bevy_math/curve/
adaptors.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
//! Adaptors used by the Curve API for transforming and combining curves together.

use super::interval::*;
use super::Curve;

use crate::VectorSpace;
use core::any::type_name;
use core::fmt::{self, Debug};
use core::marker::PhantomData;

#[cfg(feature = "bevy_reflect")]
use bevy_reflect::{utility::GenericTypePathCell, FromReflect, Reflect, TypePath};

#[cfg(feature = "bevy_reflect")]
mod paths {
    pub(super) const THIS_MODULE: &str = "bevy_math::curve::adaptors";
    pub(super) const THIS_CRATE: &str = "bevy_math";
}

// NOTE ON REFLECTION:
//
// Function members of structs pose an obstacle for reflection, because they don't implement
// reflection traits themselves. Some of these are more problematic than others; for example,
// `FromReflect` is basically hopeless for function members regardless, so function-containing
// adaptors will just never be `FromReflect` (at least until function item types implement
// Default, if that ever happens). Similarly, they do not implement `TypePath`, and as a result,
// those adaptors also need custom `TypePath` adaptors which use `type_name` instead.
//
// The sum total weirdness of the `Reflect` implementations amounts to this; those adaptors:
// - are currently never `FromReflect`;
// - have custom `TypePath` implementations which are not fully stable;
// - have custom `Debug` implementations which display the function only by type name.

/// A curve with a constant value over its domain.
///
/// This is a curve that holds an inner value and always produces a clone of that value when sampled.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
pub struct ConstantCurve<T> {
    pub(crate) domain: Interval,
    pub(crate) value: T,
}

impl<T> ConstantCurve<T>
where
    T: Clone,
{
    /// Create a constant curve, which has the given `domain` and always produces the given `value`
    /// when sampled.
    pub fn new(domain: Interval, value: T) -> Self {
        Self { domain, value }
    }
}

impl<T> Curve<T> for ConstantCurve<T>
where
    T: Clone,
{
    #[inline]
    fn domain(&self) -> Interval {
        self.domain
    }

    #[inline]
    fn sample_unchecked(&self, _t: f32) -> T {
        self.value.clone()
    }
}

/// A curve defined by a function together with a fixed domain.
///
/// This is a curve that holds an inner function `f` which takes numbers (`f32`) as input and produces
/// output of type `T`. The value of this curve when sampled at time `t` is just `f(t)`.
#[derive(Clone)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect),
    reflect(where T: TypePath),
    reflect(from_reflect = false, type_path = false),
)]
pub struct FunctionCurve<T, F> {
    pub(crate) domain: Interval,
    #[cfg_attr(feature = "bevy_reflect", reflect(ignore))]
    pub(crate) f: F,
    #[cfg_attr(feature = "bevy_reflect", reflect(ignore))]
    pub(crate) _phantom: PhantomData<fn() -> T>,
}

impl<T, F> Debug for FunctionCurve<T, F> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("FunctionCurve")
            .field("domain", &self.domain)
            .field("f", &type_name::<F>())
            .finish()
    }
}

/// Note: This is not a fully stable implementation of `TypePath` due to usage of `type_name`
/// for function members.
#[cfg(feature = "bevy_reflect")]
impl<T, F> TypePath for FunctionCurve<T, F>
where
    T: TypePath,
    F: 'static,
{
    fn type_path() -> &'static str {
        static CELL: GenericTypePathCell = GenericTypePathCell::new();
        CELL.get_or_insert::<Self, _>(|| {
            format!(
                "{}::FunctionCurve<{},{}>",
                paths::THIS_MODULE,
                T::type_path(),
                type_name::<F>()
            )
        })
    }

    fn short_type_path() -> &'static str {
        static CELL: GenericTypePathCell = GenericTypePathCell::new();
        CELL.get_or_insert::<Self, _>(|| {
            format!(
                "FunctionCurve<{},{}>",
                T::short_type_path(),
                type_name::<F>()
            )
        })
    }

    fn type_ident() -> Option<&'static str> {
        Some("FunctionCurve")
    }

    fn crate_name() -> Option<&'static str> {
        Some(paths::THIS_CRATE)
    }

    fn module_path() -> Option<&'static str> {
        Some(paths::THIS_MODULE)
    }
}

impl<T, F> FunctionCurve<T, F>
where
    F: Fn(f32) -> T,
{
    /// Create a new curve with the given `domain` from the given `function`. When sampled, the
    /// `function` is evaluated at the sample time to compute the output.
    pub fn new(domain: Interval, function: F) -> Self {
        FunctionCurve {
            domain,
            f: function,
            _phantom: PhantomData,
        }
    }
}

impl<T, F> Curve<T> for FunctionCurve<T, F>
where
    F: Fn(f32) -> T,
{
    #[inline]
    fn domain(&self) -> Interval {
        self.domain
    }

    #[inline]
    fn sample_unchecked(&self, t: f32) -> T {
        (self.f)(t)
    }
}

/// A curve whose samples are defined by mapping samples from another curve through a
/// given function. Curves of this type are produced by [`Curve::map`].
#[derive(Clone)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect),
    reflect(where S: TypePath, T: TypePath, C: TypePath),
    reflect(from_reflect = false, type_path = false),
)]
pub struct MapCurve<S, T, C, F> {
    pub(crate) preimage: C,
    #[cfg_attr(feature = "bevy_reflect", reflect(ignore))]
    pub(crate) f: F,
    #[cfg_attr(feature = "bevy_reflect", reflect(ignore))]
    pub(crate) _phantom: PhantomData<(fn() -> S, fn(S) -> T)>,
}

impl<S, T, C, F> Debug for MapCurve<S, T, C, F>
where
    C: Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("MapCurve")
            .field("preimage", &self.preimage)
            .field("f", &type_name::<F>())
            .finish()
    }
}

/// Note: This is not a fully stable implementation of `TypePath` due to usage of `type_name`
/// for function members.
#[cfg(feature = "bevy_reflect")]
impl<S, T, C, F> TypePath for MapCurve<S, T, C, F>
where
    S: TypePath,
    T: TypePath,
    C: TypePath,
    F: 'static,
{
    fn type_path() -> &'static str {
        static CELL: GenericTypePathCell = GenericTypePathCell::new();
        CELL.get_or_insert::<Self, _>(|| {
            format!(
                "{}::MapCurve<{},{},{},{}>",
                paths::THIS_MODULE,
                S::type_path(),
                T::type_path(),
                C::type_path(),
                type_name::<F>()
            )
        })
    }

    fn short_type_path() -> &'static str {
        static CELL: GenericTypePathCell = GenericTypePathCell::new();
        CELL.get_or_insert::<Self, _>(|| {
            format!(
                "MapCurve<{},{},{},{}>",
                S::type_path(),
                T::type_path(),
                C::type_path(),
                type_name::<F>()
            )
        })
    }

    fn type_ident() -> Option<&'static str> {
        Some("MapCurve")
    }

    fn crate_name() -> Option<&'static str> {
        Some(paths::THIS_CRATE)
    }

    fn module_path() -> Option<&'static str> {
        Some(paths::THIS_MODULE)
    }
}

impl<S, T, C, F> Curve<T> for MapCurve<S, T, C, F>
where
    C: Curve<S>,
    F: Fn(S) -> T,
{
    #[inline]
    fn domain(&self) -> Interval {
        self.preimage.domain()
    }

    #[inline]
    fn sample_unchecked(&self, t: f32) -> T {
        (self.f)(self.preimage.sample_unchecked(t))
    }
}

/// A curve whose sample space is mapped onto that of some base curve's before sampling.
/// Curves of this type are produced by [`Curve::reparametrize`].
#[derive(Clone)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect),
    reflect(where T: TypePath, C: TypePath),
    reflect(from_reflect = false, type_path = false),
)]
pub struct ReparamCurve<T, C, F> {
    pub(crate) domain: Interval,
    pub(crate) base: C,
    #[cfg_attr(feature = "bevy_reflect", reflect(ignore))]
    pub(crate) f: F,
    #[cfg_attr(feature = "bevy_reflect", reflect(ignore))]
    pub(crate) _phantom: PhantomData<fn() -> T>,
}

impl<T, C, F> Debug for ReparamCurve<T, C, F>
where
    C: Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("ReparamCurve")
            .field("domain", &self.domain)
            .field("base", &self.base)
            .field("f", &type_name::<F>())
            .finish()
    }
}

/// Note: This is not a fully stable implementation of `TypePath` due to usage of `type_name`
/// for function members.
#[cfg(feature = "bevy_reflect")]
impl<T, C, F> TypePath for ReparamCurve<T, C, F>
where
    T: TypePath,
    C: TypePath,
    F: 'static,
{
    fn type_path() -> &'static str {
        static CELL: GenericTypePathCell = GenericTypePathCell::new();
        CELL.get_or_insert::<Self, _>(|| {
            format!(
                "{}::ReparamCurve<{},{},{}>",
                paths::THIS_MODULE,
                T::type_path(),
                C::type_path(),
                type_name::<F>()
            )
        })
    }

    fn short_type_path() -> &'static str {
        static CELL: GenericTypePathCell = GenericTypePathCell::new();
        CELL.get_or_insert::<Self, _>(|| {
            format!(
                "ReparamCurve<{},{},{}>",
                T::type_path(),
                C::type_path(),
                type_name::<F>()
            )
        })
    }

    fn type_ident() -> Option<&'static str> {
        Some("ReparamCurve")
    }

    fn crate_name() -> Option<&'static str> {
        Some(paths::THIS_CRATE)
    }

    fn module_path() -> Option<&'static str> {
        Some(paths::THIS_MODULE)
    }
}

impl<T, C, F> Curve<T> for ReparamCurve<T, C, F>
where
    C: Curve<T>,
    F: Fn(f32) -> f32,
{
    #[inline]
    fn domain(&self) -> Interval {
        self.domain
    }

    #[inline]
    fn sample_unchecked(&self, t: f32) -> T {
        self.base.sample_unchecked((self.f)(t))
    }
}

/// A curve that has had its domain changed by a linear reparametrization (stretching and scaling).
/// Curves of this type are produced by [`Curve::reparametrize_linear`].
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect, FromReflect),
    reflect(from_reflect = false)
)]
pub struct LinearReparamCurve<T, C> {
    /// Invariants: The domain of this curve must always be bounded.
    pub(crate) base: C,
    /// Invariants: This interval must always be bounded.
    pub(crate) new_domain: Interval,
    #[cfg_attr(feature = "bevy_reflect", reflect(ignore))]
    pub(crate) _phantom: PhantomData<fn() -> T>,
}

impl<T, C> Curve<T> for LinearReparamCurve<T, C>
where
    C: Curve<T>,
{
    #[inline]
    fn domain(&self) -> Interval {
        self.new_domain
    }

    #[inline]
    fn sample_unchecked(&self, t: f32) -> T {
        // The invariants imply this unwrap always succeeds.
        let f = self.new_domain.linear_map_to(self.base.domain()).unwrap();
        self.base.sample_unchecked(f(t))
    }
}

/// A curve that has been reparametrized by another curve, using that curve to transform the
/// sample times before sampling. Curves of this type are produced by [`Curve::reparametrize_by_curve`].
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect, FromReflect),
    reflect(from_reflect = false)
)]
pub struct CurveReparamCurve<T, C, D> {
    pub(crate) base: C,
    pub(crate) reparam_curve: D,
    #[cfg_attr(feature = "bevy_reflect", reflect(ignore))]
    pub(crate) _phantom: PhantomData<fn() -> T>,
}

impl<T, C, D> Curve<T> for CurveReparamCurve<T, C, D>
where
    C: Curve<T>,
    D: Curve<f32>,
{
    #[inline]
    fn domain(&self) -> Interval {
        self.reparam_curve.domain()
    }

    #[inline]
    fn sample_unchecked(&self, t: f32) -> T {
        let sample_time = self.reparam_curve.sample_unchecked(t);
        self.base.sample_unchecked(sample_time)
    }
}

/// A curve that is the graph of another curve over its parameter space. Curves of this type are
/// produced by [`Curve::graph`].
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect, FromReflect),
    reflect(from_reflect = false)
)]
pub struct GraphCurve<T, C> {
    pub(crate) base: C,
    #[cfg_attr(feature = "bevy_reflect", reflect(ignore))]
    pub(crate) _phantom: PhantomData<fn() -> T>,
}

impl<T, C> Curve<(f32, T)> for GraphCurve<T, C>
where
    C: Curve<T>,
{
    #[inline]
    fn domain(&self) -> Interval {
        self.base.domain()
    }

    #[inline]
    fn sample_unchecked(&self, t: f32) -> (f32, T) {
        (t, self.base.sample_unchecked(t))
    }
}

/// A curve that combines the output data from two constituent curves into a tuple output. Curves
/// of this type are produced by [`Curve::zip`].
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect, FromReflect),
    reflect(from_reflect = false)
)]
pub struct ZipCurve<S, T, C, D> {
    pub(crate) domain: Interval,
    pub(crate) first: C,
    pub(crate) second: D,
    #[cfg_attr(feature = "bevy_reflect", reflect(ignore))]
    pub(crate) _phantom: PhantomData<fn() -> (S, T)>,
}

impl<S, T, C, D> Curve<(S, T)> for ZipCurve<S, T, C, D>
where
    C: Curve<S>,
    D: Curve<T>,
{
    #[inline]
    fn domain(&self) -> Interval {
        self.domain
    }

    #[inline]
    fn sample_unchecked(&self, t: f32) -> (S, T) {
        (
            self.first.sample_unchecked(t),
            self.second.sample_unchecked(t),
        )
    }
}

/// The curve that results from chaining one curve with another. The second curve is
/// effectively reparametrized so that its start is at the end of the first.
///
/// For this to be well-formed, the first curve's domain must be right-finite and the second's
/// must be left-finite.
///
/// Curves of this type are produced by [`Curve::chain`].
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect, FromReflect),
    reflect(from_reflect = false)
)]
pub struct ChainCurve<T, C, D> {
    pub(crate) first: C,
    pub(crate) second: D,
    #[cfg_attr(feature = "bevy_reflect", reflect(ignore))]
    pub(crate) _phantom: PhantomData<fn() -> T>,
}

impl<T, C, D> Curve<T> for ChainCurve<T, C, D>
where
    C: Curve<T>,
    D: Curve<T>,
{
    #[inline]
    fn domain(&self) -> Interval {
        // This unwrap always succeeds because `first` has a valid Interval as its domain and the
        // length of `second` cannot be NAN. It's still fine if it's infinity.
        Interval::new(
            self.first.domain().start(),
            self.first.domain().end() + self.second.domain().length(),
        )
        .unwrap()
    }

    #[inline]
    fn sample_unchecked(&self, t: f32) -> T {
        if t > self.first.domain().end() {
            self.second.sample_unchecked(
                // `t - first.domain.end` computes the offset into the domain of the second.
                t - self.first.domain().end() + self.second.domain().start(),
            )
        } else {
            self.first.sample_unchecked(t)
        }
    }
}

/// The curve that results from reversing another.
///
/// Curves of this type are produced by [`Curve::reverse`].
///
/// # Domain
///
/// The original curve's domain must be bounded to get a valid [`ReverseCurve`].
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect, FromReflect),
    reflect(from_reflect = false)
)]
pub struct ReverseCurve<T, C> {
    pub(crate) curve: C,
    #[cfg_attr(feature = "bevy_reflect", reflect(ignore))]
    pub(crate) _phantom: PhantomData<fn() -> T>,
}

impl<T, C> Curve<T> for ReverseCurve<T, C>
where
    C: Curve<T>,
{
    #[inline]
    fn domain(&self) -> Interval {
        self.curve.domain()
    }

    #[inline]
    fn sample_unchecked(&self, t: f32) -> T {
        self.curve
            .sample_unchecked(self.domain().end() - (t - self.domain().start()))
    }
}

/// The curve that results from repeating a curve `N` times.
///
/// # Notes
///
/// - the value at the transitioning points (`domain.end() * n` for `n >= 1`) in the results is the
///   value at `domain.end()` in the original curve
///
/// Curves of this type are produced by [`Curve::repeat`].
///
/// # Domain
///
/// The original curve's domain must be bounded to get a valid [`RepeatCurve`].
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect, FromReflect),
    reflect(from_reflect = false)
)]
pub struct RepeatCurve<T, C> {
    pub(crate) domain: Interval,
    pub(crate) curve: C,
    #[cfg_attr(feature = "bevy_reflect", reflect(ignore))]
    pub(crate) _phantom: PhantomData<fn() -> T>,
}

impl<T, C> Curve<T> for RepeatCurve<T, C>
where
    C: Curve<T>,
{
    #[inline]
    fn domain(&self) -> Interval {
        self.domain
    }

    #[inline]
    fn sample_unchecked(&self, t: f32) -> T {
        // the domain is bounded by construction
        let d = self.curve.domain();
        let cyclic_t = (t - d.start()).rem_euclid(d.length());
        let t = if t != d.start() && cyclic_t == 0.0 {
            d.end()
        } else {
            d.start() + cyclic_t
        };
        self.curve.sample_unchecked(t)
    }
}

/// The curve that results from repeating a curve forever.
///
/// # Notes
///
/// - the value at the transitioning points (`domain.end() * n` for `n >= 1`) in the results is the
///   value at `domain.end()` in the original curve
///
/// Curves of this type are produced by [`Curve::forever`].
///
/// # Domain
///
/// The original curve's domain must be bounded to get a valid [`ForeverCurve`].
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect, FromReflect),
    reflect(from_reflect = false)
)]
pub struct ForeverCurve<T, C> {
    pub(crate) curve: C,
    #[cfg_attr(feature = "bevy_reflect", reflect(ignore))]
    pub(crate) _phantom: PhantomData<fn() -> T>,
}

impl<T, C> Curve<T> for ForeverCurve<T, C>
where
    C: Curve<T>,
{
    #[inline]
    fn domain(&self) -> Interval {
        Interval::EVERYWHERE
    }

    #[inline]
    fn sample_unchecked(&self, t: f32) -> T {
        // the domain is bounded by construction
        let d = self.curve.domain();
        let cyclic_t = (t - d.start()).rem_euclid(d.length());
        let t = if t != d.start() && cyclic_t == 0.0 {
            d.end()
        } else {
            d.start() + cyclic_t
        };
        self.curve.sample_unchecked(t)
    }
}

/// The curve that results from chaining a curve with its reversed version. The transition point
/// is guaranteed to make no jump.
///
/// Curves of this type are produced by [`Curve::ping_pong`].
///
/// # Domain
///
/// The original curve's domain must be right-finite to get a valid [`PingPongCurve`].
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect, FromReflect),
    reflect(from_reflect = false)
)]
pub struct PingPongCurve<T, C> {
    pub(crate) curve: C,
    #[cfg_attr(feature = "bevy_reflect", reflect(ignore))]
    pub(crate) _phantom: PhantomData<fn() -> T>,
}

impl<T, C> Curve<T> for PingPongCurve<T, C>
where
    C: Curve<T>,
{
    #[inline]
    fn domain(&self) -> Interval {
        // This unwrap always succeeds because `curve` has a valid Interval as its domain and the
        // length of `curve` cannot be NAN. It's still fine if it's infinity.
        Interval::new(
            self.curve.domain().start(),
            self.curve.domain().end() + self.curve.domain().length(),
        )
        .unwrap()
    }

    #[inline]
    fn sample_unchecked(&self, t: f32) -> T {
        // the domain is bounded by construction
        let final_t = if t > self.curve.domain().end() {
            self.curve.domain().end() * 2.0 - t
        } else {
            t
        };
        self.curve.sample_unchecked(final_t)
    }
}

/// The curve that results from chaining two curves.
///
/// Additionally the transition of the samples is guaranteed to not make sudden jumps. This is
/// useful if you really just know about the shapes of your curves and don't want to deal with
/// stitching them together properly when it would just introduce useless complexity. It is
/// realized by translating the second curve so that its start sample point coincides with the
/// first curves' end sample point.
///
/// Curves of this type are produced by [`Curve::chain_continue`].
///
/// # Domain
///
/// The first curve's domain must be right-finite and the second's must be left-finite to get a
/// valid [`ContinuationCurve`].
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect, FromReflect),
    reflect(from_reflect = false)
)]
pub struct ContinuationCurve<T, C, D> {
    pub(crate) first: C,
    pub(crate) second: D,
    // cache the offset in the curve directly to prevent triple sampling for every sample we make
    pub(crate) offset: T,
    #[cfg_attr(feature = "bevy_reflect", reflect(ignore))]
    pub(crate) _phantom: PhantomData<fn() -> T>,
}

impl<T, C, D> Curve<T> for ContinuationCurve<T, C, D>
where
    T: VectorSpace,
    C: Curve<T>,
    D: Curve<T>,
{
    #[inline]
    fn domain(&self) -> Interval {
        // This unwrap always succeeds because `curve` has a valid Interval as its domain and the
        // length of `curve` cannot be NAN. It's still fine if it's infinity.
        Interval::new(
            self.first.domain().start(),
            self.first.domain().end() + self.second.domain().length(),
        )
        .unwrap()
    }

    #[inline]
    fn sample_unchecked(&self, t: f32) -> T {
        if t > self.first.domain().end() {
            self.second.sample_unchecked(
                // `t - first.domain.end` computes the offset into the domain of the second.
                t - self.first.domain().end() + self.second.domain().start(),
            ) + self.offset
        } else {
            self.first.sample_unchecked(t)
        }
    }
}