bevy_math/direction.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
use crate::{
primitives::{Primitive2d, Primitive3d},
Quat, Rot2, Vec2, Vec3, Vec3A,
};
use core::f32::consts::FRAC_1_SQRT_2;
use derive_more::derive::Into;
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::Reflect;
#[cfg(all(feature = "serialize", feature = "bevy_reflect"))]
use bevy_reflect::{ReflectDeserialize, ReflectSerialize};
/// An error indicating that a direction is invalid.
#[derive(Debug, PartialEq)]
pub enum InvalidDirectionError {
/// The length of the direction vector is zero or very close to zero.
Zero,
/// The length of the direction vector is `std::f32::INFINITY`.
Infinite,
/// The length of the direction vector is `NaN`.
NaN,
}
impl InvalidDirectionError {
/// Creates an [`InvalidDirectionError`] from the length of an invalid direction vector.
pub fn from_length(length: f32) -> Self {
if length.is_nan() {
InvalidDirectionError::NaN
} else if !length.is_finite() {
// If the direction is non-finite but also not NaN, it must be infinite
InvalidDirectionError::Infinite
} else {
// If the direction is invalid but neither NaN nor infinite, it must be zero
InvalidDirectionError::Zero
}
}
}
impl core::fmt::Display for InvalidDirectionError {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(
f,
"Direction can not be zero (or very close to zero), or non-finite."
)
}
}
/// Checks that a vector with the given squared length is normalized.
///
/// Warns for small error with a length threshold of approximately `1e-4`,
/// and panics for large error with a length threshold of approximately `1e-2`.
///
/// The format used for the logged warning is `"Warning: {warning} The length is {length}`,
/// and similarly for the error.
#[cfg(debug_assertions)]
fn assert_is_normalized(message: &str, length_squared: f32) {
let length_error_squared = (length_squared - 1.0).abs();
// Panic for large error and warn for slight error.
if length_error_squared > 2e-2 || length_error_squared.is_nan() {
// Length error is approximately 1e-2 or more.
panic!("Error: {message} The length is {}.", length_squared.sqrt());
} else if length_error_squared > 2e-4 {
// Length error is approximately 1e-4 or more.
eprintln!(
"Warning: {message} The length is {}.",
length_squared.sqrt()
);
}
}
/// A normalized vector pointing in a direction in 2D space
#[deprecated(
since = "0.14.0",
note = "`Direction2d` has been renamed. Please use `Dir2` instead."
)]
pub type Direction2d = Dir2;
/// A normalized vector pointing in a direction in 3D space
#[deprecated(
since = "0.14.0",
note = "`Direction3d` has been renamed. Please use `Dir3` instead."
)]
pub type Direction3d = Dir3;
/// A normalized vector pointing in a direction in 2D space
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, PartialEq))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
#[doc(alias = "Direction2d")]
pub struct Dir2(Vec2);
impl Primitive2d for Dir2 {}
impl Dir2 {
/// A unit vector pointing along the positive X axis.
pub const X: Self = Self(Vec2::X);
/// A unit vector pointing along the positive Y axis.
pub const Y: Self = Self(Vec2::Y);
/// A unit vector pointing along the negative X axis.
pub const NEG_X: Self = Self(Vec2::NEG_X);
/// A unit vector pointing along the negative Y axis.
pub const NEG_Y: Self = Self(Vec2::NEG_Y);
/// The directional axes.
pub const AXES: [Self; 2] = [Self::X, Self::Y];
/// The "north" direction, equivalent to [`Dir2::Y`].
pub const NORTH: Self = Self(Vec2::Y);
/// The "south" direction, equivalent to [`Dir2::NEG_Y`].
pub const SOUTH: Self = Self(Vec2::NEG_Y);
/// The "east" direction, equivalent to [`Dir2::X`].
pub const EAST: Self = Self(Vec2::X);
/// The "west" direction, equivalent to [`Dir2::NEG_X`].
pub const WEST: Self = Self(Vec2::NEG_X);
/// The "north-east" direction, between [`Dir2::NORTH`] and [`Dir2::EAST`].
pub const NORTH_EAST: Self = Self(Vec2::new(FRAC_1_SQRT_2, FRAC_1_SQRT_2));
/// The "north-west" direction, between [`Dir2::NORTH`] and [`Dir2::WEST`].
pub const NORTH_WEST: Self = Self(Vec2::new(-FRAC_1_SQRT_2, FRAC_1_SQRT_2));
/// The "south-east" direction, between [`Dir2::SOUTH`] and [`Dir2::EAST`].
pub const SOUTH_EAST: Self = Self(Vec2::new(FRAC_1_SQRT_2, -FRAC_1_SQRT_2));
/// The "south-west" direction, between [`Dir2::SOUTH`] and [`Dir2::WEST`].
pub const SOUTH_WEST: Self = Self(Vec2::new(-FRAC_1_SQRT_2, -FRAC_1_SQRT_2));
/// Create a direction from a finite, nonzero [`Vec2`], normalizing it.
///
/// Returns [`Err(InvalidDirectionError)`](InvalidDirectionError) if the length
/// of the given vector is zero (or very close to zero), infinite, or `NaN`.
pub fn new(value: Vec2) -> Result<Self, InvalidDirectionError> {
Self::new_and_length(value).map(|(dir, _)| dir)
}
/// Create a [`Dir2`] from a [`Vec2`] that is already normalized.
///
/// # Warning
///
/// `value` must be normalized, i.e its length must be `1.0`.
pub fn new_unchecked(value: Vec2) -> Self {
#[cfg(debug_assertions)]
assert_is_normalized(
"The vector given to `Dir2::new_unchecked` is not normalized.",
value.length_squared(),
);
Self(value)
}
/// Create a direction from a finite, nonzero [`Vec2`], normalizing it and
/// also returning its original length.
///
/// Returns [`Err(InvalidDirectionError)`](InvalidDirectionError) if the length
/// of the given vector is zero (or very close to zero), infinite, or `NaN`.
pub fn new_and_length(value: Vec2) -> Result<(Self, f32), InvalidDirectionError> {
let length = value.length();
let direction = (length.is_finite() && length > 0.0).then_some(value / length);
direction
.map(|dir| (Self(dir), length))
.ok_or(InvalidDirectionError::from_length(length))
}
/// Create a direction from its `x` and `y` components.
///
/// Returns [`Err(InvalidDirectionError)`](InvalidDirectionError) if the length
/// of the vector formed by the components is zero (or very close to zero), infinite, or `NaN`.
pub fn from_xy(x: f32, y: f32) -> Result<Self, InvalidDirectionError> {
Self::new(Vec2::new(x, y))
}
/// Create a direction from its `x` and `y` components, assuming the resulting vector is normalized.
///
/// # Warning
///
/// The vector produced from `x` and `y` must be normalized, i.e its length must be `1.0`.
pub fn from_xy_unchecked(x: f32, y: f32) -> Self {
Self::new_unchecked(Vec2::new(x, y))
}
/// Returns the inner [`Vec2`]
pub const fn as_vec2(&self) -> Vec2 {
self.0
}
/// Performs a spherical linear interpolation between `self` and `rhs`
/// based on the value `s`.
///
/// This corresponds to interpolating between the two directions at a constant angular velocity.
///
/// When `s == 0.0`, the result will be equal to `self`.
/// When `s == 1.0`, the result will be equal to `rhs`.
///
/// # Example
///
/// ```
/// # use bevy_math::Dir2;
/// # use approx::{assert_relative_eq, RelativeEq};
/// #
/// let dir1 = Dir2::X;
/// let dir2 = Dir2::Y;
///
/// let result1 = dir1.slerp(dir2, 1.0 / 3.0);
/// assert_relative_eq!(result1, Dir2::from_xy(0.75_f32.sqrt(), 0.5).unwrap());
///
/// let result2 = dir1.slerp(dir2, 0.5);
/// assert_relative_eq!(result2, Dir2::from_xy(0.5_f32.sqrt(), 0.5_f32.sqrt()).unwrap());
/// ```
#[inline]
pub fn slerp(self, rhs: Self, s: f32) -> Self {
let angle = self.angle_to(rhs.0);
Rot2::radians(angle * s) * self
}
/// Get the rotation that rotates this direction to `other`.
#[inline]
pub fn rotation_to(self, other: Self) -> Rot2 {
// Rotate `self` to X-axis, then X-axis to `other`:
other.rotation_from_x() * self.rotation_to_x()
}
/// Get the rotation that rotates `other` to this direction.
#[inline]
pub fn rotation_from(self, other: Self) -> Rot2 {
other.rotation_to(self)
}
/// Get the rotation that rotates the X-axis to this direction.
#[inline]
pub fn rotation_from_x(self) -> Rot2 {
Rot2::from_sin_cos(self.0.y, self.0.x)
}
/// Get the rotation that rotates this direction to the X-axis.
#[inline]
pub fn rotation_to_x(self) -> Rot2 {
// (This is cheap, it just negates one component.)
self.rotation_from_x().inverse()
}
/// Get the rotation that rotates the Y-axis to this direction.
#[inline]
pub fn rotation_from_y(self) -> Rot2 {
// `x <- y`, `y <- -x` correspond to rotating clockwise by pi/2;
// this transforms the Y-axis into the X-axis, maintaining the relative position
// of our direction. Then we just use the same technique as `rotation_from_x`.
Rot2::from_sin_cos(-self.0.x, self.0.y)
}
/// Get the rotation that rotates this direction to the Y-axis.
#[inline]
pub fn rotation_to_y(self) -> Rot2 {
self.rotation_from_y().inverse()
}
/// Returns `self` after an approximate normalization, assuming the value is already nearly normalized.
/// Useful for preventing numerical error accumulation.
/// See [`Dir3::fast_renormalize`] for an example of when such error accumulation might occur.
#[inline]
pub fn fast_renormalize(self) -> Self {
let length_squared = self.0.length_squared();
// Based on a Taylor approximation of the inverse square root, see [`Dir3::fast_renormalize`] for more details.
Self(self * (0.5 * (3.0 - length_squared)))
}
}
impl TryFrom<Vec2> for Dir2 {
type Error = InvalidDirectionError;
fn try_from(value: Vec2) -> Result<Self, Self::Error> {
Self::new(value)
}
}
impl From<Dir2> for Vec2 {
fn from(value: Dir2) -> Self {
value.as_vec2()
}
}
impl core::ops::Deref for Dir2 {
type Target = Vec2;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl core::ops::Neg for Dir2 {
type Output = Self;
fn neg(self) -> Self::Output {
Self(-self.0)
}
}
impl core::ops::Mul<f32> for Dir2 {
type Output = Vec2;
fn mul(self, rhs: f32) -> Self::Output {
self.0 * rhs
}
}
impl core::ops::Mul<Dir2> for f32 {
type Output = Vec2;
fn mul(self, rhs: Dir2) -> Self::Output {
self * rhs.0
}
}
impl core::ops::Mul<Dir2> for Rot2 {
type Output = Dir2;
/// Rotates the [`Dir2`] using a [`Rot2`].
fn mul(self, direction: Dir2) -> Self::Output {
let rotated = self * *direction;
#[cfg(debug_assertions)]
assert_is_normalized(
"`Dir2` is denormalized after rotation.",
rotated.length_squared(),
);
Dir2(rotated)
}
}
#[cfg(any(feature = "approx", test))]
impl approx::AbsDiffEq for Dir2 {
type Epsilon = f32;
fn default_epsilon() -> f32 {
f32::EPSILON
}
fn abs_diff_eq(&self, other: &Self, epsilon: f32) -> bool {
self.as_ref().abs_diff_eq(other.as_ref(), epsilon)
}
}
#[cfg(any(feature = "approx", test))]
impl approx::RelativeEq for Dir2 {
fn default_max_relative() -> f32 {
f32::EPSILON
}
fn relative_eq(&self, other: &Self, epsilon: f32, max_relative: f32) -> bool {
self.as_ref()
.relative_eq(other.as_ref(), epsilon, max_relative)
}
}
#[cfg(any(feature = "approx", test))]
impl approx::UlpsEq for Dir2 {
fn default_max_ulps() -> u32 {
4
}
fn ulps_eq(&self, other: &Self, epsilon: f32, max_ulps: u32) -> bool {
self.as_ref().ulps_eq(other.as_ref(), epsilon, max_ulps)
}
}
/// A normalized vector pointing in a direction in 3D space
#[derive(Clone, Copy, Debug, PartialEq, Into)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, PartialEq))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
#[doc(alias = "Direction3d")]
pub struct Dir3(Vec3);
impl Primitive3d for Dir3 {}
impl Dir3 {
/// A unit vector pointing along the positive X axis.
pub const X: Self = Self(Vec3::X);
/// A unit vector pointing along the positive Y axis.
pub const Y: Self = Self(Vec3::Y);
/// A unit vector pointing along the positive Z axis.
pub const Z: Self = Self(Vec3::Z);
/// A unit vector pointing along the negative X axis.
pub const NEG_X: Self = Self(Vec3::NEG_X);
/// A unit vector pointing along the negative Y axis.
pub const NEG_Y: Self = Self(Vec3::NEG_Y);
/// A unit vector pointing along the negative Z axis.
pub const NEG_Z: Self = Self(Vec3::NEG_Z);
/// The directional axes.
pub const AXES: [Self; 3] = [Self::X, Self::Y, Self::Z];
/// Create a direction from a finite, nonzero [`Vec3`], normalizing it.
///
/// Returns [`Err(InvalidDirectionError)`](InvalidDirectionError) if the length
/// of the given vector is zero (or very close to zero), infinite, or `NaN`.
pub fn new(value: Vec3) -> Result<Self, InvalidDirectionError> {
Self::new_and_length(value).map(|(dir, _)| dir)
}
/// Create a [`Dir3`] from a [`Vec3`] that is already normalized.
///
/// # Warning
///
/// `value` must be normalized, i.e its length must be `1.0`.
pub fn new_unchecked(value: Vec3) -> Self {
#[cfg(debug_assertions)]
assert_is_normalized(
"The vector given to `Dir3::new_unchecked` is not normalized.",
value.length_squared(),
);
Self(value)
}
/// Create a direction from a finite, nonzero [`Vec3`], normalizing it and
/// also returning its original length.
///
/// Returns [`Err(InvalidDirectionError)`](InvalidDirectionError) if the length
/// of the given vector is zero (or very close to zero), infinite, or `NaN`.
pub fn new_and_length(value: Vec3) -> Result<(Self, f32), InvalidDirectionError> {
let length = value.length();
let direction = (length.is_finite() && length > 0.0).then_some(value / length);
direction
.map(|dir| (Self(dir), length))
.ok_or(InvalidDirectionError::from_length(length))
}
/// Create a direction from its `x`, `y`, and `z` components.
///
/// Returns [`Err(InvalidDirectionError)`](InvalidDirectionError) if the length
/// of the vector formed by the components is zero (or very close to zero), infinite, or `NaN`.
pub fn from_xyz(x: f32, y: f32, z: f32) -> Result<Self, InvalidDirectionError> {
Self::new(Vec3::new(x, y, z))
}
/// Create a direction from its `x`, `y`, and `z` components, assuming the resulting vector is normalized.
///
/// # Warning
///
/// The vector produced from `x`, `y`, and `z` must be normalized, i.e its length must be `1.0`.
pub fn from_xyz_unchecked(x: f32, y: f32, z: f32) -> Self {
Self::new_unchecked(Vec3::new(x, y, z))
}
/// Returns the inner [`Vec3`]
pub const fn as_vec3(&self) -> Vec3 {
self.0
}
/// Performs a spherical linear interpolation between `self` and `rhs`
/// based on the value `s`.
///
/// This corresponds to interpolating between the two directions at a constant angular velocity.
///
/// When `s == 0.0`, the result will be equal to `self`.
/// When `s == 1.0`, the result will be equal to `rhs`.
///
/// # Example
///
/// ```
/// # use bevy_math::Dir3;
/// # use approx::{assert_relative_eq, RelativeEq};
/// #
/// let dir1 = Dir3::X;
/// let dir2 = Dir3::Y;
///
/// let result1 = dir1.slerp(dir2, 1.0 / 3.0);
/// assert_relative_eq!(
/// result1,
/// Dir3::from_xyz(0.75_f32.sqrt(), 0.5, 0.0).unwrap(),
/// epsilon = 0.000001
/// );
///
/// let result2 = dir1.slerp(dir2, 0.5);
/// assert_relative_eq!(result2, Dir3::from_xyz(0.5_f32.sqrt(), 0.5_f32.sqrt(), 0.0).unwrap());
/// ```
#[inline]
pub fn slerp(self, rhs: Self, s: f32) -> Self {
let quat = Quat::IDENTITY.slerp(Quat::from_rotation_arc(self.0, rhs.0), s);
Dir3(quat.mul_vec3(self.0))
}
/// Returns `self` after an approximate normalization, assuming the value is already nearly normalized.
/// Useful for preventing numerical error accumulation.
///
/// # Example
/// The following seemingly benign code would start accumulating errors over time,
/// leading to `dir` eventually not being normalized anymore.
/// ```
/// # use bevy_math::prelude::*;
/// # let N: usize = 200;
/// let mut dir = Dir3::X;
/// let quaternion = Quat::from_euler(EulerRot::XYZ, 1.0, 2.0, 3.0);
/// for i in 0..N {
/// dir = quaternion * dir;
/// }
/// ```
/// Instead, do the following.
/// ```
/// # use bevy_math::prelude::*;
/// # let N: usize = 200;
/// let mut dir = Dir3::X;
/// let quaternion = Quat::from_euler(EulerRot::XYZ, 1.0, 2.0, 3.0);
/// for i in 0..N {
/// dir = quaternion * dir;
/// dir = dir.fast_renormalize();
/// }
/// ```
#[inline]
pub fn fast_renormalize(self) -> Self {
// We numerically approximate the inverse square root by a Taylor series around 1
// As we expect the error (x := length_squared - 1) to be small
// inverse_sqrt(length_squared) = (1 + x)^(-1/2) = 1 - 1/2 x + O(x²)
// inverse_sqrt(length_squared) ≈ 1 - 1/2 (length_squared - 1) = 1/2 (3 - length_squared)
// Iterative calls to this method quickly converge to a normalized value,
// so long as the denormalization is not large ~ O(1/10).
// One iteration can be described as:
// l_sq <- l_sq * (1 - 1/2 (l_sq - 1))²;
// Rewriting in terms of the error x:
// 1 + x <- (1 + x) * (1 - 1/2 x)²
// 1 + x <- (1 + x) * (1 - x + 1/4 x²)
// 1 + x <- 1 - x + 1/4 x² + x - x² + 1/4 x³
// x <- -1/4 x² (3 - x)
// If the error is small, say in a range of (-1/2, 1/2), then:
// |-1/4 x² (3 - x)| <= (3/4 + 1/4 * |x|) * x² <= (3/4 + 1/4 * 1/2) * x² < x² < 1/2 x
// Therefore the sequence of iterates converges to 0 error as a second order method.
let length_squared = self.0.length_squared();
Self(self * (0.5 * (3.0 - length_squared)))
}
}
impl TryFrom<Vec3> for Dir3 {
type Error = InvalidDirectionError;
fn try_from(value: Vec3) -> Result<Self, Self::Error> {
Self::new(value)
}
}
impl core::ops::Deref for Dir3 {
type Target = Vec3;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl core::ops::Neg for Dir3 {
type Output = Self;
fn neg(self) -> Self::Output {
Self(-self.0)
}
}
impl core::ops::Mul<f32> for Dir3 {
type Output = Vec3;
fn mul(self, rhs: f32) -> Self::Output {
self.0 * rhs
}
}
impl core::ops::Mul<Dir3> for f32 {
type Output = Vec3;
fn mul(self, rhs: Dir3) -> Self::Output {
self * rhs.0
}
}
impl core::ops::Mul<Dir3> for Quat {
type Output = Dir3;
/// Rotates the [`Dir3`] using a [`Quat`].
fn mul(self, direction: Dir3) -> Self::Output {
let rotated = self * *direction;
#[cfg(debug_assertions)]
assert_is_normalized(
"`Dir3` is denormalized after rotation.",
rotated.length_squared(),
);
Dir3(rotated)
}
}
#[cfg(feature = "approx")]
impl approx::AbsDiffEq for Dir3 {
type Epsilon = f32;
fn default_epsilon() -> f32 {
f32::EPSILON
}
fn abs_diff_eq(&self, other: &Self, epsilon: f32) -> bool {
self.as_ref().abs_diff_eq(other.as_ref(), epsilon)
}
}
#[cfg(feature = "approx")]
impl approx::RelativeEq for Dir3 {
fn default_max_relative() -> f32 {
f32::EPSILON
}
fn relative_eq(&self, other: &Self, epsilon: f32, max_relative: f32) -> bool {
self.as_ref()
.relative_eq(other.as_ref(), epsilon, max_relative)
}
}
#[cfg(feature = "approx")]
impl approx::UlpsEq for Dir3 {
fn default_max_ulps() -> u32 {
4
}
fn ulps_eq(&self, other: &Self, epsilon: f32, max_ulps: u32) -> bool {
self.as_ref().ulps_eq(other.as_ref(), epsilon, max_ulps)
}
}
/// A normalized SIMD vector pointing in a direction in 3D space.
///
/// This type stores a 16 byte aligned [`Vec3A`].
/// This may or may not be faster than [`Dir3`]: make sure to benchmark!
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, PartialEq))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
#[doc(alias = "Direction3dA")]
pub struct Dir3A(Vec3A);
impl Primitive3d for Dir3A {}
impl Dir3A {
/// A unit vector pointing along the positive X axis.
pub const X: Self = Self(Vec3A::X);
/// A unit vector pointing along the positive Y axis.
pub const Y: Self = Self(Vec3A::Y);
/// A unit vector pointing along the positive Z axis.
pub const Z: Self = Self(Vec3A::Z);
/// A unit vector pointing along the negative X axis.
pub const NEG_X: Self = Self(Vec3A::NEG_X);
/// A unit vector pointing along the negative Y axis.
pub const NEG_Y: Self = Self(Vec3A::NEG_Y);
/// A unit vector pointing along the negative Z axis.
pub const NEG_Z: Self = Self(Vec3A::NEG_Z);
/// The directional axes.
pub const AXES: [Self; 3] = [Self::X, Self::Y, Self::Z];
/// Create a direction from a finite, nonzero [`Vec3A`], normalizing it.
///
/// Returns [`Err(InvalidDirectionError)`](InvalidDirectionError) if the length
/// of the given vector is zero (or very close to zero), infinite, or `NaN`.
pub fn new(value: Vec3A) -> Result<Self, InvalidDirectionError> {
Self::new_and_length(value).map(|(dir, _)| dir)
}
/// Create a [`Dir3A`] from a [`Vec3A`] that is already normalized.
///
/// # Warning
///
/// `value` must be normalized, i.e its length must be `1.0`.
pub fn new_unchecked(value: Vec3A) -> Self {
#[cfg(debug_assertions)]
assert_is_normalized(
"The vector given to `Dir3A::new_unchecked` is not normalized.",
value.length_squared(),
);
Self(value)
}
/// Create a direction from a finite, nonzero [`Vec3A`], normalizing it and
/// also returning its original length.
///
/// Returns [`Err(InvalidDirectionError)`](InvalidDirectionError) if the length
/// of the given vector is zero (or very close to zero), infinite, or `NaN`.
pub fn new_and_length(value: Vec3A) -> Result<(Self, f32), InvalidDirectionError> {
let length = value.length();
let direction = (length.is_finite() && length > 0.0).then_some(value / length);
direction
.map(|dir| (Self(dir), length))
.ok_or(InvalidDirectionError::from_length(length))
}
/// Create a direction from its `x`, `y`, and `z` components.
///
/// Returns [`Err(InvalidDirectionError)`](InvalidDirectionError) if the length
/// of the vector formed by the components is zero (or very close to zero), infinite, or `NaN`.
pub fn from_xyz(x: f32, y: f32, z: f32) -> Result<Self, InvalidDirectionError> {
Self::new(Vec3A::new(x, y, z))
}
/// Create a direction from its `x`, `y`, and `z` components, assuming the resulting vector is normalized.
///
/// # Warning
///
/// The vector produced from `x`, `y`, and `z` must be normalized, i.e its length must be `1.0`.
pub fn from_xyz_unchecked(x: f32, y: f32, z: f32) -> Self {
Self::new_unchecked(Vec3A::new(x, y, z))
}
/// Returns the inner [`Vec3A`]
pub const fn as_vec3a(&self) -> Vec3A {
self.0
}
/// Performs a spherical linear interpolation between `self` and `rhs`
/// based on the value `s`.
///
/// This corresponds to interpolating between the two directions at a constant angular velocity.
///
/// When `s == 0.0`, the result will be equal to `self`.
/// When `s == 1.0`, the result will be equal to `rhs`.
///
/// # Example
///
/// ```
/// # use bevy_math::Dir3A;
/// # use approx::{assert_relative_eq, RelativeEq};
/// #
/// let dir1 = Dir3A::X;
/// let dir2 = Dir3A::Y;
///
/// let result1 = dir1.slerp(dir2, 1.0 / 3.0);
/// assert_relative_eq!(
/// result1,
/// Dir3A::from_xyz(0.75_f32.sqrt(), 0.5, 0.0).unwrap(),
/// epsilon = 0.000001
/// );
///
/// let result2 = dir1.slerp(dir2, 0.5);
/// assert_relative_eq!(result2, Dir3A::from_xyz(0.5_f32.sqrt(), 0.5_f32.sqrt(), 0.0).unwrap());
/// ```
#[inline]
pub fn slerp(self, rhs: Self, s: f32) -> Self {
let quat = Quat::IDENTITY.slerp(
Quat::from_rotation_arc(Vec3::from(self.0), Vec3::from(rhs.0)),
s,
);
Dir3A(quat.mul_vec3a(self.0))
}
/// Returns `self` after an approximate normalization, assuming the value is already nearly normalized.
/// Useful for preventing numerical error accumulation.
///
/// See [`Dir3::fast_renormalize`] for an example of when such error accumulation might occur.
#[inline]
pub fn fast_renormalize(self) -> Self {
let length_squared = self.0.length_squared();
// Based on a Taylor approximation of the inverse square root, see [`Dir3::fast_renormalize`] for more details.
Self(self * (0.5 * (3.0 - length_squared)))
}
}
impl From<Dir3> for Dir3A {
fn from(value: Dir3) -> Self {
Self(value.0.into())
}
}
impl From<Dir3A> for Dir3 {
fn from(value: Dir3A) -> Self {
Self(value.0.into())
}
}
impl TryFrom<Vec3A> for Dir3A {
type Error = InvalidDirectionError;
fn try_from(value: Vec3A) -> Result<Self, Self::Error> {
Self::new(value)
}
}
impl From<Dir3A> for Vec3A {
fn from(value: Dir3A) -> Self {
value.0
}
}
impl core::ops::Deref for Dir3A {
type Target = Vec3A;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl core::ops::Neg for Dir3A {
type Output = Self;
fn neg(self) -> Self::Output {
Self(-self.0)
}
}
impl core::ops::Mul<f32> for Dir3A {
type Output = Vec3A;
fn mul(self, rhs: f32) -> Self::Output {
self.0 * rhs
}
}
impl core::ops::Mul<Dir3A> for f32 {
type Output = Vec3A;
fn mul(self, rhs: Dir3A) -> Self::Output {
self * rhs.0
}
}
impl core::ops::Mul<Dir3A> for Quat {
type Output = Dir3A;
/// Rotates the [`Dir3A`] using a [`Quat`].
fn mul(self, direction: Dir3A) -> Self::Output {
let rotated = self * *direction;
#[cfg(debug_assertions)]
assert_is_normalized(
"`Dir3A` is denormalized after rotation.",
rotated.length_squared(),
);
Dir3A(rotated)
}
}
#[cfg(feature = "approx")]
impl approx::AbsDiffEq for Dir3A {
type Epsilon = f32;
fn default_epsilon() -> f32 {
f32::EPSILON
}
fn abs_diff_eq(&self, other: &Self, epsilon: f32) -> bool {
self.as_ref().abs_diff_eq(other.as_ref(), epsilon)
}
}
#[cfg(feature = "approx")]
impl approx::RelativeEq for Dir3A {
fn default_max_relative() -> f32 {
f32::EPSILON
}
fn relative_eq(&self, other: &Self, epsilon: f32, max_relative: f32) -> bool {
self.as_ref()
.relative_eq(other.as_ref(), epsilon, max_relative)
}
}
#[cfg(feature = "approx")]
impl approx::UlpsEq for Dir3A {
fn default_max_ulps() -> u32 {
4
}
fn ulps_eq(&self, other: &Self, epsilon: f32, max_ulps: u32) -> bool {
self.as_ref().ulps_eq(other.as_ref(), epsilon, max_ulps)
}
}
#[cfg(test)]
mod tests {
use crate::ops;
use super::*;
use approx::assert_relative_eq;
#[test]
fn dir2_creation() {
assert_eq!(Dir2::new(Vec2::X * 12.5), Ok(Dir2::X));
assert_eq!(
Dir2::new(Vec2::new(0.0, 0.0)),
Err(InvalidDirectionError::Zero)
);
assert_eq!(
Dir2::new(Vec2::new(f32::INFINITY, 0.0)),
Err(InvalidDirectionError::Infinite)
);
assert_eq!(
Dir2::new(Vec2::new(f32::NEG_INFINITY, 0.0)),
Err(InvalidDirectionError::Infinite)
);
assert_eq!(
Dir2::new(Vec2::new(f32::NAN, 0.0)),
Err(InvalidDirectionError::NaN)
);
assert_eq!(Dir2::new_and_length(Vec2::X * 6.5), Ok((Dir2::X, 6.5)));
}
#[test]
fn dir2_slerp() {
assert_relative_eq!(
Dir2::X.slerp(Dir2::Y, 0.5),
Dir2::from_xy(0.5_f32.sqrt(), 0.5_f32.sqrt()).unwrap()
);
assert_eq!(Dir2::Y.slerp(Dir2::X, 0.0), Dir2::Y);
assert_relative_eq!(Dir2::X.slerp(Dir2::Y, 1.0), Dir2::Y);
assert_relative_eq!(
Dir2::Y.slerp(Dir2::X, 1.0 / 3.0),
Dir2::from_xy(0.5, 0.75_f32.sqrt()).unwrap()
);
assert_relative_eq!(
Dir2::X.slerp(Dir2::Y, 2.0 / 3.0),
Dir2::from_xy(0.5, 0.75_f32.sqrt()).unwrap()
);
}
#[test]
fn dir2_to_rotation2d() {
assert_relative_eq!(Dir2::EAST.rotation_to(Dir2::NORTH_EAST), Rot2::FRAC_PI_4);
assert_relative_eq!(Dir2::NORTH.rotation_from(Dir2::NORTH_EAST), Rot2::FRAC_PI_4);
assert_relative_eq!(Dir2::SOUTH.rotation_to_x(), Rot2::FRAC_PI_2);
assert_relative_eq!(Dir2::SOUTH.rotation_to_y(), Rot2::PI);
assert_relative_eq!(Dir2::NORTH_WEST.rotation_from_x(), Rot2::degrees(135.0));
assert_relative_eq!(Dir2::NORTH_WEST.rotation_from_y(), Rot2::FRAC_PI_4);
}
#[test]
fn dir2_renorm() {
// Evil denormalized Rot2
let (sin, cos) = ops::sin_cos(1.0_f32);
let rot2 = Rot2::from_sin_cos(sin * (1.0 + 1e-5), cos * (1.0 + 1e-5));
let mut dir_a = Dir2::X;
let mut dir_b = Dir2::X;
// We test that renormalizing an already normalized dir doesn't do anything
assert_relative_eq!(dir_b, dir_b.fast_renormalize(), epsilon = 0.000001);
for _ in 0..50 {
dir_a = rot2 * dir_a;
dir_b = rot2 * dir_b;
dir_b = dir_b.fast_renormalize();
}
// `dir_a` should've gotten denormalized, meanwhile `dir_b` should stay normalized.
assert!(
!dir_a.is_normalized(),
"Dernormalization doesn't work, test is faulty"
);
assert!(dir_b.is_normalized(), "Renormalisation did not work.");
}
#[test]
fn dir3_creation() {
assert_eq!(Dir3::new(Vec3::X * 12.5), Ok(Dir3::X));
assert_eq!(
Dir3::new(Vec3::new(0.0, 0.0, 0.0)),
Err(InvalidDirectionError::Zero)
);
assert_eq!(
Dir3::new(Vec3::new(f32::INFINITY, 0.0, 0.0)),
Err(InvalidDirectionError::Infinite)
);
assert_eq!(
Dir3::new(Vec3::new(f32::NEG_INFINITY, 0.0, 0.0)),
Err(InvalidDirectionError::Infinite)
);
assert_eq!(
Dir3::new(Vec3::new(f32::NAN, 0.0, 0.0)),
Err(InvalidDirectionError::NaN)
);
assert_eq!(Dir3::new_and_length(Vec3::X * 6.5), Ok((Dir3::X, 6.5)));
// Test rotation
assert!(
(Quat::from_rotation_z(core::f32::consts::FRAC_PI_2) * Dir3::X)
.abs_diff_eq(Vec3::Y, 10e-6)
);
}
#[test]
fn dir3_slerp() {
assert_relative_eq!(
Dir3::X.slerp(Dir3::Y, 0.5),
Dir3::from_xyz(0.5f32.sqrt(), 0.5f32.sqrt(), 0.0).unwrap()
);
assert_relative_eq!(Dir3::Y.slerp(Dir3::Z, 0.0), Dir3::Y);
assert_relative_eq!(Dir3::Z.slerp(Dir3::X, 1.0), Dir3::X, epsilon = 0.000001);
assert_relative_eq!(
Dir3::X.slerp(Dir3::Z, 1.0 / 3.0),
Dir3::from_xyz(0.75f32.sqrt(), 0.0, 0.5).unwrap(),
epsilon = 0.000001
);
assert_relative_eq!(
Dir3::Z.slerp(Dir3::Y, 2.0 / 3.0),
Dir3::from_xyz(0.0, 0.75f32.sqrt(), 0.5).unwrap()
);
}
#[test]
fn dir3_renorm() {
// Evil denormalized quaternion
let rot3 = Quat::from_euler(glam::EulerRot::XYZ, 1.0, 2.0, 3.0) * (1.0 + 1e-5);
let mut dir_a = Dir3::X;
let mut dir_b = Dir3::X;
// We test that renormalizing an already normalized dir doesn't do anything
assert_relative_eq!(dir_b, dir_b.fast_renormalize(), epsilon = 0.000001);
for _ in 0..50 {
dir_a = rot3 * dir_a;
dir_b = rot3 * dir_b;
dir_b = dir_b.fast_renormalize();
}
// `dir_a` should've gotten denormalized, meanwhile `dir_b` should stay normalized.
assert!(
!dir_a.is_normalized(),
"Dernormalization doesn't work, test is faulty"
);
assert!(dir_b.is_normalized(), "Renormalisation did not work.");
}
#[test]
fn dir3a_creation() {
assert_eq!(Dir3A::new(Vec3A::X * 12.5), Ok(Dir3A::X));
assert_eq!(
Dir3A::new(Vec3A::new(0.0, 0.0, 0.0)),
Err(InvalidDirectionError::Zero)
);
assert_eq!(
Dir3A::new(Vec3A::new(f32::INFINITY, 0.0, 0.0)),
Err(InvalidDirectionError::Infinite)
);
assert_eq!(
Dir3A::new(Vec3A::new(f32::NEG_INFINITY, 0.0, 0.0)),
Err(InvalidDirectionError::Infinite)
);
assert_eq!(
Dir3A::new(Vec3A::new(f32::NAN, 0.0, 0.0)),
Err(InvalidDirectionError::NaN)
);
assert_eq!(Dir3A::new_and_length(Vec3A::X * 6.5), Ok((Dir3A::X, 6.5)));
// Test rotation
assert!(
(Quat::from_rotation_z(core::f32::consts::FRAC_PI_2) * Dir3A::X)
.abs_diff_eq(Vec3A::Y, 10e-6)
);
}
#[test]
fn dir3a_slerp() {
assert_relative_eq!(
Dir3A::X.slerp(Dir3A::Y, 0.5),
Dir3A::from_xyz(0.5f32.sqrt(), 0.5f32.sqrt(), 0.0).unwrap()
);
assert_relative_eq!(Dir3A::Y.slerp(Dir3A::Z, 0.0), Dir3A::Y);
assert_relative_eq!(Dir3A::Z.slerp(Dir3A::X, 1.0), Dir3A::X, epsilon = 0.000001);
assert_relative_eq!(
Dir3A::X.slerp(Dir3A::Z, 1.0 / 3.0),
Dir3A::from_xyz(0.75f32.sqrt(), 0.0, 0.5).unwrap(),
epsilon = 0.000001
);
assert_relative_eq!(
Dir3A::Z.slerp(Dir3A::Y, 2.0 / 3.0),
Dir3A::from_xyz(0.0, 0.75f32.sqrt(), 0.5).unwrap()
);
}
#[test]
fn dir3a_renorm() {
// Evil denormalized quaternion
let rot3 = Quat::from_euler(glam::EulerRot::XYZ, 1.0, 2.0, 3.0) * (1.0 + 1e-5);
let mut dir_a = Dir3A::X;
let mut dir_b = Dir3A::X;
// We test that renormalizing an already normalized dir doesn't do anything
assert_relative_eq!(dir_b, dir_b.fast_renormalize(), epsilon = 0.000001);
for _ in 0..50 {
dir_a = rot3 * dir_a;
dir_b = rot3 * dir_b;
dir_b = dir_b.fast_renormalize();
}
// `dir_a` should've gotten denormalized, meanwhile `dir_b` should stay normalized.
assert!(
!dir_a.is_normalized(),
"Dernormalization doesn't work, test is faulty"
);
assert!(dir_b.is_normalized(), "Renormalisation did not work.");
}
}