bevy_math/curve/cores.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
//! Core data structures to be used internally in Curve implementations, encapsulating storage
//! and access patterns for reuse.
//!
//! The `Core` types here expose their fields publicly so that it is easier to manipulate and
//! extend them, but in doing so, you must maintain the invariants of those fields yourself. The
//! provided methods all maintain the invariants, so this is only a concern if you manually mutate
//! the fields.
use super::interval::Interval;
use core::fmt::Debug;
use derive_more::derive::{Display, Error};
use itertools::Itertools;
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::Reflect;
/// This type expresses the relationship of a value to a fixed collection of values. It is a kind
/// of summary used intermediately by sampling operations.
#[derive(Debug, Copy, Clone, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
pub enum InterpolationDatum<T> {
/// This value lies exactly on a value in the family.
Exact(T),
/// This value is off the left tail of the family; the inner value is the family's leftmost.
LeftTail(T),
/// This value is off the right tail of the family; the inner value is the family's rightmost.
RightTail(T),
/// This value lies on the interior, in between two points, with a third parameter expressing
/// the interpolation factor between the two.
Between(T, T, f32),
}
impl<T> InterpolationDatum<T> {
/// Map all values using a given function `f`, leaving the interpolation parameters in any
/// [`Between`] variants unchanged.
///
/// [`Between`]: `InterpolationDatum::Between`
#[must_use]
pub fn map<S>(self, f: impl Fn(T) -> S) -> InterpolationDatum<S> {
match self {
InterpolationDatum::Exact(v) => InterpolationDatum::Exact(f(v)),
InterpolationDatum::LeftTail(v) => InterpolationDatum::LeftTail(f(v)),
InterpolationDatum::RightTail(v) => InterpolationDatum::RightTail(f(v)),
InterpolationDatum::Between(u, v, s) => InterpolationDatum::Between(f(u), f(v), s),
}
}
}
/// The data core of a curve derived from evenly-spaced samples. The intention is to use this
/// in addition to explicit or inferred interpolation information in user-space in order to
/// implement curves using [`domain`] and [`sample_with`].
///
/// The internals are made transparent to give curve authors freedom, but [the provided constructor]
/// enforces the required invariants, and the methods maintain those invariants.
///
/// [the provided constructor]: EvenCore::new
/// [`domain`]: EvenCore::domain
/// [`sample_with`]: EvenCore::sample_with
///
/// # Example
/// ```rust
/// # use bevy_math::curve::*;
/// # use bevy_math::curve::cores::*;
/// // Let's make a curve that interpolates evenly spaced samples using either linear interpolation
/// // or step "interpolation" — i.e. just using the most recent sample as the source of truth.
/// enum InterpolationMode {
/// Linear,
/// Step,
/// }
///
/// // Linear interpolation mode is driven by a trait.
/// trait LinearInterpolate {
/// fn lerp(&self, other: &Self, t: f32) -> Self;
/// }
///
/// // Step interpolation just uses an explicit function.
/// fn step<T: Clone>(first: &T, second: &T, t: f32) -> T {
/// if t >= 1.0 {
/// second.clone()
/// } else {
/// first.clone()
/// }
/// }
///
/// // Omitted: Implementing `LinearInterpolate` on relevant types; e.g. `f32`, `Vec3`, and so on.
///
/// // The curve itself uses `EvenCore` to hold the evenly-spaced samples, and the `sample_with`
/// // function will do all the work of interpolating once given a function to do it with.
/// struct MyCurve<T> {
/// core: EvenCore<T>,
/// interpolation_mode: InterpolationMode,
/// }
///
/// impl<T> Curve<T> for MyCurve<T>
/// where
/// T: LinearInterpolate + Clone,
/// {
/// fn domain(&self) -> Interval {
/// self.core.domain()
/// }
///
/// fn sample_unchecked(&self, t: f32) -> T {
/// // To sample this curve, check the interpolation mode and dispatch accordingly.
/// match self.interpolation_mode {
/// InterpolationMode::Linear => self.core.sample_with(t, <T as LinearInterpolate>::lerp),
/// InterpolationMode::Step => self.core.sample_with(t, step),
/// }
/// }
/// }
/// ```
#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
pub struct EvenCore<T> {
/// The domain over which the samples are taken, which corresponds to the domain of the curve
/// formed by interpolating them.
///
/// # Invariants
/// This must always be a bounded interval; i.e. its endpoints must be finite.
pub domain: Interval,
/// The samples that are interpolated to extract values.
///
/// # Invariants
/// This must always have a length of at least 2.
pub samples: Vec<T>,
}
/// An error indicating that an [`EvenCore`] could not be constructed.
#[derive(Debug, Error, Display)]
#[display("Could not construct an EvenCore")]
pub enum EvenCoreError {
/// Not enough samples were provided.
#[display("Need at least two samples to create an EvenCore, but {samples} were provided")]
NotEnoughSamples {
/// The number of samples that were provided.
samples: usize,
},
/// Unbounded domains are not compatible with `EvenCore`.
#[display("Cannot create a EvenCore over an unbounded domain")]
UnboundedDomain,
}
impl<T> EvenCore<T> {
/// Create a new [`EvenCore`] from the specified `domain` and `samples`. The samples are
/// regarded to be evenly spaced within the given domain interval, so that the outermost
/// samples form the boundary of that interval. An error is returned if there are not at
/// least 2 samples or if the given domain is unbounded.
#[inline]
pub fn new(
domain: Interval,
samples: impl IntoIterator<Item = T>,
) -> Result<Self, EvenCoreError> {
let samples: Vec<T> = samples.into_iter().collect();
if samples.len() < 2 {
return Err(EvenCoreError::NotEnoughSamples {
samples: samples.len(),
});
}
if !domain.is_bounded() {
return Err(EvenCoreError::UnboundedDomain);
}
Ok(EvenCore { domain, samples })
}
/// The domain of the curve derived from this core.
#[inline]
pub const fn domain(&self) -> Interval {
self.domain
}
/// Obtain a value from the held samples using the given `interpolation` to interpolate
/// between adjacent samples.
///
/// The interpolation takes two values by reference together with a scalar parameter and
/// produces an owned value. The expectation is that `interpolation(&x, &y, 0.0)` and
/// `interpolation(&x, &y, 1.0)` are equivalent to `x` and `y` respectively.
#[inline]
pub fn sample_with<I>(&self, t: f32, interpolation: I) -> T
where
T: Clone,
I: Fn(&T, &T, f32) -> T,
{
match even_interp(self.domain, self.samples.len(), t) {
InterpolationDatum::Exact(idx)
| InterpolationDatum::LeftTail(idx)
| InterpolationDatum::RightTail(idx) => self.samples[idx].clone(),
InterpolationDatum::Between(lower_idx, upper_idx, s) => {
interpolation(&self.samples[lower_idx], &self.samples[upper_idx], s)
}
}
}
/// Given a time `t`, obtain a [`InterpolationDatum`] which governs how interpolation might recover
/// a sample at time `t`. For example, when a [`Between`] value is returned, its contents can
/// be used to interpolate between the two contained values with the given parameter. The other
/// variants give additional context about where the value is relative to the family of samples.
///
/// [`Between`]: `InterpolationDatum::Between`
pub fn sample_interp(&self, t: f32) -> InterpolationDatum<&T> {
even_interp(self.domain, self.samples.len(), t).map(|idx| &self.samples[idx])
}
/// Like [`sample_interp`], but the returned values include the sample times. This can be
/// useful when sample interpolation is not scale-invariant.
///
/// [`sample_interp`]: EvenCore::sample_interp
pub fn sample_interp_timed(&self, t: f32) -> InterpolationDatum<(f32, &T)> {
let segment_len = self.domain.length() / (self.samples.len() - 1) as f32;
even_interp(self.domain, self.samples.len(), t).map(|idx| {
(
self.domain.start() + segment_len * idx as f32,
&self.samples[idx],
)
})
}
}
/// Given a domain and a number of samples taken over that interval, return an [`InterpolationDatum`]
/// that governs how samples are extracted relative to the stored data.
///
/// `domain` must be a bounded interval (i.e. `domain.is_bounded() == true`).
///
/// `samples` must be at least 2.
///
/// This function will never panic, but it may return invalid indices if its assumptions are violated.
pub fn even_interp(domain: Interval, samples: usize, t: f32) -> InterpolationDatum<usize> {
let subdivs = samples - 1;
let step = domain.length() / subdivs as f32;
let t_shifted = t - domain.start();
let steps_taken = t_shifted / step;
if steps_taken <= 0.0 {
// To the left side of all the samples.
InterpolationDatum::LeftTail(0)
} else if steps_taken >= subdivs as f32 {
// To the right side of all the samples
InterpolationDatum::RightTail(samples - 1)
} else {
let lower_index = steps_taken.floor() as usize;
// This upper index is always valid because `steps_taken` is a finite value
// strictly less than `samples - 1`, so its floor is at most `samples - 2`
let upper_index = lower_index + 1;
let s = steps_taken.fract();
InterpolationDatum::Between(lower_index, upper_index, s)
}
}
/// The data core of a curve defined by unevenly-spaced samples or keyframes. The intention is to
/// use this in concert with implicitly or explicitly-defined interpolation in user-space in
/// order to implement the curve interface using [`domain`] and [`sample_with`].
///
/// The internals are made transparent to give curve authors freedom, but [the provided constructor]
/// enforces the required invariants, and the methods maintain those invariants.
///
/// # Example
/// ```rust
/// # use bevy_math::curve::*;
/// # use bevy_math::curve::cores::*;
/// // Let's make a curve formed by interpolating rotations.
/// // We'll support two common modes of interpolation:
/// // - Normalized linear: First do linear interpolation, then normalize to get a valid rotation.
/// // - Spherical linear: Interpolate through valid rotations with constant angular velocity.
/// enum InterpolationMode {
/// NormalizedLinear,
/// SphericalLinear,
/// }
///
/// // Our interpolation modes will be driven by traits.
/// trait NormalizedLinearInterpolate {
/// fn nlerp(&self, other: &Self, t: f32) -> Self;
/// }
///
/// trait SphericalLinearInterpolate {
/// fn slerp(&self, other: &Self, t: f32) -> Self;
/// }
///
/// // Omitted: These traits would be implemented for `Rot2`, `Quat`, and other rotation representations.
///
/// // The curve itself just needs to use the curve core for keyframes, `UnevenCore`, which handles
/// // everything except for the explicit interpolation used.
/// struct RotationCurve<T> {
/// core: UnevenCore<T>,
/// interpolation_mode: InterpolationMode,
/// }
///
/// impl<T> Curve<T> for RotationCurve<T>
/// where
/// T: NormalizedLinearInterpolate + SphericalLinearInterpolate + Clone,
/// {
/// fn domain(&self) -> Interval {
/// self.core.domain()
/// }
///
/// fn sample_unchecked(&self, t: f32) -> T {
/// // To sample the curve, we just look at the interpolation mode and
/// // dispatch accordingly.
/// match self.interpolation_mode {
/// InterpolationMode::NormalizedLinear =>
/// self.core.sample_with(t, <T as NormalizedLinearInterpolate>::nlerp),
/// InterpolationMode::SphericalLinear =>
/// self.core.sample_with(t, <T as SphericalLinearInterpolate>::slerp),
/// }
/// }
/// }
/// ```
///
/// [`domain`]: UnevenCore::domain
/// [`sample_with`]: UnevenCore::sample_with
/// [the provided constructor]: UnevenCore::new
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
pub struct UnevenCore<T> {
/// The times for the samples of this curve.
///
/// # Invariants
/// This must always have a length of at least 2, be sorted, and have no
/// duplicated or non-finite times.
pub times: Vec<f32>,
/// The samples corresponding to the times for this curve.
///
/// # Invariants
/// This must always have the same length as `times`.
pub samples: Vec<T>,
}
/// An error indicating that an [`UnevenCore`] could not be constructed.
#[derive(Debug, Error, Display)]
#[display("Could not construct an UnevenCore")]
pub enum UnevenCoreError {
/// Not enough samples were provided.
#[display(
"Need at least two unique samples to create an UnevenCore, but {samples} were provided"
)]
NotEnoughSamples {
/// The number of samples that were provided.
samples: usize,
},
}
impl<T> UnevenCore<T> {
/// Create a new [`UnevenCore`]. The given samples are filtered to finite times and
/// sorted internally; if there are not at least 2 valid timed samples, an error will be
/// returned.
pub fn new(timed_samples: impl IntoIterator<Item = (f32, T)>) -> Result<Self, UnevenCoreError> {
// Filter out non-finite sample times first so they don't interfere with sorting/deduplication.
let mut timed_samples = timed_samples
.into_iter()
.filter(|(t, _)| t.is_finite())
.collect_vec();
timed_samples
// Using `total_cmp` is fine because no NANs remain and because deduplication uses
// `PartialEq` anyway (so -0.0 and 0.0 will be considered equal later regardless).
.sort_by(|(t0, _), (t1, _)| t0.total_cmp(t1));
timed_samples.dedup_by_key(|(t, _)| *t);
if timed_samples.len() < 2 {
return Err(UnevenCoreError::NotEnoughSamples {
samples: timed_samples.len(),
});
}
let (times, samples): (Vec<f32>, Vec<T>) = timed_samples.into_iter().unzip();
Ok(UnevenCore { times, samples })
}
/// The domain of the curve derived from this core.
///
/// # Panics
/// This method may panic if the type's invariants aren't satisfied.
#[inline]
pub fn domain(&self) -> Interval {
let start = self.times.first().unwrap();
let end = self.times.last().unwrap();
Interval::new(*start, *end).unwrap()
}
/// Obtain a value from the held samples using the given `interpolation` to interpolate
/// between adjacent samples.
///
/// The interpolation takes two values by reference together with a scalar parameter and
/// produces an owned value. The expectation is that `interpolation(&x, &y, 0.0)` and
/// `interpolation(&x, &y, 1.0)` are equivalent to `x` and `y` respectively.
#[inline]
pub fn sample_with<I>(&self, t: f32, interpolation: I) -> T
where
T: Clone,
I: Fn(&T, &T, f32) -> T,
{
match uneven_interp(&self.times, t) {
InterpolationDatum::Exact(idx)
| InterpolationDatum::LeftTail(idx)
| InterpolationDatum::RightTail(idx) => self.samples[idx].clone(),
InterpolationDatum::Between(lower_idx, upper_idx, s) => {
interpolation(&self.samples[lower_idx], &self.samples[upper_idx], s)
}
}
}
/// Given a time `t`, obtain a [`InterpolationDatum`] which governs how interpolation might recover
/// a sample at time `t`. For example, when a [`Between`] value is returned, its contents can
/// be used to interpolate between the two contained values with the given parameter. The other
/// variants give additional context about where the value is relative to the family of samples.
///
/// [`Between`]: `InterpolationDatum::Between`
pub fn sample_interp(&self, t: f32) -> InterpolationDatum<&T> {
uneven_interp(&self.times, t).map(|idx| &self.samples[idx])
}
/// Like [`sample_interp`], but the returned values include the sample times. This can be
/// useful when sample interpolation is not scale-invariant.
///
/// [`sample_interp`]: UnevenCore::sample_interp
pub fn sample_interp_timed(&self, t: f32) -> InterpolationDatum<(f32, &T)> {
uneven_interp(&self.times, t).map(|idx| (self.times[idx], &self.samples[idx]))
}
/// This core, but with the sample times moved by the map `f`.
/// In principle, when `f` is monotone, this is equivalent to [`Curve::reparametrize`],
/// but the function inputs to each are inverses of one another.
///
/// The samples are re-sorted by time after mapping and deduplicated by output time, so
/// the function `f` should generally be injective over the set of sample times, otherwise
/// data will be deleted.
///
/// [`Curve::reparametrize`]: crate::curve::Curve::reparametrize
#[must_use]
pub fn map_sample_times(mut self, f: impl Fn(f32) -> f32) -> UnevenCore<T> {
let mut timed_samples = self
.times
.into_iter()
.map(f)
.zip(self.samples)
.collect_vec();
timed_samples.sort_by(|(t1, _), (t2, _)| t1.total_cmp(t2));
timed_samples.dedup_by_key(|(t, _)| *t);
(self.times, self.samples) = timed_samples.into_iter().unzip();
self
}
}
/// The data core of a curve using uneven samples (i.e. keyframes), where each sample time
/// yields some fixed number of values — the [sampling width]. This may serve as storage for
/// curves that yield vectors or iterators, and in some cases, it may be useful for cache locality
/// if the sample type can effectively be encoded as a fixed-length slice of values.
///
/// [sampling width]: ChunkedUnevenCore::width
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
pub struct ChunkedUnevenCore<T> {
/// The times, one for each sample.
///
/// # Invariants
/// This must always have a length of at least 2, be sorted, and have no duplicated or
/// non-finite times.
pub times: Vec<f32>,
/// The values that are used in sampling. Each width-worth of these correspond to a single sample.
///
/// # Invariants
/// The length of this vector must always be some fixed integer multiple of that of `times`.
pub values: Vec<T>,
}
/// An error that indicates that a [`ChunkedUnevenCore`] could not be formed.
#[derive(Debug, Error, Display)]
#[display("Could not create a ChunkedUnevenCore")]
pub enum ChunkedUnevenCoreError {
/// The width of a `ChunkedUnevenCore` cannot be zero.
#[display("Chunk width must be at least 1")]
ZeroWidth,
/// At least two sample times are necessary to interpolate in `ChunkedUnevenCore`.
#[display(
"Need at least two unique samples to create a ChunkedUnevenCore, but {samples} were provided"
)]
NotEnoughSamples {
/// The number of samples that were provided.
samples: usize,
},
/// The length of the value buffer is supposed to be the `width` times the number of samples.
#[display("Expected {expected} total values based on width, but {actual} were provided")]
MismatchedLengths {
/// The expected length of the value buffer.
expected: usize,
/// The actual length of the value buffer.
actual: usize,
},
/// Tried to infer the width, but the ratio of lengths wasn't an integer, so no such length exists.
#[display("The length of the list of values ({values_len}) was not divisible by that of the list of times ({times_len})")]
NonDivisibleLengths {
/// The length of the value buffer.
values_len: usize,
/// The length of the time buffer.
times_len: usize,
},
}
impl<T> ChunkedUnevenCore<T> {
/// Create a new [`ChunkedUnevenCore`]. The given `times` are sorted, filtered to finite times,
/// and deduplicated. See the [type-level documentation] for more information about this type.
///
/// Produces an error in any of the following circumstances:
/// - `width` is zero.
/// - `times` has less than `2` unique valid entries.
/// - `values` has the incorrect length relative to `times`.
///
/// [type-level documentation]: ChunkedUnevenCore
pub fn new(
times: impl IntoIterator<Item = f32>,
values: impl IntoIterator<Item = T>,
width: usize,
) -> Result<Self, ChunkedUnevenCoreError> {
let times = times.into_iter().collect_vec();
let values = values.into_iter().collect_vec();
if width == 0 {
return Err(ChunkedUnevenCoreError::ZeroWidth);
}
let times = filter_sort_dedup_times(times);
if times.len() < 2 {
return Err(ChunkedUnevenCoreError::NotEnoughSamples {
samples: times.len(),
});
}
if values.len() != times.len() * width {
return Err(ChunkedUnevenCoreError::MismatchedLengths {
expected: times.len() * width,
actual: values.len(),
});
}
Ok(Self { times, values })
}
/// Create a new [`ChunkedUnevenCore`], inferring the width from the sizes of the inputs.
/// The given `times` are sorted, filtered to finite times, and deduplicated. See the
/// [type-level documentation] for more information about this type. Prefer using [`new`]
/// if possible, since that constructor has richer error checking.
///
/// Produces an error in any of the following circumstances:
/// - `values` has length zero.
/// - `times` has less than `2` unique valid entries.
/// - The length of `values` is not divisible by that of `times` (once sorted, filtered,
/// and deduplicated).
///
/// The [width] is implicitly taken to be the length of `values` divided by that of `times`
/// (once sorted, filtered, and deduplicated).
///
/// [type-level documentation]: ChunkedUnevenCore
/// [`new`]: ChunkedUnevenCore::new
/// [width]: ChunkedUnevenCore::width
pub fn new_width_inferred(
times: impl IntoIterator<Item = f32>,
values: impl IntoIterator<Item = T>,
) -> Result<Self, ChunkedUnevenCoreError> {
let times = times.into_iter().collect_vec();
let values = values.into_iter().collect_vec();
let times = filter_sort_dedup_times(times);
if times.len() < 2 {
return Err(ChunkedUnevenCoreError::NotEnoughSamples {
samples: times.len(),
});
}
if values.len() % times.len() != 0 {
return Err(ChunkedUnevenCoreError::NonDivisibleLengths {
values_len: values.len(),
times_len: times.len(),
});
}
if values.is_empty() {
return Err(ChunkedUnevenCoreError::ZeroWidth);
}
Ok(Self { times, values })
}
/// The domain of the curve derived from this core.
///
/// # Panics
/// This may panic if this type's invariants aren't met.
#[inline]
pub fn domain(&self) -> Interval {
let start = self.times.first().unwrap();
let end = self.times.last().unwrap();
Interval::new(*start, *end).unwrap()
}
/// The sample width: the number of values that are contained in each sample.
#[inline]
pub fn width(&self) -> usize {
self.values.len() / self.times.len()
}
/// Given a time `t`, obtain a [`InterpolationDatum`] which governs how interpolation might recover
/// a sample at time `t`. For example, when a [`Between`] value is returned, its contents can
/// be used to interpolate between the two contained values with the given parameter. The other
/// variants give additional context about where the value is relative to the family of samples.
///
/// [`Between`]: `InterpolationDatum::Between`
#[inline]
pub fn sample_interp(&self, t: f32) -> InterpolationDatum<&[T]> {
uneven_interp(&self.times, t).map(|idx| self.time_index_to_slice(idx))
}
/// Like [`sample_interp`], but the returned values include the sample times. This can be
/// useful when sample interpolation is not scale-invariant.
///
/// [`sample_interp`]: ChunkedUnevenCore::sample_interp
pub fn sample_interp_timed(&self, t: f32) -> InterpolationDatum<(f32, &[T])> {
uneven_interp(&self.times, t).map(|idx| (self.times[idx], self.time_index_to_slice(idx)))
}
/// Given an index in [times], returns the slice of [values] that correspond to the sample at
/// that time.
///
/// [times]: ChunkedUnevenCore::times
/// [values]: ChunkedUnevenCore::values
#[inline]
fn time_index_to_slice(&self, idx: usize) -> &[T] {
let width = self.width();
let lower_idx = width * idx;
let upper_idx = lower_idx + width;
&self.values[lower_idx..upper_idx]
}
}
/// Sort the given times, deduplicate them, and filter them to only finite times.
fn filter_sort_dedup_times(times: impl IntoIterator<Item = f32>) -> Vec<f32> {
// Filter before sorting/deduplication so that NAN doesn't interfere with them.
let mut times = times.into_iter().filter(|t| t.is_finite()).collect_vec();
times.sort_by(f32::total_cmp);
times.dedup();
times
}
/// Given a list of `times` and a target value, get the interpolation relationship for the
/// target value in terms of the indices of the starting list. In a sense, this encapsulates the
/// heart of uneven/keyframe sampling.
///
/// `times` is assumed to be sorted, deduplicated, and consisting only of finite values. It is also
/// assumed to contain at least two values.
///
/// # Panics
/// This function will panic if `times` contains NAN.
pub fn uneven_interp(times: &[f32], t: f32) -> InterpolationDatum<usize> {
match times.binary_search_by(|pt| pt.partial_cmp(&t).unwrap()) {
Ok(index) => InterpolationDatum::Exact(index),
Err(index) => {
if index == 0 {
// This is before the first keyframe.
InterpolationDatum::LeftTail(0)
} else if index >= times.len() {
// This is after the last keyframe.
InterpolationDatum::RightTail(times.len() - 1)
} else {
// This is actually in the middle somewhere.
let t_lower = times[index - 1];
let t_upper = times[index];
let s = (t - t_lower) / (t_upper - t_lower);
InterpolationDatum::Between(index - 1, index, s)
}
}
}
}
#[cfg(test)]
mod tests {
use super::{ChunkedUnevenCore, EvenCore, UnevenCore};
use crate::curve::{cores::InterpolationDatum, interval};
use approx::{assert_abs_diff_eq, AbsDiffEq};
fn approx_between<T>(datum: InterpolationDatum<T>, start: T, end: T, p: f32) -> bool
where
T: PartialEq,
{
if let InterpolationDatum::Between(m_start, m_end, m_p) = datum {
m_start == start && m_end == end && m_p.abs_diff_eq(&p, 1e-6)
} else {
false
}
}
fn is_left_tail<T>(datum: InterpolationDatum<T>) -> bool {
matches!(datum, InterpolationDatum::LeftTail(_))
}
fn is_right_tail<T>(datum: InterpolationDatum<T>) -> bool {
matches!(datum, InterpolationDatum::RightTail(_))
}
fn is_exact<T>(datum: InterpolationDatum<T>, target: T) -> bool
where
T: PartialEq,
{
if let InterpolationDatum::Exact(v) = datum {
v == target
} else {
false
}
}
#[test]
fn even_sample_interp() {
let even_core = EvenCore::<f32>::new(
interval(0.0, 1.0).unwrap(),
// 11 entries -> 10 segments
vec![0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0],
)
.expect("Failed to construct test core");
let datum = even_core.sample_interp(-1.0);
assert!(is_left_tail(datum));
let datum = even_core.sample_interp(0.0);
assert!(is_left_tail(datum));
let datum = even_core.sample_interp(1.0);
assert!(is_right_tail(datum));
let datum = even_core.sample_interp(2.0);
assert!(is_right_tail(datum));
let datum = even_core.sample_interp(0.05);
let InterpolationDatum::Between(0.0, 1.0, p) = datum else {
panic!("Sample did not lie in the correct subinterval")
};
assert_abs_diff_eq!(p, 0.5);
let datum = even_core.sample_interp(0.05);
assert!(approx_between(datum, &0.0, &1.0, 0.5));
let datum = even_core.sample_interp(0.33);
assert!(approx_between(datum, &3.0, &4.0, 0.3));
let datum = even_core.sample_interp(0.78);
assert!(approx_between(datum, &7.0, &8.0, 0.8));
let datum = even_core.sample_interp(0.5);
assert!(approx_between(datum, &4.0, &5.0, 1.0) || approx_between(datum, &5.0, &6.0, 0.0));
let datum = even_core.sample_interp(0.7);
assert!(approx_between(datum, &6.0, &7.0, 1.0) || approx_between(datum, &7.0, &8.0, 0.0));
}
#[test]
fn uneven_sample_interp() {
let uneven_core = UnevenCore::<f32>::new(vec![
(0.0, 0.0),
(1.0, 3.0),
(2.0, 9.0),
(4.0, 10.0),
(8.0, -5.0),
])
.expect("Failed to construct test core");
let datum = uneven_core.sample_interp(-1.0);
assert!(is_left_tail(datum));
let datum = uneven_core.sample_interp(0.0);
assert!(is_exact(datum, &0.0));
let datum = uneven_core.sample_interp(8.0);
assert!(is_exact(datum, &(-5.0)));
let datum = uneven_core.sample_interp(9.0);
assert!(is_right_tail(datum));
let datum = uneven_core.sample_interp(0.5);
assert!(approx_between(datum, &0.0, &3.0, 0.5));
let datum = uneven_core.sample_interp(2.5);
assert!(approx_between(datum, &9.0, &10.0, 0.25));
let datum = uneven_core.sample_interp(7.0);
assert!(approx_between(datum, &10.0, &(-5.0), 0.75));
let datum = uneven_core.sample_interp(2.0);
assert!(is_exact(datum, &9.0));
let datum = uneven_core.sample_interp(4.0);
assert!(is_exact(datum, &10.0));
}
#[test]
fn chunked_uneven_sample_interp() {
let core =
ChunkedUnevenCore::new(vec![0.0, 2.0, 8.0], vec![0.0, 1.0, 2.0, 3.0, 4.0, 5.0], 2)
.expect("Failed to construct test core");
let datum = core.sample_interp(-1.0);
assert!(is_left_tail(datum));
let datum = core.sample_interp(0.0);
assert!(is_exact(datum, &[0.0, 1.0]));
let datum = core.sample_interp(8.0);
assert!(is_exact(datum, &[4.0, 5.0]));
let datum = core.sample_interp(10.0);
assert!(is_right_tail(datum));
let datum = core.sample_interp(1.0);
assert!(approx_between(datum, &[0.0, 1.0], &[2.0, 3.0], 0.5));
let datum = core.sample_interp(3.0);
assert!(approx_between(datum, &[2.0, 3.0], &[4.0, 5.0], 1.0 / 6.0));
let datum = core.sample_interp(2.0);
assert!(is_exact(datum, &[2.0, 3.0]));
}
}