subdivisions: usize) -> impl Iterator<Item = f32> {
        let segments = self.segments.len() as f32;
        let step = segments / subdivisions as f32;
        (0..=subdivisions).map(move |i| i as f32 * step)
    }

    /// The list of segments contained in this `CubicCurve`.
    ///
    /// This spline's global `t` value is equal to how many segments it has.
    ///
    /// All method accepting `t` on `CubicCurve` depends on the global `t`.
    /// When sampling over the entire curve, you should either use one of the
    /// `iter_*` methods or account for the segment count using `curve.segments().len()`.
    #[inline]
    pub fn segments(&self) -> &[CubicSegment<P>] {
        &self.segments
    }

    /// Iterate over the curve split into `subdivisions`, sampling the position at each step.
    pub fn iter_positions(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
        self.iter_samples(subdivisions, Self::position)
    }

    /// Iterate over the curve split into `subdivisions`, sampling the velocity at each step.
    pub fn iter_velocities(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
        self.iter_samples(subdivisions, Self::velocity)
    }

    /// Iterate over the curve split into `subdivisions`, sampling the acceleration at each step.
    pub fn iter_accelerations(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
        self.iter_samples(subdivisions, Self::acceleration)
    }

    #[inline]
    /// Adds a segment to the curve
    pub fn push_segment(&mut self, segment: CubicSegment<P>) {
        self.segments.push(segment);
    }

    /// Returns the [`CubicSegment`] and local `t` value given a spline's global `t` value.
    #[inline]
    fn segment(&self, t: f32) -> (&CubicSegment<P>, f32) {
        if self.segments.len() == 1 {
            (&self.segments[0], t)
        } else {
            let i = (t.floor() as usize).clamp(0, self.segments.len() - 1);
            (&self.segments[i], t - i as f32)
        }
    }
}

impl<P: VectorSpace> Extend<CubicSegment<P>> for CubicCurve<P> {
    fn extend<T: IntoIterator<Item = CubicSegment<P>>>(&mut self, iter: T) {
        self.segments.extend(iter);
    }
}

impl<P: VectorSpace> IntoIterator for CubicCurve<P> {
    type IntoIter = <Vec<CubicSegment<P>> as IntoIterator>::IntoIter;

    type Item = CubicSegment<P>;

    fn into_iter(self) -> Self::IntoIter {
        self.segments.into_iter()
    }
}

/// Implement this on cubic splines that can generate a rational cubic curve from their spline parameters.
pub trait RationalGenerator<P: VectorSpace> {
    /// Build a [`RationalCurve`] by computing the interpolation coefficients for each curve segment.
    fn to_curve(&self) -> RationalCurve<P>;
}

/// A segment of a rational cubic curve, used to hold precomputed coefficients for fast interpolation.
/// Can be evaluated as a parametric curve over the domain `[0, knot_span)`.
///
/// Segments can be chained together to form a longer compound curve.
#[derive(Copy, Clone, Debug, Default, PartialEq)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, Default))]
pub struct RationalSegment<P: VectorSpace> {
    /// The coefficients matrix of the cubic curve.
    pub coeff: [P; 4],
    /// The homogeneous weight coefficients.
    pub weight_coeff: [f32; 4],
    /// The width of the domain of this segment.
    pub knot_span: f32,
}

impl<P: VectorSpace> RationalSegment<P> {
    /// Instantaneous position of a point at parametric value `t` in `[0, knot_span)`.
    #[inline]
    pub fn position(&self, t: f32) -> P {
        let [a, b, c, d] = self.coeff;
        let [x, y, z, w] = self.weight_coeff;
        // Compute a cubic polynomial for the control points
        let numerator = a + (b + (c + d * t) * t) * t;
        // Compute a cubic polynomial for the weights
        let denominator = x + (y + (z + w * t) * t) * t;
        numerator / denominator
    }

    /// Instantaneous velocity of a point at parametric value `t` in `[0, knot_span)`.
    #[inline]
    pub fn velocity(&self, t: f32) -> P {
        // A derivation for the following equations can be found in "Matrix representation for NURBS
        // curves and surfaces" by Choi et al. See equation 19.

        let [a, b, c, d] = self.coeff;
        let [x, y, z, w] = self.weight_coeff;
        // Compute a cubic polynomial for the control points
        let numerator = a + (b + (c + d * t) * t) * t;
        // Compute a cubic polynomial for the weights
        let denominator = x + (y + (z + w * t) * t) * t;

        // Compute the derivative of the control point polynomial
        let numerator_derivative = b + (c * 2.0 + d * 3.0 * t) * t;
        // Compute the derivative of the weight polynomial
        let denominator_derivative = y + (z * 2.0 + w * 3.0 * t) * t;

        // Velocity is the first derivative (wrt to the parameter `t`)
        // Position = N/D therefore
        // Velocity = (N/D)' = N'/D - N * D'/D^2 = (N' * D - N * D')/D^2
        numerator_derivative / denominator
            - numerator * (denominator_derivative / denominator.powi(2))
    }

    /// Instantaneous acceleration of a point at parametric value `t` in `[0, knot_span)`.
    #[inline]
    pub fn acceleration(&self, t: f32) -> P {
        // A derivation for the following equations can be found in "Matrix representation for NURBS
        // curves and surfaces" by Choi et al. See equation 20. Note: In come copies of this paper, equation 20
        // is printed with the following two errors:
        // + The first term has incorrect sign.
        // + The second term uses R when it should use the first derivative.

        let [a, b, c, d] = self.coeff;
        let [x, y, z, w] = self.weight_coeff;
        // Compute a cubic polynomial for the control points
        let numerator = a + (b + (c + d * t) * t) * t;
        // Compute a cubic polynomial for the weights
        let denominator = x + (y + (z + w * t) * t) * t;

        // Compute the derivative of the control point polynomial
        let numerator_derivative = b + (c * 2.0 + d * 3.0 * t) * t;
        // Compute the derivative of the weight polynomial
        let denominator_derivative = y + (z * 2.0 + w * 3.0 * t) * t;

        // Compute the second derivative of the control point polynomial
        let numerator_second_derivative = c * 2.0 + d * 6.0 * t;
        // Compute the second derivative of the weight polynomial
        let denominator_second_derivative = z * 2.0 + w * 6.0 * t;

        // Velocity is the first derivative (wrt to the parameter `t`)
        // Position = N/D therefore
        // Velocity = (N/D)' = N'/D - N * D'/D^2 = (N' * D - N * D')/D^2
        // Acceleration = (N/D)'' = ((N' * D - N * D')/D^2)' = N''/D + N' * (-2D'/D^2) + N * (-D''/D^2 + 2D'^2/D^3)
        numerator_second_derivative / denominator
            + numerator_derivative * (-2.0 * denominator_derivative / denominator.powi(2))
            + numerator
                * (-denominator_second_derivative / denominator.powi(2)
                    + 2.0 * denominator_derivative.powi(2) / denominator.powi(3))
    }

    /// Calculate polynomial coefficients for the cubic polynomials using a characteristic matrix.
    #[inline]
    fn coefficients(
        control_points: [P; 4],
        weights: [f32; 4],
        knot_span: f32,
        char_matrix: [[f32; 4]; 4],
    ) -> Self {
        // An explanation of this use can be found in "Matrix representation for NURBS curves and surfaces"
        // by Choi et al. See section "Evaluation of NURB Curves and Surfaces", and equation 16.

        let [c0, c1, c2, c3] = char_matrix;
        let p = control_points;
        let w = weights;
        // These are the control point polynomial coefficients, computed by multiplying the characteristic
        // matrix by the point matrix.
        let coeff = [
            p[0] * c0[0] + p[1] * c0[1] + p[2] * c0[2] + p[3] * c0[3],
            p[0] * c1[0] + p[1] * c1[1] + p[2] * c1[2] + p[3] * c1[3],
            p[0] * c2[0] + p[1] * c2[1] + p[2] * c2[2] + p[3] * c2[3],
            p[0] * c3[0] + p[1] * c3[1] + p[2] * c3[2] + p[3] * c3[3],
        ];
        // These are the weight polynomial coefficients, computed by multiplying the characteristic
        // matrix by the weight matrix.
        let weight_coeff = [
            w[0] * c0[0] + w[1] * c0[1] + w[2] * c0[2] + w[3] * c0[3],
            w[0] * c1[0] + w[1] * c1[1] + w[2] * c1[2] + w[3] * c1[3],
            w[0] * c2[0] + w[1] * c2[1] + w[2] * c2[2] + w[3] * c2[3],
            w[0] * c3[0] + w[1] * c3[1] + w[2] * c3[2] + w[3] * c3[3],
        ];
        Self {
            coeff,
            weight_coeff,
            knot_span,
        }
    }
}

/// A collection of [`RationalSegment`]s chained into a single parametric curve.
///
/// Use any struct that implements the [`RationalGenerator`] trait to create a new curve, such as
/// [`CubicNurbs`], or convert [`CubicCurve`] using `into/from`.
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug))]
pub struct RationalCurve<P: VectorSpace> {
    /// The segments in the curve
    pub segments: Vec<RationalSegment<P>>,
}

impl<P: VectorSpace> RationalCurve<P> {
    /// Compute the position of a point on the curve at the parametric value `t`.
    ///
    /// Note that `t` varies from `0..=(n_points - 3)`.
    #[inline]
    pub fn position(&self, t: f32) -> P {
        let (segment, t) = self.segment(t);
        segment.position(t)
    }

    /// Compute the first derivative with respect to t at `t`. This is the instantaneous velocity of
    /// a point on the curve at `t`.
    ///
    /// Note that `t` varies from `0..=(n_points - 3)`.
    #[inline]
    pub fn velocity(&self, t: f32) -> P {
        let (segment, t) = self.segment(t);
        segment.velocity(t)
    }

    /// Compute the second derivative with respect to t at `t`. This is the instantaneous
    /// acceleration of a point on the curve at `t`.
    ///
    /// Note that `t` varies from `0..=(n_points - 3)`.
    #[inline]
    pub fn acceleration(&self, t: f32) -> P {
        let (segment, t) = self.segment(t);
        segment.acceleration(t)
    }

    /// A flexible iterator used to sample curves with arbitrary functions.
    ///
    /// This splits the curve into `subdivisions` of evenly spaced `t` values across the
    /// length of the curve from start (t = 0) to end (t = n), where `n = self.segment_count()`,
    /// returning an iterator evaluating the curve with the supplied `sample_function` at each `t`.
    ///
    /// For `subdivisions = 2`, this will split the curve into two lines, or three points, and
    /// return an iterator with 3 items, the three points, one at the start, middle, and end.
    #[inline]
    pub fn iter_samples<'a, 'b: 'a>(
        &'b self,
        subdivisions: usize,
        mut sample_function: impl FnMut(&Self, f32) -> P + 'a,
    ) -> impl Iterator<Item = P> + 'a {
        self.iter_uniformly(subdivisions)
            .map(move |t| sample_function(self, t))
    }

    /// An iterator that returns values of `t` uniformly spaced over `0..=subdivisions`.
    #[inline]
    fn iter_uniformly(&self, subdivisions: usize) -> impl Iterator<Item = f32> {
        let domain = self.domain();
        let step = domain / subdivisions as f32;
        (0..=subdivisions).map(move |i| i as f32 * step)
    }

    /// The list of segments contained in this `RationalCurve`.
    ///
    /// This spline's global `t` value is equal to how many segments it has.
    ///
    /// All method accepting `t` on `RationalCurve` depends on the global `t`.
    /// When sampling over the entire curve, you should either use one of the
    /// `iter_*` methods or account for the segment count using `curve.segments().len()`.
    #[inline]
    pub fn segments(&self) -> &[RationalSegment<P>] {
        &self.segments
    }

    /// Iterate over the curve split into `subdivisions`, sampling the position at each step.
    pub fn iter_positions(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
        self.iter_samples(subdivisions, Self::position)
    }

    /// Iterate over the curve split into `subdivisions`, sampling the velocity at each step.
    pub fn iter_velocities(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
        self.iter_samples(subdivisions, Self::velocity)
    }

    /// Iterate over the curve split into `subdivisions`, sampling the acceleration at each step.
    pub fn iter_accelerations(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
        self.iter_samples(subdivisions, Self::acceleration)
    }

    /// Adds a segment to the curve.
    #[inline]
    pub fn push_segment(&mut self, segment: RationalSegment<P>) {
        self.segments.push(segment);
    }

    /// Returns the [`RationalSegment`] and local `t` value given a spline's global `t` value.
    /// Input `t` will be clamped to the domain of the curve. Returned value will be in `[0, 1]`.
    #[inline]
    fn segment(&self, mut t: f32) -> (&RationalSegment<P>, f32) {
        if t <= 0.0 {
            (&self.segments[0], 0.0)
        } else if self.segments.len() == 1 {
            (&self.segments[0], t / self.segments[0].knot_span)
        } else {
            // Try to fit t into each segment domain
            for segment in self.segments.iter() {
                if t < segment.knot_span {
                    // The division here makes t a normalized parameter in [0, 1] that can be properly
                    // evaluated against a cubic curve segment. See equations 6 & 16 from "Matrix representation
                    // of NURBS curves and surfaces" by Choi et al. or equation 3 from "General Matrix
                    // Representations for B-Splines" by Qin.
                    return (segment, t / segment.knot_span);
                }
                t -= segment.knot_span;
            }
            return (self.segments.last().unwrap(), 1.0);
        }
    }

    /// Returns the length of of the domain of the parametric curve.
    #[inline]
    pub fn domain(&self) -> f32 {
        self.segments.iter().map(|segment| segment.knot_span).sum()
    }
}

impl<P: VectorSpace> Extend<RationalSegment<P>> for RationalCurve<P> {
    fn extend<T: IntoIterator<Item = RationalSegment<P>>>(&mut self, iter: T) {
        self.segments.extend(iter);
    }
}

impl<P: VectorSpace> IntoIterator for RationalCurve<P> {
    type IntoIter = <Vec<RationalSegment<P>> as IntoIterator>::IntoIter;

    type Item = RationalSegment<P>;

    fn into_iter(self) -> Self::IntoIter {
        self.segments.into_iter()
    }
}

impl<P: VectorSpace> From<CubicSegment<P>> for RationalSegment<P> {
    fn from(value: CubicSegment<P>) -> Self {
        Self {
            coeff: value.coeff,
            weight_coeff: [1.0, 0.0, 0.0, 0.0],
            knot_span: 1.0, // Cubic curves are uniform, so every segment has domain [0, 1).
        }
    }
}

impl<P: VectorSpace> From<CubicCurve<P>> for RationalCurve<P> {
    fn from(value: CubicCurve<P>) -> Self {
        Self {
            segments: value.segments.into_iter().map(Into::into).collect(),
        }
    }
}

#[cfg(test)]
mod tests {
    use glam::{vec2, Vec2};

    use crate::cubic_splines::{
        CubicBSpline, CubicBezier, CubicGenerator, CubicNurbs, CubicSegment, RationalCurve,
        RationalGenerator,
    };

    /// How close two floats can be and still be considered equal
    const FLOAT_EQ: f32 = 1e-5;

    /// Sweep along the full length of a 3D cubic Bezier, and manually check the position.
    #[test]
    fn cubic() {
        const N_SAMPLES: usize = 1000;
        let points = [[
            vec2(-1.0, -20.0),
            vec2(3.0, 2.0),
            vec2(5.0, 3.0),
            vec2(9.0, 8.0),
        ]];
        let bezier = CubicBezier::new(points).to_curve();
        for i in 0..=N_SAMPLES {
            let t = i as f32 / N_SAMPLES as f32; // Check along entire length
            assert!(bezier.position(t).distance(cubic_manual(t, points[0])) <= FLOAT_EQ);
        }
    }

    /// Manual, hardcoded function for computing the position along a cubic bezier.
    fn cubic_manual(t: f32, points: [Vec2; 4]) -> Vec2 {
        let p = points;
        p[0] * (1.0 - t).powi(3)
            + 3.0 * p[1] * t * (1.0 - t).powi(2)
            + 3.0 * p[2] * t.powi(2) * (1.0 - t)
            + p[3] * t.powi(3)
    }

    /// Basic cubic Bezier easing test to verify the shape of the curve.
    #[test]
    fn easing_simple() {
        // A curve similar to ease-in-out, but symmetric
        let bezier = CubicSegment::new_bezier([1.0, 0.0], [0.0, 1.0]);
        assert_eq!(bezier.ease(0.0), 0.0);
        assert!(bezier.ease(0.2) < 0.2); // tests curve
        assert_eq!(bezier.ease(0.5), 0.5); // true due to symmetry
        assert!(bezier.ease(0.8) > 0.8); // tests curve
        assert_eq!(bezier.ease(1.0), 1.0);
    }

    /// A curve that forms an upside-down "U", that should extend below 0.0. Useful for animations
    /// that go beyond the start and end positions, e.g. bouncing.
    #[test]
    fn easing_overshoot() {
        // A curve that forms an upside-down "U", that should extend above 1.0
        let bezier = CubicSegment::new_bezier([0.0, 2.0], [1.0, 2.0]);
        assert_eq!(bezier.ease(0.0), 0.0);
        assert!(bezier.ease(0.5) > 1.5);
        assert_eq!(bezier.ease(1.0), 1.0);
    }

    /// A curve that forms a "U", that should extend below 0.0. Useful for animations that go beyond
    /// the start and end positions, e.g. bouncing.
    #[test]
    fn easing_undershoot() {
        let bezier = CubicSegment::new_bezier([0.0, -2.0], [1.0, -2.0]);
        assert_eq!(bezier.ease(0.0), 0.0);
        assert!(bezier.ease(0.5) < -0.5);
        assert_eq!(bezier.ease(1.0), 1.0);
    }

    /// Test that a simple cardinal spline passes through all of its control points with
    /// the correct tangents.
    #[test]
    fn cardinal_control_pts() {
        use super::CubicCardinalSpline;

        let tension = 0.2;
        let [p0, p1, p2, p3] = [vec2(-1., -2.), vec2(0., 1.), vec2(1., 2.), vec2(-2., 1.)];
        let curve = CubicCardinalSpline::new(tension, [p0, p1, p2, p3]).to_curve();

        // Positions at segment endpoints
        assert!(curve.position(0.).abs_diff_eq(p0, FLOAT_EQ));
        assert!(curve.position(1.).abs_diff_eq(p1, FLOAT_EQ));
        assert!(curve.position(2.).abs_diff_eq(p2, FLOAT_EQ));
        assert!(curve.position(3.).abs_diff_eq(p3, FLOAT_EQ));

        // Tangents at segment endpoints
        assert!(curve
            .velocity(0.)
            .abs_diff_eq((p1 - p0) * tension * 2., FLOAT_EQ));
        assert!(curve
            .velocity(1.)
            .abs_diff_eq((p2 - p0) * tension, FLOAT_EQ));
        assert!(curve
            .velocity(2.)
            .abs_diff_eq((p3 - p1) * tension, FLOAT_EQ));
        assert!(curve
            .velocity(3.)
            .abs_diff_eq((p3 - p2) * tension * 2., FLOAT_EQ));
    }

    /// Test that [`RationalCurve`] properly generalizes [`CubicCurve`]. A Cubic upgraded to a rational
    /// should produce pretty much the same output.
    #[test]
    fn cubic_to_rational() {
        const EPSILON: f32 = 0.00001;

        let points = [
            vec2(0.0, 0.0),
            vec2(1.0, 1.0),
            vec2(1.0, 1.0),
            vec2(2.0, -1.0),
            vec2(3.0, 1.0),
            vec2(0.0, 0.0),
        ];

        let b_spline = CubicBSpline::new(points).to_curve();
        let rational_b_spline = RationalCurve::from(b_spline.clone());

        /// Tests if two vectors of points are approximately the same
        fn compare_vectors(cubic_curve: Vec<Vec2>, rational_curve: Vec<Vec2>, name: &str) {
            assert_eq!(
                cubic_curve.len(),
                rational_curve.len(),
                "{name} vector lengths mismatch"
            );
            for (i, (a, b)) in cubic_curve.iter().zip(rational_curve.iter()).enumerate() {
                assert!(
                    a.distance(*b) < EPSILON,
                    "Mismatch at {name} value {i}. CubicCurve: {} Converted RationalCurve: {}",
                    a,
                    b
                );
            }
        }

        // Both curves should yield the same values
        let cubic_positions: Vec<_> = b_spline.iter_positions(10).collect();
        let rational_positions: Vec<_> = rational_b_spline.iter_positions(10).collect();
        compare_vectors(cubic_positions, rational_positions, "position");

        let cubic_velocities: Vec<_> = b_spline.iter_velocities(10).collect();
        let rational_velocities: Vec<_> = rational_b_spline.iter_velocities(10).collect();
        compare_vectors(cubic_velocities, rational_velocities, "velocity");

        let cubic_accelerations: Vec<_> = b_spline.iter_accelerations(10).collect();
        let rational_accelerations: Vec<_> = rational_b_spline.iter_accelerations(10).collect();
        compare_vectors(cubic_accelerations, rational_accelerations, "acceleration");
    }

    /// Test that a nurbs curve can approximate a portion of a circle.
    #[test]
    fn nurbs_circular_arc() {
        use std::f32::consts::FRAC_PI_2;
        const EPSILON: f32 = 0.0000001;

        // The following NURBS parameters were determined by constraining the first two
        // points to the line y=1, the second two points to the line x=1, and the distance
        // between each pair of points to be equal. One can solve the weights by assuming the
        // first and last weights to be one, the intermediate weights to be equal, and
        // subjecting ones self to a lot of tedious matrix algebra.

        let alpha = FRAC_PI_2;
        let leg = 2.0 * f32::sin(alpha / 2.0) / (1.0 + 2.0 * f32::cos(alpha / 2.0));
        let weight = (1.0 + 2.0 * f32::cos(alpha / 2.0)) / 3.0;
        let points = [
            vec2(1.0, 0.0),
            vec2(1.0, leg),
            vec2(leg, 1.0),
            vec2(0.0, 1.0),
        ];
        let weights = [1.0, weight, weight, 1.0];
        let knots = [0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0];
        let spline = CubicNurbs::new(points, Some(weights), Some(knots)).unwrap();
        let curve = spline.to_curve();
        for (i, point) in curve.iter_positions(10).enumerate() {
            assert!(
                f32::abs(point.length() - 1.0) < EPSILON,
                "Point {i} is not on the unit circle: {point:?} has length {}",
                point.length()
            );
        }
    }
}