bevy_math/
isometry.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
//! Isometry types for expressing rigid motions in two and three dimensions.

use crate::{Affine2, Affine3, Affine3A, Dir2, Dir3, Mat3, Mat3A, Quat, Rot2, Vec2, Vec3, Vec3A};
use core::ops::Mul;

#[cfg(feature = "approx")]
use approx::{AbsDiffEq, RelativeEq, UlpsEq};

#[cfg(feature = "bevy_reflect")]
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
#[cfg(all(feature = "bevy_reflect", feature = "serialize"))]
use bevy_reflect::{ReflectDeserialize, ReflectSerialize};

/// An isometry in two dimensions, representing a rotation followed by a translation.
/// This can often be useful for expressing relative positions and transformations from one position to another.
///
/// In particular, this type represents a distance-preserving transformation known as a *rigid motion* or a *direct motion*,
/// and belongs to the special [Euclidean group] SE(2). This includes translation and rotation, but excludes reflection.
///
/// For the three-dimensional version, see [`Isometry3d`].
///
/// [Euclidean group]: https://en.wikipedia.org/wiki/Euclidean_group
///
/// # Example
///
/// Isometries can be created from a given translation and rotation:
///
/// ```
/// # use bevy_math::{Isometry2d, Rot2, Vec2};
/// #
/// let iso = Isometry2d::new(Vec2::new(2.0, 1.0), Rot2::degrees(90.0));
/// ```
///
/// Or from separate parts:
///
/// ```
/// # use bevy_math::{Isometry2d, Rot2, Vec2};
/// #
/// let iso1 = Isometry2d::from_translation(Vec2::new(2.0, 1.0));
/// let iso2 = Isometry2d::from_rotation(Rot2::degrees(90.0));
/// ```
///
/// The isometries can be used to transform points:
///
/// ```
/// # use approx::assert_abs_diff_eq;
/// # use bevy_math::{Isometry2d, Rot2, Vec2};
/// #
/// let iso = Isometry2d::new(Vec2::new(2.0, 1.0), Rot2::degrees(90.0));
/// let point = Vec2::new(4.0, 4.0);
///
/// // These are equivalent
/// let result = iso.transform_point(point);
/// let result = iso * point;
///
/// assert_eq!(result, Vec2::new(-2.0, 5.0));
/// ```
///
/// Isometries can also be composed together:
///
/// ```
/// # use bevy_math::{Isometry2d, Rot2, Vec2};
/// #
/// # let iso = Isometry2d::new(Vec2::new(2.0, 1.0), Rot2::degrees(90.0));
/// # let iso1 = Isometry2d::from_translation(Vec2::new(2.0, 1.0));
/// # let iso2 = Isometry2d::from_rotation(Rot2::degrees(90.0));
/// #
/// assert_eq!(iso1 * iso2, iso);
/// ```
///
/// One common operation is to compute an isometry representing the relative positions of two objects
/// for things like intersection tests. This can be done with an inverse transformation:
///
/// ```
/// # use bevy_math::{Isometry2d, Rot2, Vec2};
/// #
/// let circle_iso = Isometry2d::from_translation(Vec2::new(2.0, 1.0));
/// let rectangle_iso = Isometry2d::from_rotation(Rot2::degrees(90.0));
///
/// // Compute the relative position and orientation between the two shapes
/// let relative_iso = circle_iso.inverse() * rectangle_iso;
///
/// // Or alternatively, to skip an extra rotation operation:
/// let relative_iso = circle_iso.inverse_mul(rectangle_iso);
/// ```
#[derive(Copy, Clone, Default, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect),
    reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
    all(feature = "serialize", feature = "bevy_reflect"),
    reflect(Serialize, Deserialize)
)]
pub struct Isometry2d {
    /// The rotational part of a two-dimensional isometry.
    pub rotation: Rot2,
    /// The translational part of a two-dimensional isometry.
    pub translation: Vec2,
}

impl Isometry2d {
    /// The identity isometry which represents the rigid motion of not doing anything.
    pub const IDENTITY: Self = Isometry2d {
        rotation: Rot2::IDENTITY,
        translation: Vec2::ZERO,
    };

    /// Create a two-dimensional isometry from a rotation and a translation.
    #[inline]
    pub fn new(translation: Vec2, rotation: Rot2) -> Self {
        Isometry2d {
            rotation,
            translation,
        }
    }

    /// Create a two-dimensional isometry from a rotation.
    #[inline]
    pub fn from_rotation(rotation: Rot2) -> Self {
        Isometry2d {
            rotation,
            translation: Vec2::ZERO,
        }
    }

    /// Create a two-dimensional isometry from a translation.
    #[inline]
    pub fn from_translation(translation: Vec2) -> Self {
        Isometry2d {
            rotation: Rot2::IDENTITY,
            translation,
        }
    }

    /// Create a two-dimensional isometry from a translation with the given `x` and `y` components.
    #[inline]
    pub fn from_xy(x: f32, y: f32) -> Self {
        Isometry2d {
            rotation: Rot2::IDENTITY,
            translation: Vec2::new(x, y),
        }
    }

    /// The inverse isometry that undoes this one.
    #[inline]
    pub fn inverse(&self) -> Self {
        let inv_rot = self.rotation.inverse();
        Isometry2d {
            rotation: inv_rot,
            translation: inv_rot * -self.translation,
        }
    }

    /// Compute `iso1.inverse() * iso2` in a more efficient way for one-shot cases.
    ///
    /// If the same isometry is used multiple times, it is more efficient to instead compute
    /// the inverse once and use that for each transformation.
    #[inline]
    pub fn inverse_mul(&self, rhs: Self) -> Self {
        let inv_rot = self.rotation.inverse();
        let delta_translation = rhs.translation - self.translation;
        Self::new(inv_rot * delta_translation, inv_rot * rhs.rotation)
    }

    /// Transform a point by rotating and translating it using this isometry.
    #[inline]
    pub fn transform_point(&self, point: Vec2) -> Vec2 {
        self.rotation * point + self.translation
    }

    /// Transform a point by rotating and translating it using the inverse of this isometry.
    ///
    /// This is more efficient than `iso.inverse().transform_point(point)` for one-shot cases.
    /// If the same isometry is used multiple times, it is more efficient to instead compute
    /// the inverse once and use that for each transformation.
    #[inline]
    pub fn inverse_transform_point(&self, point: Vec2) -> Vec2 {
        self.rotation.inverse() * (point - self.translation)
    }
}

impl From<Isometry2d> for Affine2 {
    #[inline]
    fn from(iso: Isometry2d) -> Self {
        Affine2 {
            matrix2: iso.rotation.into(),
            translation: iso.translation,
        }
    }
}

impl From<Vec2> for Isometry2d {
    #[inline]
    fn from(translation: Vec2) -> Self {
        Isometry2d::from_translation(translation)
    }
}

impl From<Rot2> for Isometry2d {
    #[inline]
    fn from(rotation: Rot2) -> Self {
        Isometry2d::from_rotation(rotation)
    }
}

impl Mul for Isometry2d {
    type Output = Self;

    #[inline]
    fn mul(self, rhs: Self) -> Self::Output {
        Isometry2d {
            rotation: self.rotation * rhs.rotation,
            translation: self.rotation * rhs.translation + self.translation,
        }
    }
}

impl Mul<Vec2> for Isometry2d {
    type Output = Vec2;

    #[inline]
    fn mul(self, rhs: Vec2) -> Self::Output {
        self.transform_point(rhs)
    }
}

impl Mul<Dir2> for Isometry2d {
    type Output = Dir2;

    #[inline]
    fn mul(self, rhs: Dir2) -> Self::Output {
        self.rotation * rhs
    }
}

#[cfg(feature = "approx")]
impl AbsDiffEq for Isometry2d {
    type Epsilon = <f32 as AbsDiffEq>::Epsilon;

    fn default_epsilon() -> Self::Epsilon {
        f32::default_epsilon()
    }

    fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
        self.rotation.abs_diff_eq(&other.rotation, epsilon)
            && self.translation.abs_diff_eq(other.translation, epsilon)
    }
}

#[cfg(feature = "approx")]
impl RelativeEq for Isometry2d {
    fn default_max_relative() -> Self::Epsilon {
        Self::default_epsilon()
    }

    fn relative_eq(
        &self,
        other: &Self,
        epsilon: Self::Epsilon,
        max_relative: Self::Epsilon,
    ) -> bool {
        self.rotation
            .relative_eq(&other.rotation, epsilon, max_relative)
            && self
                .translation
                .relative_eq(&other.translation, epsilon, max_relative)
    }
}

#[cfg(feature = "approx")]
impl UlpsEq for Isometry2d {
    fn default_max_ulps() -> u32 {
        4
    }

    fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
        self.rotation.ulps_eq(&other.rotation, epsilon, max_ulps)
            && self
                .translation
                .ulps_eq(&other.translation, epsilon, max_ulps)
    }
}

/// An isometry in three dimensions, representing a rotation followed by a translation.
/// This can often be useful for expressing relative positions and transformations from one position to another.
///
/// In particular, this type represents a distance-preserving transformation known as a *rigid motion* or a *direct motion*,
/// and belongs to the special [Euclidean group] SE(3). This includes translation and rotation, but excludes reflection.
///
/// For the two-dimensional version, see [`Isometry2d`].
///
/// [Euclidean group]: https://en.wikipedia.org/wiki/Euclidean_group
///
/// # Example
///
/// Isometries can be created from a given translation and rotation:
///
/// ```
/// # use bevy_math::{Isometry3d, Quat, Vec3};
/// # use std::f32::consts::FRAC_PI_2;
/// #
/// let iso = Isometry3d::new(Vec3::new(2.0, 1.0, 3.0), Quat::from_rotation_z(FRAC_PI_2));
/// ```
///
/// Or from separate parts:
///
/// ```
/// # use bevy_math::{Isometry3d, Quat, Vec3};
/// # use std::f32::consts::FRAC_PI_2;
/// #
/// let iso1 = Isometry3d::from_translation(Vec3::new(2.0, 1.0, 3.0));
/// let iso2 = Isometry3d::from_rotation(Quat::from_rotation_z(FRAC_PI_2));
/// ```
///
/// The isometries can be used to transform points:
///
/// ```
/// # use approx::assert_relative_eq;
/// # use bevy_math::{Isometry3d, Quat, Vec3};
/// # use std::f32::consts::FRAC_PI_2;
/// #
/// let iso = Isometry3d::new(Vec3::new(2.0, 1.0, 3.0), Quat::from_rotation_z(FRAC_PI_2));
/// let point = Vec3::new(4.0, 4.0, 4.0);
///
/// // These are equivalent
/// let result = iso.transform_point(point);
/// let result = iso * point;
///
/// assert_relative_eq!(result, Vec3::new(-2.0, 5.0, 7.0));
/// ```
///
/// Isometries can also be composed together:
///
/// ```
/// # use bevy_math::{Isometry3d, Quat, Vec3};
/// # use std::f32::consts::FRAC_PI_2;
/// #
/// # let iso = Isometry3d::new(Vec3::new(2.0, 1.0, 3.0), Quat::from_rotation_z(FRAC_PI_2));
/// # let iso1 = Isometry3d::from_translation(Vec3::new(2.0, 1.0, 3.0));
/// # let iso2 = Isometry3d::from_rotation(Quat::from_rotation_z(FRAC_PI_2));
/// #
/// assert_eq!(iso1 * iso2, iso);
/// ```
///
/// One common operation is to compute an isometry representing the relative positions of two objects
/// for things like intersection tests. This can be done with an inverse transformation:
///
/// ```
/// # use bevy_math::{Isometry3d, Quat, Vec3};
/// # use std::f32::consts::FRAC_PI_2;
/// #
/// let sphere_iso = Isometry3d::from_translation(Vec3::new(2.0, 1.0, 3.0));
/// let cuboid_iso = Isometry3d::from_rotation(Quat::from_rotation_z(FRAC_PI_2));
///
/// // Compute the relative position and orientation between the two shapes
/// let relative_iso = sphere_iso.inverse() * cuboid_iso;
///
/// // Or alternatively, to skip an extra rotation operation:
/// let relative_iso = sphere_iso.inverse_mul(cuboid_iso);
/// ```
#[derive(Copy, Clone, Default, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect),
    reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
    all(feature = "serialize", feature = "bevy_reflect"),
    reflect(Serialize, Deserialize)
)]
pub struct Isometry3d {
    /// The rotational part of a three-dimensional isometry.
    pub rotation: Quat,
    /// The translational part of a three-dimensional isometry.
    pub translation: Vec3A,
}

impl Isometry3d {
    /// The identity isometry which represents the rigid motion of not doing anything.
    pub const IDENTITY: Self = Isometry3d {
        rotation: Quat::IDENTITY,
        translation: Vec3A::ZERO,
    };

    /// Create a three-dimensional isometry from a rotation and a translation.
    #[inline]
    pub fn new(translation: impl Into<Vec3A>, rotation: Quat) -> Self {
        Isometry3d {
            rotation,
            translation: translation.into(),
        }
    }

    /// Create a three-dimensional isometry from a rotation.
    #[inline]
    pub fn from_rotation(rotation: Quat) -> Self {
        Isometry3d {
            rotation,
            translation: Vec3A::ZERO,
        }
    }

    /// Create a three-dimensional isometry from a translation.
    #[inline]
    pub fn from_translation(translation: impl Into<Vec3A>) -> Self {
        Isometry3d {
            rotation: Quat::IDENTITY,
            translation: translation.into(),
        }
    }

    /// Create a three-dimensional isometry from a translation with the given `x`, `y`, and `z` components.
    #[inline]
    pub fn from_xyz(x: f32, y: f32, z: f32) -> Self {
        Isometry3d {
            rotation: Quat::IDENTITY,
            translation: Vec3A::new(x, y, z),
        }
    }

    /// The inverse isometry that undoes this one.
    #[inline]
    pub fn inverse(&self) -> Self {
        let inv_rot = self.rotation.inverse();
        Isometry3d {
            rotation: inv_rot,
            translation: inv_rot * -self.translation,
        }
    }

    /// Compute `iso1.inverse() * iso2` in a more efficient way for one-shot cases.
    ///
    /// If the same isometry is used multiple times, it is more efficient to instead compute
    /// the inverse once and use that for each transformation.
    #[inline]
    pub fn inverse_mul(&self, rhs: Self) -> Self {
        let inv_rot = self.rotation.inverse();
        let delta_translation = rhs.translation - self.translation;
        Self::new(inv_rot * delta_translation, inv_rot * rhs.rotation)
    }

    /// Transform a point by rotating and translating it using this isometry.
    #[inline]
    pub fn transform_point(&self, point: impl Into<Vec3A>) -> Vec3A {
        self.rotation * point.into() + self.translation
    }

    /// Transform a point by rotating and translating it using the inverse of this isometry.
    ///
    /// This is more efficient than `iso.inverse().transform_point(point)` for one-shot cases.
    /// If the same isometry is used multiple times, it is more efficient to instead compute
    /// the inverse once and use that for each transformation.
    #[inline]
    pub fn inverse_transform_point(&self, point: impl Into<Vec3A>) -> Vec3A {
        self.rotation.inverse() * (point.into() - self.translation)
    }
}

impl From<Isometry3d> for Affine3 {
    #[inline]
    fn from(iso: Isometry3d) -> Self {
        Affine3 {
            matrix3: Mat3::from_quat(iso.rotation),
            translation: iso.translation.into(),
        }
    }
}

impl From<Isometry3d> for Affine3A {
    #[inline]
    fn from(iso: Isometry3d) -> Self {
        Affine3A {
            matrix3: Mat3A::from_quat(iso.rotation),
            translation: iso.translation,
        }
    }
}

impl From<Vec3> for Isometry3d {
    #[inline]
    fn from(translation: Vec3) -> Self {
        Isometry3d::from_translation(translation)
    }
}

impl From<Vec3A> for Isometry3d {
    #[inline]
    fn from(translation: Vec3A) -> Self {
        Isometry3d::from_translation(translation)
    }
}

impl From<Quat> for Isometry3d {
    #[inline]
    fn from(rotation: Quat) -> Self {
        Isometry3d::from_rotation(rotation)
    }
}

impl Mul for Isometry3d {
    type Output = Self;

    #[inline]
    fn mul(self, rhs: Self) -> Self::Output {
        Isometry3d {
            rotation: self.rotation * rhs.rotation,
            translation: self.rotation * rhs.translation + self.translation,
        }
    }
}

impl Mul<Vec3A> for Isometry3d {
    type Output = Vec3A;

    #[inline]
    fn mul(self, rhs: Vec3A) -> Self::Output {
        self.transform_point(rhs)
    }
}

impl Mul<Vec3> for Isometry3d {
    type Output = Vec3;

    #[inline]
    fn mul(self, rhs: Vec3) -> Self::Output {
        self.transform_point(rhs).into()
    }
}

impl Mul<Dir3> for Isometry3d {
    type Output = Dir3;

    #[inline]
    fn mul(self, rhs: Dir3) -> Self::Output {
        self.rotation * rhs
    }
}

#[cfg(feature = "approx")]
impl AbsDiffEq for Isometry3d {
    type Epsilon = <f32 as AbsDiffEq>::Epsilon;

    fn default_epsilon() -> Self::Epsilon {
        f32::default_epsilon()
    }

    fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
        self.rotation.abs_diff_eq(other.rotation, epsilon)
            && self.translation.abs_diff_eq(other.translation, epsilon)
    }
}

#[cfg(feature = "approx")]
impl RelativeEq for Isometry3d {
    fn default_max_relative() -> Self::Epsilon {
        Self::default_epsilon()
    }

    fn relative_eq(
        &self,
        other: &Self,
        epsilon: Self::Epsilon,
        max_relative: Self::Epsilon,
    ) -> bool {
        self.rotation
            .relative_eq(&other.rotation, epsilon, max_relative)
            && self
                .translation
                .relative_eq(&other.translation, epsilon, max_relative)
    }
}

#[cfg(feature = "approx")]
impl UlpsEq for Isometry3d {
    fn default_max_ulps() -> u32 {
        4
    }

    fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
        self.rotation.ulps_eq(&other.rotation, epsilon, max_ulps)
            && self
                .translation
                .ulps_eq(&other.translation, epsilon, max_ulps)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{vec2, vec3, vec3a};
    use approx::assert_abs_diff_eq;
    use core::f32::consts::{FRAC_PI_2, FRAC_PI_3};

    #[test]
    fn mul_2d() {
        let iso1 = Isometry2d::new(vec2(1.0, 0.0), Rot2::FRAC_PI_2);
        let iso2 = Isometry2d::new(vec2(0.0, 1.0), Rot2::FRAC_PI_2);
        let expected = Isometry2d::new(vec2(0.0, 0.0), Rot2::PI);
        assert_abs_diff_eq!(iso1 * iso2, expected);
    }

    #[test]
    fn inverse_mul_2d() {
        let iso1 = Isometry2d::new(vec2(1.0, 0.0), Rot2::FRAC_PI_2);
        let iso2 = Isometry2d::new(vec2(0.0, 0.0), Rot2::PI);
        let expected = Isometry2d::new(vec2(0.0, 1.0), Rot2::FRAC_PI_2);
        assert_abs_diff_eq!(iso1.inverse_mul(iso2), expected);
    }

    #[test]
    fn mul_3d() {
        let iso1 = Isometry3d::new(vec3(1.0, 0.0, 0.0), Quat::from_rotation_x(FRAC_PI_2));
        let iso2 = Isometry3d::new(vec3(0.0, 1.0, 0.0), Quat::IDENTITY);
        let expected = Isometry3d::new(vec3(1.0, 0.0, 1.0), Quat::from_rotation_x(FRAC_PI_2));
        assert_abs_diff_eq!(iso1 * iso2, expected);
    }

    #[test]
    fn inverse_mul_3d() {
        let iso1 = Isometry3d::new(vec3(1.0, 0.0, 0.0), Quat::from_rotation_x(FRAC_PI_2));
        let iso2 = Isometry3d::new(vec3(1.0, 0.0, 1.0), Quat::from_rotation_x(FRAC_PI_2));
        let expected = Isometry3d::new(vec3(0.0, 1.0, 0.0), Quat::IDENTITY);
        assert_abs_diff_eq!(iso1.inverse_mul(iso2), expected);
    }

    #[test]
    fn identity_2d() {
        let iso = Isometry2d::new(vec2(-1.0, -0.5), Rot2::degrees(75.0));
        assert_abs_diff_eq!(Isometry2d::IDENTITY * iso, iso);
        assert_abs_diff_eq!(iso * Isometry2d::IDENTITY, iso);
    }

    #[test]
    fn identity_3d() {
        let iso = Isometry3d::new(vec3(-1.0, 2.5, 3.3), Quat::from_rotation_z(FRAC_PI_3));
        assert_abs_diff_eq!(Isometry3d::IDENTITY * iso, iso);
        assert_abs_diff_eq!(iso * Isometry3d::IDENTITY, iso);
    }

    #[test]
    fn inverse_2d() {
        let iso = Isometry2d::new(vec2(-1.0, -0.5), Rot2::degrees(75.0));
        let inv = iso.inverse();
        assert_abs_diff_eq!(iso * inv, Isometry2d::IDENTITY);
        assert_abs_diff_eq!(inv * iso, Isometry2d::IDENTITY);
    }

    #[test]
    fn inverse_3d() {
        let iso = Isometry3d::new(vec3(-1.0, 2.5, 3.3), Quat::from_rotation_z(FRAC_PI_3));
        let inv = iso.inverse();
        assert_abs_diff_eq!(iso * inv, Isometry3d::IDENTITY);
        assert_abs_diff_eq!(inv * iso, Isometry3d::IDENTITY);
    }

    #[test]
    fn transform_2d() {
        let iso = Isometry2d::new(vec2(0.5, -0.5), Rot2::FRAC_PI_2);
        let point = vec2(1.0, 1.0);
        assert_abs_diff_eq!(vec2(-0.5, 0.5), iso * point);
    }

    #[test]
    fn inverse_transform_2d() {
        let iso = Isometry2d::new(vec2(0.5, -0.5), Rot2::FRAC_PI_2);
        let point = vec2(-0.5, 0.5);
        assert_abs_diff_eq!(vec2(1.0, 1.0), iso.inverse_transform_point(point));
    }

    #[test]
    fn transform_3d() {
        let iso = Isometry3d::new(vec3(1.0, 0.0, 0.0), Quat::from_rotation_y(FRAC_PI_2));
        let point = vec3(1.0, 1.0, 1.0);
        assert_abs_diff_eq!(vec3(2.0, 1.0, -1.0), iso * point);
    }

    #[test]
    fn inverse_transform_3d() {
        let iso = Isometry3d::new(vec3(1.0, 0.0, 0.0), Quat::from_rotation_y(FRAC_PI_2));
        let point = vec3(2.0, 1.0, -1.0);
        assert_abs_diff_eq!(vec3a(1.0, 1.0, 1.0), iso.inverse_transform_point(point));
    }
}