bevy_math/
ops.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
//! This mod re-exports the correct versions of floating-point operations with
//! unspecified precision in the standard library depending on whether the `libm`
//! crate feature is enabled.
//!
//! All the functions here are named according to their versions in the standard
//! library.

#![allow(dead_code)]
#![allow(clippy::disallowed_methods)]

// Note: There are some Rust methods with unspecified precision without a `libm`
// equivalent:
// - `f32::powi` (integer powers)
// - `f32::log` (logarithm with specified base)
// - `f32::abs_sub` (actually unsure if `libm` has this, but don't use it regardless)
//
// Additionally, the following nightly API functions are not presently integrated
// into this, but they would be candidates once standardized:
// - `f32::gamma`
// - `f32::ln_gamma`

#[cfg(not(feature = "libm"))]
mod std_ops {

    /// Raises a number to a floating point power.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn powf(x: f32, y: f32) -> f32 {
        f32::powf(x, y)
    }

    /// Returns `e^(self)`, (the exponential function).
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn exp(x: f32) -> f32 {
        f32::exp(x)
    }

    /// Returns `2^(self)`.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn exp2(x: f32) -> f32 {
        f32::exp2(x)
    }

    /// Returns the natural logarithm of the number.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn ln(x: f32) -> f32 {
        f32::ln(x)
    }

    /// Returns the base 2 logarithm of the number.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn log2(x: f32) -> f32 {
        f32::log2(x)
    }

    /// Returns the base 10 logarithm of the number.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn log10(x: f32) -> f32 {
        f32::log10(x)
    }

    /// Returns the cube root of a number.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn cbrt(x: f32) -> f32 {
        f32::cbrt(x)
    }

    /// Compute the distance between the origin and a point `(x, y)` on the Euclidean plane.
    /// Equivalently, compute the length of the hypotenuse of a right-angle triangle with other sides having length `x.abs()` and `y.abs()`.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn hypot(x: f32, y: f32) -> f32 {
        f32::hypot(x, y)
    }

    /// Computes the sine of a number (in radians).
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn sin(x: f32) -> f32 {
        f32::sin(x)
    }

    /// Computes the cosine of a number (in radians).
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn cos(x: f32) -> f32 {
        f32::cos(x)
    }

    /// Computes the tangent of a number (in radians).
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn tan(x: f32) -> f32 {
        f32::tan(x)
    }

    /// Computes the arcsine of a number. Return value is in radians in
    /// the range [-pi/2, pi/2] or NaN if the number is outside the range
    /// [-1, 1].
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn asin(x: f32) -> f32 {
        f32::asin(x)
    }

    /// Computes the arccosine of a number. Return value is in radians in
    /// the range [0, pi] or NaN if the number is outside the range
    /// [-1, 1].
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn acos(x: f32) -> f32 {
        f32::acos(x)
    }

    /// Computes the arctangent of a number. Return value is in radians in the
    /// range [-pi/2, pi/2];
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn atan(x: f32) -> f32 {
        f32::atan(x)
    }

    /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians.
    ///
    /// * `x = 0`, `y = 0`: `0`
    /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
    /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
    /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn atan2(x: f32, y: f32) -> f32 {
        f32::atan2(x, y)
    }

    /// Simultaneously computes the sine and cosine of the number, `x`. Returns
    /// `(sin(x), cos(x))`.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn sin_cos(x: f32) -> (f32, f32) {
        f32::sin_cos(x)
    }

    /// Returns `e^(self) - 1` in a way that is accurate even if the
    /// number is close to zero.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn exp_m1(x: f32) -> f32 {
        f32::exp_m1(x)
    }

    /// Returns `ln(1+n)` (natural logarithm) more accurately than if
    /// the operations were performed separately.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn ln_1p(x: f32) -> f32 {
        f32::ln_1p(x)
    }

    /// Hyperbolic sine function.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn sinh(x: f32) -> f32 {
        f32::sinh(x)
    }

    /// Hyperbolic cosine function.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn cosh(x: f32) -> f32 {
        f32::cosh(x)
    }

    /// Hyperbolic tangent function.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn tanh(x: f32) -> f32 {
        f32::tanh(x)
    }

    /// Inverse hyperbolic sine function.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn asinh(x: f32) -> f32 {
        f32::asinh(x)
    }

    /// Inverse hyperbolic cosine function.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn acosh(x: f32) -> f32 {
        f32::acosh(x)
    }

    /// Inverse hyperbolic tangent function.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn atanh(x: f32) -> f32 {
        f32::atanh(x)
    }
}

#[cfg(feature = "libm")]
mod libm_ops {

    /// Raises a number to a floating point power.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn powf(x: f32, y: f32) -> f32 {
        libm::powf(x, y)
    }

    /// Returns `e^(self)`, (the exponential function).
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn exp(x: f32) -> f32 {
        libm::expf(x)
    }

    /// Returns `2^(self)`.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn exp2(x: f32) -> f32 {
        libm::exp2f(x)
    }

    /// Returns the natural logarithm of the number.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn ln(x: f32) -> f32 {
        // This isn't documented in `libm` but this is actually the base e logarithm.
        libm::logf(x)
    }

    /// Returns the base 2 logarithm of the number.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn log2(x: f32) -> f32 {
        libm::log2f(x)
    }

    /// Returns the base 10 logarithm of the number.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn log10(x: f32) -> f32 {
        libm::log10f(x)
    }

    /// Returns the cube root of a number.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn cbrt(x: f32) -> f32 {
        libm::cbrtf(x)
    }

    /// Compute the distance between the origin and a point `(x, y)` on the Euclidean plane.
    ///
    /// Equivalently, compute the length of the hypotenuse of a right-angle triangle with other sides having length `x.abs()` and `y.abs()`.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn hypot(x: f32, y: f32) -> f32 {
        libm::hypotf(x, y)
    }

    /// Computes the sine of a number (in radians).
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn sin(x: f32) -> f32 {
        libm::sinf(x)
    }

    /// Computes the cosine of a number (in radians).
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn cos(x: f32) -> f32 {
        libm::cosf(x)
    }

    /// Computes the tangent of a number (in radians).
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn tan(x: f32) -> f32 {
        libm::tanf(x)
    }

    /// Computes the arcsine of a number. Return value is in radians in
    /// the range [-pi/2, pi/2] or NaN if the number is outside the range
    /// [-1, 1].
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn asin(x: f32) -> f32 {
        libm::asinf(x)
    }

    /// Computes the arccosine of a number. Return value is in radians in
    /// Hyperbolic tangent function.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    /// the range [0, pi] or NaN if the number is outside the range
    /// [-1, 1].
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn acos(x: f32) -> f32 {
        libm::acosf(x)
    }

    /// Computes the arctangent of a number. Return value is in radians in the
    /// range [-pi/2, pi/2];
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn atan(x: f32) -> f32 {
        libm::atanf(x)
    }

    /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians.
    ///
    /// * `x = 0`, `y = 0`: `0`
    /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
    /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
    /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn atan2(x: f32, y: f32) -> f32 {
        libm::atan2f(x, y)
    }

    /// Simultaneously computes the sine and cosine of the number, `x`. Returns
    /// `(sin(x), cos(x))`.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn sin_cos(x: f32) -> (f32, f32) {
        libm::sincosf(x)
    }

    /// Returns `e^(self) - 1` in a way that is accurate even if the
    /// number is close to zero.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn exp_m1(x: f32) -> f32 {
        libm::expm1f(x)
    }

    /// Returns `ln(1+n)` (natural logarithm) more accurately than if
    /// the operations were performed separately.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn ln_1p(x: f32) -> f32 {
        libm::log1pf(x)
    }

    /// Hyperbolic sine function.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn sinh(x: f32) -> f32 {
        libm::sinhf(x)
    }

    /// Hyperbolic cosine function.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn cosh(x: f32) -> f32 {
        libm::coshf(x)
    }

    /// Hyperbolic tangent function.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn tanh(x: f32) -> f32 {
        libm::tanhf(x)
    }

    /// Inverse hyperbolic sine function.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn asinh(x: f32) -> f32 {
        libm::asinhf(x)
    }

    /// Inverse hyperbolic cosine function.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn acosh(x: f32) -> f32 {
        libm::acoshf(x)
    }

    /// Inverse hyperbolic tangent function.
    ///
    /// Precision is specified when the `libm` feature is enabled.
    #[inline(always)]
    pub fn atanh(x: f32) -> f32 {
        libm::atanhf(x)
    }
}

#[cfg(feature = "libm")]
pub use libm_ops::*;

#[cfg(not(feature = "libm"))]
pub use std_ops::*;

/// This extension trait covers shortfall in determinacy from the lack of a `libm` counterpart
/// to `f32::powi`. Use this for the common small exponents.
pub trait FloatPow {
    /// Squares the f32
    fn squared(self) -> Self;
    /// Cubes the f32
    fn cubed(self) -> Self;
}

impl FloatPow for f32 {
    #[inline]
    fn squared(self) -> Self {
        self * self
    }
    #[inline]
    fn cubed(self) -> Self {
        self * self * self
    }
}