bevy_math/primitives/
dim3.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
use core::f32::consts::{FRAC_PI_3, PI};

use super::{Circle, Measured2d, Measured3d, Primitive2d, Primitive3d};
use crate::{ops, ops::FloatPow, Dir3, InvalidDirectionError, Isometry3d, Mat3, Vec2, Vec3};

#[cfg(feature = "bevy_reflect")]
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
#[cfg(all(feature = "serialize", feature = "bevy_reflect"))]
use bevy_reflect::{ReflectDeserialize, ReflectSerialize};
use glam::Quat;

/// A sphere primitive, representing the set of all points some distance from the origin
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect),
    reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
    all(feature = "serialize", feature = "bevy_reflect"),
    reflect(Serialize, Deserialize)
)]
pub struct Sphere {
    /// The radius of the sphere
    pub radius: f32,
}
impl Primitive3d for Sphere {}

impl Default for Sphere {
    /// Returns the default [`Sphere`] with a radius of `0.5`.
    fn default() -> Self {
        Self { radius: 0.5 }
    }
}

impl Sphere {
    /// Create a new [`Sphere`] from a `radius`
    #[inline(always)]
    pub const fn new(radius: f32) -> Self {
        Self { radius }
    }

    /// Get the diameter of the sphere
    #[inline(always)]
    pub fn diameter(&self) -> f32 {
        2.0 * self.radius
    }

    /// Finds the point on the sphere that is closest to the given `point`.
    ///
    /// If the point is outside the sphere, the returned point will be on the surface of the sphere.
    /// Otherwise, it will be inside the sphere and returned as is.
    #[inline(always)]
    pub fn closest_point(&self, point: Vec3) -> Vec3 {
        let distance_squared = point.length_squared();

        if distance_squared <= self.radius.squared() {
            // The point is inside the sphere.
            point
        } else {
            // The point is outside the sphere.
            // Find the closest point on the surface of the sphere.
            let dir_to_point = point / distance_squared.sqrt();
            self.radius * dir_to_point
        }
    }
}

impl Measured3d for Sphere {
    /// Get the surface area of the sphere
    #[inline(always)]
    fn area(&self) -> f32 {
        4.0 * PI * self.radius.squared()
    }

    /// Get the volume of the sphere
    #[inline(always)]
    fn volume(&self) -> f32 {
        4.0 * FRAC_PI_3 * self.radius.cubed()
    }
}

/// A bounded plane in 3D space. It forms a surface starting from the origin with a defined height and width.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect),
    reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
    all(feature = "serialize", feature = "bevy_reflect"),
    reflect(Serialize, Deserialize)
)]
pub struct Plane3d {
    /// The normal of the plane. The plane will be placed perpendicular to this direction
    pub normal: Dir3,
    /// Half of the width and height of the plane
    pub half_size: Vec2,
}
impl Primitive3d for Plane3d {}

impl Default for Plane3d {
    /// Returns the default [`Plane3d`] with a normal pointing in the `+Y` direction, width and height of `1.0`.
    fn default() -> Self {
        Self {
            normal: Dir3::Y,
            half_size: Vec2::splat(0.5),
        }
    }
}

impl Plane3d {
    /// Create a new `Plane3d` from a normal and a half size
    ///
    /// # Panics
    ///
    /// Panics if the given `normal` is zero (or very close to zero), or non-finite.
    #[inline(always)]
    pub fn new(normal: Vec3, half_size: Vec2) -> Self {
        Self {
            normal: Dir3::new(normal).expect("normal must be nonzero and finite"),
            half_size,
        }
    }

    /// Create a new `Plane3d` based on three points and compute the geometric center
    /// of those points.
    ///
    /// The direction of the plane normal is determined by the winding order
    /// of the triangular shape formed by the points.
    ///
    /// # Panics
    ///
    /// Panics if a valid normal can not be computed, for example when the points
    /// are *collinear* and lie on the same line.
    #[inline(always)]
    pub fn from_points(a: Vec3, b: Vec3, c: Vec3) -> (Self, Vec3) {
        let normal = Dir3::new((b - a).cross(c - a)).expect(
            "finite plane must be defined by three finite points that don't lie on the same line",
        );
        let translation = (a + b + c) / 3.0;

        (
            Self {
                normal,
                ..Default::default()
            },
            translation,
        )
    }
}

/// An unbounded plane in 3D space. It forms a separating surface through the origin,
/// stretching infinitely far
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect),
    reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
    all(feature = "serialize", feature = "bevy_reflect"),
    reflect(Serialize, Deserialize)
)]
pub struct InfinitePlane3d {
    /// The normal of the plane. The plane will be placed perpendicular to this direction
    pub normal: Dir3,
}
impl Primitive3d for InfinitePlane3d {}

impl Default for InfinitePlane3d {
    /// Returns the default [`InfinitePlane3d`] with a normal pointing in the `+Y` direction.
    fn default() -> Self {
        Self { normal: Dir3::Y }
    }
}

impl InfinitePlane3d {
    /// Create a new `InfinitePlane3d` from a normal
    ///
    /// # Panics
    ///
    /// Panics if the given `normal` is zero (or very close to zero), or non-finite.
    #[inline(always)]
    pub fn new<T: TryInto<Dir3>>(normal: T) -> Self
    where
        <T as TryInto<Dir3>>::Error: core::fmt::Debug,
    {
        Self {
            normal: normal
                .try_into()
                .expect("normal must be nonzero and finite"),
        }
    }

    /// Create a new `InfinitePlane3d` based on three points and compute the geometric center
    /// of those points.
    ///
    /// The direction of the plane normal is determined by the winding order
    /// of the triangular shape formed by the points.
    ///
    /// # Panics
    ///
    /// Panics if a valid normal can not be computed, for example when the points
    /// are *collinear* and lie on the same line.
    #[inline(always)]
    pub fn from_points(a: Vec3, b: Vec3, c: Vec3) -> (Self, Vec3) {
        let normal = Dir3::new((b - a).cross(c - a)).expect(
            "infinite plane must be defined by three finite points that don't lie on the same line",
        );
        let translation = (a + b + c) / 3.0;

        (Self { normal }, translation)
    }

    /// Computes the shortest distance between a plane transformed with the given `isometry` and a
    /// `point`. The result is a signed value; it's positive if the point lies in the half-space
    /// that the plane's normal vector points towards.
    #[inline]
    pub fn signed_distance(&self, isometry: impl Into<Isometry3d>, point: Vec3) -> f32 {
        let isometry = isometry.into();
        self.normal.dot(isometry.inverse() * point)
    }

    /// Injects the `point` into this plane transformed with the given `isometry`.
    ///
    /// This projects the point orthogonally along the shortest path onto the plane.
    #[inline]
    pub fn project_point(&self, isometry: impl Into<Isometry3d>, point: Vec3) -> Vec3 {
        point - self.normal * self.signed_distance(isometry, point)
    }

    /// Computes an [`Isometry3d`] which transforms points from the plane in 3D space with the given
    /// `origin` to the XY-plane.
    ///
    /// ## Guarantees
    ///
    /// * the transformation is a [congruence] meaning it will preserve all distances and angles of
    ///   the transformed geometry
    /// * uses the least rotation possible to transform the geometry
    /// * if two geometries are transformed with the same isometry, then the relations between
    ///   them, like distances, are also preserved
    /// * compared to projections, the transformation is lossless (up to floating point errors)
    ///   reversible
    ///
    /// ## Non-Guarantees
    ///
    /// * the rotation used is generally not unique
    /// * the orientation of the transformed geometry in the XY plane might be arbitrary, to
    ///   enforce some kind of alignment the user has to use an extra transformation ontop of this
    ///   one
    ///
    /// See [`isometries_xy`] for example usescases.
    ///
    /// [congruence]: https://en.wikipedia.org/wiki/Congruence_(geometry)
    /// [`isometries_xy`]: `InfinitePlane3d::isometries_xy`
    #[inline]
    pub fn isometry_into_xy(&self, origin: Vec3) -> Isometry3d {
        let rotation = Quat::from_rotation_arc(self.normal.as_vec3(), Vec3::Z);
        let transformed_origin = rotation * origin;
        Isometry3d::new(-Vec3::Z * transformed_origin.z, rotation)
    }

    /// Computes an [`Isometry3d`] which transforms points from the XY-plane to this plane with the
    /// given `origin`.
    ///
    /// ## Guarantees
    ///
    /// * the transformation is a [congruence] meaning it will preserve all distances and angles of
    ///   the transformed geometry
    /// * uses the least rotation possible to transform the geometry
    /// * if two geometries are transformed with the same isometry, then the relations between
    ///   them, like distances, are also preserved
    /// * compared to projections, the transformation is lossless (up to floating point errors)
    ///   reversible
    ///
    /// ## Non-Guarantees
    ///
    /// * the rotation used is generally not unique
    /// * the orientation of the transformed geometry in the XY plane might be arbitrary, to
    ///   enforce some kind of alignment the user has to use an extra transformation ontop of this
    ///   one
    ///
    /// See [`isometries_xy`] for example usescases.
    ///
    /// [congruence]: https://en.wikipedia.org/wiki/Congruence_(geometry)
    /// [`isometries_xy`]: `InfinitePlane3d::isometries_xy`
    #[inline]
    pub fn isometry_from_xy(&self, origin: Vec3) -> Isometry3d {
        self.isometry_into_xy(origin).inverse()
    }

    /// Computes both [isometries] which transforms points from the plane in 3D space with the
    /// given `origin` to the XY-plane and back.
    ///
    /// [isometries]: `Isometry3d`
    ///
    /// # Example
    ///
    /// The projection and its inverse can be used to run 2D algorithms on flat shapes in 3D. The
    /// workflow would usually look like this:
    ///
    /// ```
    /// # use bevy_math::{Vec3, Dir3};
    /// # use bevy_math::primitives::InfinitePlane3d;
    ///
    /// let triangle_3d @ [a, b, c] = [Vec3::X, Vec3::Y, Vec3::Z];
    /// let center = (a + b + c) / 3.0;
    ///
    /// let plane = InfinitePlane3d::new(Vec3::ONE);
    ///
    /// let (to_xy, from_xy) = plane.isometries_xy(center);
    ///
    /// let triangle_2d = triangle_3d.map(|vec3| to_xy * vec3).map(|vec3| vec3.truncate());
    ///
    /// // apply some algorithm to `triangle_2d`
    ///
    /// let triangle_3d = triangle_2d.map(|vec2| vec2.extend(0.0)).map(|vec3| from_xy * vec3);
    /// ```
    #[inline]
    pub fn isometries_xy(&self, origin: Vec3) -> (Isometry3d, Isometry3d) {
        let projection = self.isometry_into_xy(origin);
        (projection, projection.inverse())
    }
}

/// An infinite line going through the origin along a direction in 3D space.
///
/// For a finite line: [`Segment3d`]
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, PartialEq))]
#[cfg_attr(
    all(feature = "serialize", feature = "bevy_reflect"),
    reflect(Serialize, Deserialize)
)]
pub struct Line3d {
    /// The direction of the line
    pub direction: Dir3,
}
impl Primitive3d for Line3d {}

/// A segment of a line going through the origin along a direction in 3D space.
#[doc(alias = "LineSegment3d")]
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, PartialEq))]
#[cfg_attr(
    all(feature = "serialize", feature = "bevy_reflect"),
    reflect(Serialize, Deserialize)
)]
pub struct Segment3d {
    /// The direction of the line
    pub direction: Dir3,
    /// Half the length of the line segment. The segment extends by this amount in both
    /// the given direction and its opposite direction
    pub half_length: f32,
}
impl Primitive3d for Segment3d {}

impl Segment3d {
    /// Create a new `Segment3d` from a direction and full length of the segment
    #[inline(always)]
    pub fn new(direction: Dir3, length: f32) -> Self {
        Self {
            direction,
            half_length: length / 2.0,
        }
    }

    /// Create a new `Segment3d` from its endpoints and compute its geometric center
    ///
    /// # Panics
    ///
    /// Panics if `point1 == point2`
    #[inline(always)]
    pub fn from_points(point1: Vec3, point2: Vec3) -> (Self, Vec3) {
        let diff = point2 - point1;
        let length = diff.length();

        (
            // We are dividing by the length here, so the vector is normalized.
            Self::new(Dir3::new_unchecked(diff / length), length),
            (point1 + point2) / 2.,
        )
    }

    /// Get the position of the first point on the line segment
    #[inline(always)]
    pub fn point1(&self) -> Vec3 {
        *self.direction * -self.half_length
    }

    /// Get the position of the second point on the line segment
    #[inline(always)]
    pub fn point2(&self) -> Vec3 {
        *self.direction * self.half_length
    }
}

/// A series of connected line segments in 3D space.
///
/// For a version without generics: [`BoxedPolyline3d`]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, PartialEq))]
#[cfg_attr(
    all(feature = "serialize", feature = "bevy_reflect"),
    reflect(Serialize, Deserialize)
)]
pub struct Polyline3d<const N: usize> {
    /// The vertices of the polyline
    #[cfg_attr(feature = "serialize", serde(with = "super::serde::array"))]
    pub vertices: [Vec3; N],
}
impl<const N: usize> Primitive3d for Polyline3d<N> {}

impl<const N: usize> FromIterator<Vec3> for Polyline3d<N> {
    fn from_iter<I: IntoIterator<Item = Vec3>>(iter: I) -> Self {
        let mut vertices: [Vec3; N] = [Vec3::ZERO; N];

        for (index, i) in iter.into_iter().take(N).enumerate() {
            vertices[index] = i;
        }
        Self { vertices }
    }
}

impl<const N: usize> Polyline3d<N> {
    /// Create a new `Polyline3d` from its vertices
    pub fn new(vertices: impl IntoIterator<Item = Vec3>) -> Self {
        Self::from_iter(vertices)
    }
}

/// A series of connected line segments in 3D space, allocated on the heap
/// in a `Box<[Vec3]>`.
///
/// For a version without alloc: [`Polyline3d`]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct BoxedPolyline3d {
    /// The vertices of the polyline
    pub vertices: Box<[Vec3]>,
}
impl Primitive3d for BoxedPolyline3d {}

impl FromIterator<Vec3> for BoxedPolyline3d {
    fn from_iter<I: IntoIterator<Item = Vec3>>(iter: I) -> Self {
        let vertices: Vec<Vec3> = iter.into_iter().collect();
        Self {
            vertices: vertices.into_boxed_slice(),
        }
    }
}

impl BoxedPolyline3d {
    /// Create a new `BoxedPolyline3d` from its vertices
    pub fn new(vertices: impl IntoIterator<Item = Vec3>) -> Self {
        Self::from_iter(vertices)
    }
}

/// A cuboid primitive, which is like a cube, except that the x, y, and z dimensions are not
/// required to be the same.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect),
    reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
    all(feature = "serialize", feature = "bevy_reflect"),
    reflect(Serialize, Deserialize)
)]
pub struct Cuboid {
    /// Half of the width, height and depth of the cuboid
    pub half_size: Vec3,
}
impl Primitive3d for Cuboid {}

impl Default for Cuboid {
    /// Returns the default [`Cuboid`] with a width, height, and depth of `1.0`.
    fn default() -> Self {
        Self {
            half_size: Vec3::splat(0.5),
        }
    }
}

impl Cuboid {
    /// Create a new `Cuboid` from a full x, y, and z length
    #[inline(always)]
    pub fn new(x_length: f32, y_length: f32, z_length: f32) -> Self {
        Self::from_size(Vec3::new(x_length, y_length, z_length))
    }

    /// Create a new `Cuboid` from a given full size
    #[inline(always)]
    pub fn from_size(size: Vec3) -> Self {
        Self {
            half_size: size / 2.0,
        }
    }

    /// Create a new `Cuboid` from two corner points
    #[inline(always)]
    pub fn from_corners(point1: Vec3, point2: Vec3) -> Self {
        Self {
            half_size: (point2 - point1).abs() / 2.0,
        }
    }

    /// Create a `Cuboid` from a single length.
    /// The resulting `Cuboid` will be the same size in every direction.
    #[inline(always)]
    pub fn from_length(length: f32) -> Self {
        Self {
            half_size: Vec3::splat(length / 2.0),
        }
    }

    /// Get the size of the cuboid
    #[inline(always)]
    pub fn size(&self) -> Vec3 {
        2.0 * self.half_size
    }

    /// Finds the point on the cuboid that is closest to the given `point`.
    ///
    /// If the point is outside the cuboid, the returned point will be on the surface of the cuboid.
    /// Otherwise, it will be inside the cuboid and returned as is.
    #[inline(always)]
    pub fn closest_point(&self, point: Vec3) -> Vec3 {
        // Clamp point coordinates to the cuboid
        point.clamp(-self.half_size, self.half_size)
    }
}

impl Measured3d for Cuboid {
    /// Get the surface area of the cuboid
    #[inline(always)]
    fn area(&self) -> f32 {
        8.0 * (self.half_size.x * self.half_size.y
            + self.half_size.y * self.half_size.z
            + self.half_size.x * self.half_size.z)
    }

    /// Get the volume of the cuboid
    #[inline(always)]
    fn volume(&self) -> f32 {
        8.0 * self.half_size.x * self.half_size.y * self.half_size.z
    }
}

/// A cylinder primitive centered on the origin
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect),
    reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
    all(feature = "serialize", feature = "bevy_reflect"),
    reflect(Serialize, Deserialize)
)]
pub struct Cylinder {
    /// The radius of the cylinder
    pub radius: f32,
    /// The half height of the cylinder
    pub half_height: f32,
}
impl Primitive3d for Cylinder {}

impl Default for Cylinder {
    /// Returns the default [`Cylinder`] with a radius of `0.5` and a height of `1.0`.
    fn default() -> Self {
        Self {
            radius: 0.5,
            half_height: 0.5,
        }
    }
}

impl Cylinder {
    /// Create a new `Cylinder` from a radius and full height
    #[inline(always)]
    pub fn new(radius: f32, height: f32) -> Self {
        Self {
            radius,
            half_height: height / 2.0,
        }
    }

    /// Get the base of the cylinder as a [`Circle`]
    #[inline(always)]
    pub fn base(&self) -> Circle {
        Circle {
            radius: self.radius,
        }
    }

    /// Get the surface area of the side of the cylinder,
    /// also known as the lateral area
    #[inline(always)]
    #[doc(alias = "side_area")]
    pub fn lateral_area(&self) -> f32 {
        4.0 * PI * self.radius * self.half_height
    }

    /// Get the surface area of one base of the cylinder
    #[inline(always)]
    pub fn base_area(&self) -> f32 {
        PI * self.radius.squared()
    }
}

impl Measured3d for Cylinder {
    /// Get the total surface area of the cylinder
    #[inline(always)]
    fn area(&self) -> f32 {
        2.0 * PI * self.radius * (self.radius + 2.0 * self.half_height)
    }

    /// Get the volume of the cylinder
    #[inline(always)]
    fn volume(&self) -> f32 {
        self.base_area() * 2.0 * self.half_height
    }
}

/// A 3D capsule primitive centered on the origin
/// A three-dimensional capsule is defined as a surface at a distance (radius) from a line
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect),
    reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
    all(feature = "serialize", feature = "bevy_reflect"),
    reflect(Serialize, Deserialize)
)]
pub struct Capsule3d {
    /// The radius of the capsule
    pub radius: f32,
    /// Half the height of the capsule, excluding the hemispheres
    pub half_length: f32,
}
impl Primitive3d for Capsule3d {}

impl Default for Capsule3d {
    /// Returns the default [`Capsule3d`] with a radius of `0.5` and a segment length of `1.0`.
    /// The total height is `2.0`.
    fn default() -> Self {
        Self {
            radius: 0.5,
            half_length: 0.5,
        }
    }
}

impl Capsule3d {
    /// Create a new `Capsule3d` from a radius and length
    pub fn new(radius: f32, length: f32) -> Self {
        Self {
            radius,
            half_length: length / 2.0,
        }
    }

    /// Get the part connecting the hemispherical ends
    /// of the capsule as a [`Cylinder`]
    #[inline(always)]
    pub fn to_cylinder(&self) -> Cylinder {
        Cylinder {
            radius: self.radius,
            half_height: self.half_length,
        }
    }
}

impl Measured3d for Capsule3d {
    /// Get the surface area of the capsule
    #[inline(always)]
    fn area(&self) -> f32 {
        // Modified version of 2pi * r * (2r + h)
        4.0 * PI * self.radius * (self.radius + self.half_length)
    }

    /// Get the volume of the capsule
    #[inline(always)]
    fn volume(&self) -> f32 {
        // Modified version of pi * r^2 * (4/3 * r + a)
        let diameter = self.radius * 2.0;
        PI * self.radius * diameter * (diameter / 3.0 + self.half_length)
    }
}

/// A cone primitive centered on the midpoint between the tip of the cone and the center of its base.
///
/// The cone is oriented with its tip pointing towards the Y axis.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect),
    reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
    all(feature = "serialize", feature = "bevy_reflect"),
    reflect(Serialize, Deserialize)
)]
pub struct Cone {
    /// The radius of the base
    pub radius: f32,
    /// The height of the cone
    pub height: f32,
}
impl Primitive3d for Cone {}

impl Default for Cone {
    /// Returns the default [`Cone`] with a base radius of `0.5` and a height of `1.0`.
    fn default() -> Self {
        Self {
            radius: 0.5,
            height: 1.0,
        }
    }
}

impl Cone {
    /// Create a new [`Cone`] from a radius and height.
    pub fn new(radius: f32, height: f32) -> Self {
        Self { radius, height }
    }
    /// Get the base of the cone as a [`Circle`]
    #[inline(always)]
    pub fn base(&self) -> Circle {
        Circle {
            radius: self.radius,
        }
    }

    /// Get the slant height of the cone, the length of the line segment
    /// connecting a point on the base to the apex
    #[inline(always)]
    #[doc(alias = "side_length")]
    pub fn slant_height(&self) -> f32 {
        ops::hypot(self.radius, self.height)
    }

    /// Get the surface area of the side of the cone,
    /// also known as the lateral area
    #[inline(always)]
    #[doc(alias = "side_area")]
    pub fn lateral_area(&self) -> f32 {
        PI * self.radius * self.slant_height()
    }

    /// Get the surface area of the base of the cone
    #[inline(always)]
    pub fn base_area(&self) -> f32 {
        PI * self.radius.squared()
    }
}

impl Measured3d for Cone {
    /// Get the total surface area of the cone
    #[inline(always)]
    fn area(&self) -> f32 {
        self.base_area() + self.lateral_area()
    }

    /// Get the volume of the cone
    #[inline(always)]
    fn volume(&self) -> f32 {
        (self.base_area() * self.height) / 3.0
    }
}

/// A conical frustum primitive.
/// A conical frustum can be created
/// by slicing off a section of a cone.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect),
    reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
    all(feature = "serialize", feature = "bevy_reflect"),
    reflect(Serialize, Deserialize)
)]
pub struct ConicalFrustum {
    /// The radius of the top of the frustum
    pub radius_top: f32,
    /// The radius of the base of the frustum
    pub radius_bottom: f32,
    /// The height of the frustum
    pub height: f32,
}
impl Primitive3d for ConicalFrustum {}

impl Default for ConicalFrustum {
    /// Returns the default [`ConicalFrustum`] with a top radius of `0.25`, bottom radius of `0.5`, and a height of `0.5`.
    fn default() -> Self {
        Self {
            radius_top: 0.25,
            radius_bottom: 0.5,
            height: 0.5,
        }
    }
}

/// The type of torus determined by the minor and major radii
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum TorusKind {
    /// A torus that has a ring.
    /// The major radius is greater than the minor radius
    Ring,
    /// A torus that has no hole but also doesn't intersect itself.
    /// The major radius is equal to the minor radius
    Horn,
    /// A self-intersecting torus.
    /// The major radius is less than the minor radius
    Spindle,
    /// A torus with non-geometric properties like
    /// a minor or major radius that is non-positive,
    /// infinite, or `NaN`
    Invalid,
}

/// A torus primitive, often representing a ring or donut shape
/// The set of points some distance from a circle centered at the origin
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect),
    reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
    all(feature = "serialize", feature = "bevy_reflect"),
    reflect(Serialize, Deserialize)
)]
pub struct Torus {
    /// The radius of the tube of the torus
    #[doc(
        alias = "ring_radius",
        alias = "tube_radius",
        alias = "cross_section_radius"
    )]
    pub minor_radius: f32,
    /// The distance from the center of the torus to the center of the tube
    #[doc(alias = "radius_of_revolution")]
    pub major_radius: f32,
}
impl Primitive3d for Torus {}

impl Default for Torus {
    /// Returns the default [`Torus`] with a minor radius of `0.25` and a major radius of `0.75`.
    fn default() -> Self {
        Self {
            minor_radius: 0.25,
            major_radius: 0.75,
        }
    }
}

impl Torus {
    /// Create a new `Torus` from an inner and outer radius.
    ///
    /// The inner radius is the radius of the hole, and the outer radius
    /// is the radius of the entire object
    #[inline(always)]
    pub fn new(inner_radius: f32, outer_radius: f32) -> Self {
        let minor_radius = (outer_radius - inner_radius) / 2.0;
        let major_radius = outer_radius - minor_radius;

        Self {
            minor_radius,
            major_radius,
        }
    }

    /// Get the inner radius of the torus.
    /// For a ring torus, this corresponds to the radius of the hole,
    /// or `major_radius - minor_radius`
    #[inline(always)]
    pub fn inner_radius(&self) -> f32 {
        self.major_radius - self.minor_radius
    }

    /// Get the outer radius of the torus.
    /// This corresponds to the overall radius of the entire object,
    /// or `major_radius + minor_radius`
    #[inline(always)]
    pub fn outer_radius(&self) -> f32 {
        self.major_radius + self.minor_radius
    }

    /// Get the [`TorusKind`] determined by the minor and major radii.
    ///
    /// The torus can either be a *ring torus* that has a hole,
    /// a *horn torus* that doesn't have a hole but also isn't self-intersecting,
    /// or a *spindle torus* that is self-intersecting.
    ///
    /// If the minor or major radius is non-positive, infinite, or `NaN`,
    /// [`TorusKind::Invalid`] is returned
    #[inline(always)]
    pub fn kind(&self) -> TorusKind {
        // Invalid if minor or major radius is non-positive, infinite, or NaN
        if self.minor_radius <= 0.0
            || !self.minor_radius.is_finite()
            || self.major_radius <= 0.0
            || !self.major_radius.is_finite()
        {
            return TorusKind::Invalid;
        }

        match self.major_radius.partial_cmp(&self.minor_radius).unwrap() {
            core::cmp::Ordering::Greater => TorusKind::Ring,
            core::cmp::Ordering::Equal => TorusKind::Horn,
            core::cmp::Ordering::Less => TorusKind::Spindle,
        }
    }
}

impl Measured3d for Torus {
    /// Get the surface area of the torus. Note that this only produces
    /// the expected result when the torus has a ring and isn't self-intersecting
    #[inline(always)]
    fn area(&self) -> f32 {
        4.0 * PI.squared() * self.major_radius * self.minor_radius
    }

    /// Get the volume of the torus. Note that this only produces
    /// the expected result when the torus has a ring and isn't self-intersecting
    #[inline(always)]
    fn volume(&self) -> f32 {
        2.0 * PI.squared() * self.major_radius * self.minor_radius.squared()
    }
}

/// A 3D triangle primitive.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect),
    reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
    all(feature = "serialize", feature = "bevy_reflect"),
    reflect(Serialize, Deserialize)
)]
pub struct Triangle3d {
    /// The vertices of the triangle.
    pub vertices: [Vec3; 3],
}

impl Primitive3d for Triangle3d {}

impl Default for Triangle3d {
    /// Returns the default [`Triangle3d`] with the vertices `[0.0, 0.5, 0.0]`, `[-0.5, -0.5, 0.0]`, and `[0.5, -0.5, 0.0]`.
    fn default() -> Self {
        Self {
            vertices: [
                Vec3::new(0.0, 0.5, 0.0),
                Vec3::new(-0.5, -0.5, 0.0),
                Vec3::new(0.5, -0.5, 0.0),
            ],
        }
    }
}

impl Triangle3d {
    /// Create a new [`Triangle3d`] from points `a`, `b`, and `c`.
    #[inline(always)]
    pub fn new(a: Vec3, b: Vec3, c: Vec3) -> Self {
        Self {
            vertices: [a, b, c],
        }
    }

    /// Get the normal of the triangle in the direction of the right-hand rule, assuming
    /// the vertices are ordered in a counter-clockwise direction.
    ///
    /// The normal is computed as the cross product of the vectors `ab` and `ac`.
    ///
    /// # Errors
    ///
    /// Returns [`Err(InvalidDirectionError)`](InvalidDirectionError) if the length
    /// of the given vector is zero (or very close to zero), infinite, or `NaN`.
    #[inline(always)]
    pub fn normal(&self) -> Result<Dir3, InvalidDirectionError> {
        let [a, b, c] = self.vertices;
        let ab = b - a;
        let ac = c - a;
        Dir3::new(ab.cross(ac))
    }

    /// Checks if the triangle is degenerate, meaning it has zero area.
    ///
    /// A triangle is degenerate if the cross product of the vectors `ab` and `ac` has a length less than `10e-7`.
    /// This indicates that the three vertices are collinear or nearly collinear.
    #[inline(always)]
    pub fn is_degenerate(&self) -> bool {
        let [a, b, c] = self.vertices;
        let ab = b - a;
        let ac = c - a;
        ab.cross(ac).length() < 10e-7
    }

    /// Checks if the triangle is acute, meaning all angles are less than 90 degrees
    #[inline(always)]
    pub fn is_acute(&self) -> bool {
        let [a, b, c] = self.vertices;
        let ab = b - a;
        let bc = c - b;
        let ca = a - c;

        // a^2 + b^2 < c^2 for an acute triangle
        let mut side_lengths = [
            ab.length_squared(),
            bc.length_squared(),
            ca.length_squared(),
        ];
        side_lengths.sort_by(|a, b| a.partial_cmp(b).unwrap());
        side_lengths[0] + side_lengths[1] > side_lengths[2]
    }

    /// Checks if the triangle is obtuse, meaning one angle is greater than 90 degrees
    #[inline(always)]
    pub fn is_obtuse(&self) -> bool {
        let [a, b, c] = self.vertices;
        let ab = b - a;
        let bc = c - b;
        let ca = a - c;

        // a^2 + b^2 > c^2 for an obtuse triangle
        let mut side_lengths = [
            ab.length_squared(),
            bc.length_squared(),
            ca.length_squared(),
        ];
        side_lengths.sort_by(|a, b| a.partial_cmp(b).unwrap());
        side_lengths[0] + side_lengths[1] < side_lengths[2]
    }

    /// Reverse the triangle by swapping the first and last vertices.
    #[inline(always)]
    pub fn reverse(&mut self) {
        self.vertices.swap(0, 2);
    }

    /// This triangle but reversed.
    #[inline(always)]
    #[must_use]
    pub fn reversed(mut self) -> Triangle3d {
        self.reverse();
        self
    }

    /// Get the centroid of the triangle.
    ///
    /// This function finds the geometric center of the triangle by averaging the vertices:
    /// `centroid = (a + b + c) / 3`.
    #[doc(alias("center", "barycenter", "baricenter"))]
    #[inline(always)]
    pub fn centroid(&self) -> Vec3 {
        (self.vertices[0] + self.vertices[1] + self.vertices[2]) / 3.0
    }

    /// Get the largest side of the triangle.
    ///
    /// Returns the two points that form the largest side of the triangle.
    #[inline(always)]
    pub fn largest_side(&self) -> (Vec3, Vec3) {
        let [a, b, c] = self.vertices;
        let ab = b - a;
        let bc = c - b;
        let ca = a - c;

        let mut largest_side_points = (a, b);
        let mut largest_side_length = ab.length();

        if bc.length() > largest_side_length {
            largest_side_points = (b, c);
            largest_side_length = bc.length();
        }

        if ca.length() > largest_side_length {
            largest_side_points = (a, c);
        }

        largest_side_points
    }

    /// Get the circumcenter of the triangle.
    #[inline(always)]
    pub fn circumcenter(&self) -> Vec3 {
        if self.is_degenerate() {
            // If the triangle is degenerate, the circumcenter is the midpoint of the largest side.
            let (p1, p2) = self.largest_side();
            return (p1 + p2) / 2.0;
        }

        let [a, b, c] = self.vertices;
        let ab = b - a;
        let ac = c - a;
        let n = ab.cross(ac);

        // Reference: https://gamedev.stackexchange.com/questions/60630/how-do-i-find-the-circumcenter-of-a-triangle-in-3d
        a + ((ac.length_squared() * n.cross(ab) + ab.length_squared() * ac.cross(ab).cross(ac))
            / (2.0 * n.length_squared()))
    }
}

impl Measured2d for Triangle3d {
    /// Get the area of the triangle.
    #[inline(always)]
    fn area(&self) -> f32 {
        let [a, b, c] = self.vertices;
        let ab = b - a;
        let ac = c - a;
        ab.cross(ac).length() / 2.0
    }

    /// Get the perimeter of the triangle.
    #[inline(always)]
    fn perimeter(&self) -> f32 {
        let [a, b, c] = self.vertices;
        a.distance(b) + b.distance(c) + c.distance(a)
    }
}

/// A tetrahedron primitive.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect),
    reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
    all(feature = "serialize", feature = "bevy_reflect"),
    reflect(Serialize, Deserialize)
)]
pub struct Tetrahedron {
    /// The vertices of the tetrahedron.
    pub vertices: [Vec3; 4],
}
impl Primitive3d for Tetrahedron {}

impl Default for Tetrahedron {
    /// Returns the default [`Tetrahedron`] with the vertices
    /// `[0.5, 0.5, 0.5]`, `[-0.5, 0.5, -0.5]`, `[-0.5, -0.5, 0.5]` and `[0.5, -0.5, -0.5]`.
    fn default() -> Self {
        Self {
            vertices: [
                Vec3::new(0.5, 0.5, 0.5),
                Vec3::new(-0.5, 0.5, -0.5),
                Vec3::new(-0.5, -0.5, 0.5),
                Vec3::new(0.5, -0.5, -0.5),
            ],
        }
    }
}

impl Tetrahedron {
    /// Create a new [`Tetrahedron`] from points `a`, `b`, `c` and `d`.
    #[inline(always)]
    pub fn new(a: Vec3, b: Vec3, c: Vec3, d: Vec3) -> Self {
        Self {
            vertices: [a, b, c, d],
        }
    }

    /// Get the signed volume of the tetrahedron.
    ///
    /// If it's negative, the normal vector of the face defined by
    /// the first three points using the right-hand rule points
    /// away from the fourth vertex.
    #[inline(always)]
    pub fn signed_volume(&self) -> f32 {
        let [a, b, c, d] = self.vertices;
        let ab = b - a;
        let ac = c - a;
        let ad = d - a;
        Mat3::from_cols(ab, ac, ad).determinant() / 6.0
    }

    /// Get the centroid of the tetrahedron.
    ///
    /// This function finds the geometric center of the tetrahedron
    /// by averaging the vertices: `centroid = (a + b + c + d) / 4`.
    #[doc(alias("center", "barycenter", "baricenter"))]
    #[inline(always)]
    pub fn centroid(&self) -> Vec3 {
        (self.vertices[0] + self.vertices[1] + self.vertices[2] + self.vertices[3]) / 4.0
    }

    /// Get the triangles that form the faces of this tetrahedron.
    ///
    /// Note that the orientations of the faces are determined by that of the tetrahedron; if the
    /// signed volume of this tetrahedron is positive, then the triangles' normals will point
    /// outward, and if the signed volume is negative they will point inward.
    #[inline(always)]
    pub fn faces(&self) -> [Triangle3d; 4] {
        let [a, b, c, d] = self.vertices;
        [
            Triangle3d::new(b, c, d),
            Triangle3d::new(a, c, d).reversed(),
            Triangle3d::new(a, b, d),
            Triangle3d::new(a, b, c).reversed(),
        ]
    }
}

impl Measured3d for Tetrahedron {
    /// Get the surface area of the tetrahedron.
    #[inline(always)]
    fn area(&self) -> f32 {
        let [a, b, c, d] = self.vertices;
        let ab = b - a;
        let ac = c - a;
        let ad = d - a;
        let bc = c - b;
        let bd = d - b;
        (ab.cross(ac).length()
            + ab.cross(ad).length()
            + ac.cross(ad).length()
            + bc.cross(bd).length())
            / 2.0
    }

    /// Get the volume of the tetrahedron.
    #[inline(always)]
    fn volume(&self) -> f32 {
        self.signed_volume().abs()
    }
}

/// A 3D shape representing an extruded 2D `base_shape`.
///
/// Extruding a shape effectively "thickens" a 2D shapes,
/// creating a shape with the same cross-section over the entire depth.
///
/// The resulting volumes are prisms.
/// For example, a triangle becomes a triangular prism, while a circle becomes a cylinder.
#[doc(alias = "Prism")]
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Extrusion<T: Primitive2d> {
    /// The base shape of the extrusion
    pub base_shape: T,
    /// Half of the depth of the extrusion
    pub half_depth: f32,
}
impl<T: Primitive2d> Primitive3d for Extrusion<T> {}

impl<T: Primitive2d> Extrusion<T> {
    /// Create a new `Extrusion<T>` from a given `base_shape` and `depth`
    pub fn new(base_shape: T, depth: f32) -> Self {
        Self {
            base_shape,
            half_depth: depth / 2.,
        }
    }
}

impl<T: Primitive2d + Measured2d> Measured3d for Extrusion<T> {
    /// Get the surface area of the extrusion
    fn area(&self) -> f32 {
        2. * (self.base_shape.area() + self.half_depth * self.base_shape.perimeter())
    }

    /// Get the volume of the extrusion
    fn volume(&self) -> f32 {
        2. * self.base_shape.area() * self.half_depth
    }
}

#[cfg(test)]
mod tests {
    // Reference values were computed by hand and/or with external tools

    use super::*;
    use crate::{InvalidDirectionError, Quat};
    use approx::assert_relative_eq;

    #[test]
    fn direction_creation() {
        assert_eq!(Dir3::new(Vec3::X * 12.5), Ok(Dir3::X));
        assert_eq!(
            Dir3::new(Vec3::new(0.0, 0.0, 0.0)),
            Err(InvalidDirectionError::Zero)
        );
        assert_eq!(
            Dir3::new(Vec3::new(f32::INFINITY, 0.0, 0.0)),
            Err(InvalidDirectionError::Infinite)
        );
        assert_eq!(
            Dir3::new(Vec3::new(f32::NEG_INFINITY, 0.0, 0.0)),
            Err(InvalidDirectionError::Infinite)
        );
        assert_eq!(
            Dir3::new(Vec3::new(f32::NAN, 0.0, 0.0)),
            Err(InvalidDirectionError::NaN)
        );
        assert_eq!(Dir3::new_and_length(Vec3::X * 6.5), Ok((Dir3::X, 6.5)));

        // Test rotation
        assert!(
            (Quat::from_rotation_z(core::f32::consts::FRAC_PI_2) * Dir3::X)
                .abs_diff_eq(Vec3::Y, 10e-6)
        );
    }

    #[test]
    fn cuboid_closest_point() {
        let cuboid = Cuboid::new(2.0, 2.0, 2.0);
        assert_eq!(cuboid.closest_point(Vec3::X * 10.0), Vec3::X);
        assert_eq!(cuboid.closest_point(Vec3::NEG_ONE * 10.0), Vec3::NEG_ONE);
        assert_eq!(
            cuboid.closest_point(Vec3::new(0.25, 0.1, 0.3)),
            Vec3::new(0.25, 0.1, 0.3)
        );
    }

    #[test]
    fn sphere_closest_point() {
        let sphere = Sphere { radius: 1.0 };
        assert_eq!(sphere.closest_point(Vec3::X * 10.0), Vec3::X);
        assert_eq!(
            sphere.closest_point(Vec3::NEG_ONE * 10.0),
            Vec3::NEG_ONE.normalize()
        );
        assert_eq!(
            sphere.closest_point(Vec3::new(0.25, 0.1, 0.3)),
            Vec3::new(0.25, 0.1, 0.3)
        );
    }

    #[test]
    fn sphere_math() {
        let sphere = Sphere { radius: 4.0 };
        assert_eq!(sphere.diameter(), 8.0, "incorrect diameter");
        assert_eq!(sphere.area(), 201.06193, "incorrect area");
        assert_eq!(sphere.volume(), 268.08257, "incorrect volume");
    }

    #[test]
    fn plane_from_points() {
        let (plane, translation) = Plane3d::from_points(Vec3::X, Vec3::Z, Vec3::NEG_X);
        assert_eq!(*plane.normal, Vec3::NEG_Y, "incorrect normal");
        assert_eq!(plane.half_size, Vec2::new(0.5, 0.5), "incorrect half size");
        assert_eq!(translation, Vec3::Z * 0.33333334, "incorrect translation");
    }

    #[test]
    fn infinite_plane_math() {
        let (plane, origin) = InfinitePlane3d::from_points(Vec3::X, Vec3::Z, Vec3::NEG_X);
        assert_eq!(*plane.normal, Vec3::NEG_Y, "incorrect normal");
        assert_eq!(origin, Vec3::Z * 0.33333334, "incorrect translation");

        let point_in_plane = Vec3::X + Vec3::Z;
        assert_eq!(
            plane.signed_distance(origin, point_in_plane),
            0.0,
            "incorrect distance"
        );
        assert_eq!(
            plane.project_point(origin, point_in_plane),
            point_in_plane,
            "incorrect point"
        );

        let point_outside = Vec3::Y;
        assert_eq!(
            plane.signed_distance(origin, point_outside),
            -1.0,
            "incorrect distance"
        );
        assert_eq!(
            plane.project_point(origin, point_outside),
            Vec3::ZERO,
            "incorrect point"
        );

        let point_outside = Vec3::NEG_Y;
        assert_eq!(
            plane.signed_distance(origin, point_outside),
            1.0,
            "incorrect distance"
        );
        assert_eq!(
            plane.project_point(origin, point_outside),
            Vec3::ZERO,
            "incorrect point"
        );

        let area_f = |[a, b, c]: [Vec3; 3]| (a - b).cross(a - c).length() * 0.5;
        let (proj, inj) = plane.isometries_xy(origin);

        let triangle = [Vec3::X, Vec3::Y, Vec3::ZERO];
        assert_eq!(area_f(triangle), 0.5, "incorrect area");

        let triangle_proj = triangle.map(|vec3| proj * vec3);
        assert_relative_eq!(area_f(triangle_proj), 0.5);

        let triangle_proj_inj = triangle_proj.map(|vec3| inj * vec3);
        assert_relative_eq!(area_f(triangle_proj_inj), 0.5);
    }

    #[test]
    fn cuboid_math() {
        let cuboid = Cuboid::new(3.0, 7.0, 2.0);
        assert_eq!(
            cuboid,
            Cuboid::from_corners(Vec3::new(-1.5, -3.5, -1.0), Vec3::new(1.5, 3.5, 1.0)),
            "incorrect dimensions when created from corners"
        );
        assert_eq!(cuboid.area(), 82.0, "incorrect area");
        assert_eq!(cuboid.volume(), 42.0, "incorrect volume");
    }

    #[test]
    fn cylinder_math() {
        let cylinder = Cylinder::new(2.0, 9.0);
        assert_eq!(
            cylinder.base(),
            Circle { radius: 2.0 },
            "base produces incorrect circle"
        );
        assert_eq!(
            cylinder.lateral_area(),
            113.097336,
            "incorrect lateral area"
        );
        assert_eq!(cylinder.base_area(), 12.566371, "incorrect base area");
        assert_relative_eq!(cylinder.area(), 138.23007);
        assert_eq!(cylinder.volume(), 113.097336, "incorrect volume");
    }

    #[test]
    fn capsule_math() {
        let capsule = Capsule3d::new(2.0, 9.0);
        assert_eq!(
            capsule.to_cylinder(),
            Cylinder::new(2.0, 9.0),
            "cylinder wasn't created correctly from a capsule"
        );
        assert_eq!(capsule.area(), 163.36282, "incorrect area");
        assert_relative_eq!(capsule.volume(), 146.60765);
    }

    #[test]
    fn cone_math() {
        let cone = Cone {
            radius: 2.0,
            height: 9.0,
        };
        assert_eq!(
            cone.base(),
            Circle { radius: 2.0 },
            "base produces incorrect circle"
        );
        assert_eq!(cone.slant_height(), 9.219544, "incorrect slant height");
        assert_eq!(cone.lateral_area(), 57.92811, "incorrect lateral area");
        assert_eq!(cone.base_area(), 12.566371, "incorrect base area");
        assert_relative_eq!(cone.area(), 70.49447);
        assert_eq!(cone.volume(), 37.699111, "incorrect volume");
    }

    #[test]
    fn torus_math() {
        let torus = Torus {
            minor_radius: 0.3,
            major_radius: 2.8,
        };
        assert_eq!(torus.inner_radius(), 2.5, "incorrect inner radius");
        assert_eq!(torus.outer_radius(), 3.1, "incorrect outer radius");
        assert_eq!(torus.kind(), TorusKind::Ring, "incorrect torus kind");
        assert_eq!(
            Torus::new(0.0, 1.0).kind(),
            TorusKind::Horn,
            "incorrect torus kind"
        );
        assert_eq!(
            Torus::new(-0.5, 1.0).kind(),
            TorusKind::Spindle,
            "incorrect torus kind"
        );
        assert_eq!(
            Torus::new(1.5, 1.0).kind(),
            TorusKind::Invalid,
            "torus should be invalid"
        );
        assert_relative_eq!(torus.area(), 33.16187);
        assert_relative_eq!(torus.volume(), 4.97428, epsilon = 0.00001);
    }

    #[test]
    fn tetrahedron_math() {
        let tetrahedron = Tetrahedron {
            vertices: [
                Vec3::new(0.3, 1.0, 1.7),
                Vec3::new(-2.0, -1.0, 0.0),
                Vec3::new(1.8, 0.5, 1.0),
                Vec3::new(-1.0, -2.0, 3.5),
            ],
        };
        assert_eq!(tetrahedron.area(), 19.251068, "incorrect area");
        assert_eq!(tetrahedron.volume(), 3.2058334, "incorrect volume");
        assert_eq!(
            tetrahedron.signed_volume(),
            3.2058334,
            "incorrect signed volume"
        );
        assert_relative_eq!(tetrahedron.centroid(), Vec3::new(-0.225, -0.375, 1.55));

        assert_eq!(Tetrahedron::default().area(), 3.4641016, "incorrect area");
        assert_eq!(
            Tetrahedron::default().volume(),
            0.33333334,
            "incorrect volume"
        );
        assert_eq!(
            Tetrahedron::default().signed_volume(),
            -0.33333334,
            "incorrect signed volume"
        );
        assert_relative_eq!(Tetrahedron::default().centroid(), Vec3::ZERO);
    }

    #[test]
    fn extrusion_math() {
        let circle = Circle::new(0.75);
        let cylinder = Extrusion::new(circle, 2.5);
        assert_eq!(cylinder.area(), 15.315264, "incorrect surface area");
        assert_eq!(cylinder.volume(), 4.417865, "incorrect volume");

        let annulus = crate::primitives::Annulus::new(0.25, 1.375);
        let tube = Extrusion::new(annulus, 0.333);
        assert_eq!(tube.area(), 14.886437, "incorrect surface area");
        assert_eq!(tube.volume(), 1.9124937, "incorrect volume");

        let polygon = crate::primitives::RegularPolygon::new(3.8, 7);
        let regular_prism = Extrusion::new(polygon, 1.25);
        assert_eq!(regular_prism.area(), 107.8808, "incorrect surface area");
        assert_eq!(regular_prism.volume(), 49.392204, "incorrect volume");
    }

    #[test]
    fn triangle_math() {
        // Default triangle tests
        let mut default_triangle = Triangle3d::default();
        let reverse_default_triangle = Triangle3d::new(
            Vec3::new(0.5, -0.5, 0.0),
            Vec3::new(-0.5, -0.5, 0.0),
            Vec3::new(0.0, 0.5, 0.0),
        );
        assert_eq!(default_triangle.area(), 0.5, "incorrect area");
        assert_relative_eq!(
            default_triangle.perimeter(),
            1.0 + 2.0 * 1.25_f32.sqrt(),
            epsilon = 10e-9
        );
        assert_eq!(default_triangle.normal(), Ok(Dir3::Z), "incorrect normal");
        assert!(
            !default_triangle.is_degenerate(),
            "incorrect degenerate check"
        );
        assert_eq!(
            default_triangle.centroid(),
            Vec3::new(0.0, -0.16666667, 0.0),
            "incorrect centroid"
        );
        assert_eq!(
            default_triangle.largest_side(),
            (Vec3::new(0.0, 0.5, 0.0), Vec3::new(-0.5, -0.5, 0.0))
        );
        default_triangle.reverse();
        assert_eq!(
            default_triangle, reverse_default_triangle,
            "incorrect reverse"
        );
        assert_eq!(
            default_triangle.circumcenter(),
            Vec3::new(0.0, -0.125, 0.0),
            "incorrect circumcenter"
        );

        // Custom triangle tests
        let right_triangle = Triangle3d::new(Vec3::ZERO, Vec3::X, Vec3::Y);
        let obtuse_triangle = Triangle3d::new(Vec3::NEG_X, Vec3::X, Vec3::new(0.0, 0.1, 0.0));
        let acute_triangle = Triangle3d::new(Vec3::ZERO, Vec3::X, Vec3::new(0.5, 5.0, 0.0));

        assert_eq!(
            right_triangle.circumcenter(),
            Vec3::new(0.5, 0.5, 0.0),
            "incorrect circumcenter"
        );
        assert_eq!(
            obtuse_triangle.circumcenter(),
            Vec3::new(0.0, -4.95, 0.0),
            "incorrect circumcenter"
        );
        assert_eq!(
            acute_triangle.circumcenter(),
            Vec3::new(0.5, 2.475, 0.0),
            "incorrect circumcenter"
        );

        assert!(acute_triangle.is_acute());
        assert!(!acute_triangle.is_obtuse());
        assert!(!obtuse_triangle.is_acute());
        assert!(obtuse_triangle.is_obtuse());

        // Arbitrary triangle tests
        let [a, b, c] = [Vec3::ZERO, Vec3::new(1., 1., 0.5), Vec3::new(-3., 2.5, 1.)];
        let triangle = Triangle3d::new(a, b, c);

        assert!(!triangle.is_degenerate(), "incorrectly found degenerate");
        assert_eq!(triangle.area(), 3.0233467, "incorrect area");
        assert_eq!(triangle.perimeter(), 9.832292, "incorrect perimeter");
        assert_eq!(
            triangle.circumcenter(),
            Vec3::new(-1., 1.75, 0.75),
            "incorrect circumcenter"
        );
        assert_eq!(
            triangle.normal(),
            Ok(Dir3::new_unchecked(Vec3::new(
                -0.04134491,
                -0.4134491,
                0.90958804
            ))),
            "incorrect normal"
        );

        // Degenerate triangle tests
        let zero_degenerate_triangle = Triangle3d::new(Vec3::ZERO, Vec3::ZERO, Vec3::ZERO);
        assert!(
            zero_degenerate_triangle.is_degenerate(),
            "incorrect degenerate check"
        );
        assert_eq!(
            zero_degenerate_triangle.normal(),
            Err(InvalidDirectionError::Zero),
            "incorrect normal"
        );
        assert_eq!(
            zero_degenerate_triangle.largest_side(),
            (Vec3::ZERO, Vec3::ZERO),
            "incorrect largest side"
        );

        let dup_degenerate_triangle = Triangle3d::new(Vec3::ZERO, Vec3::X, Vec3::X);
        assert!(
            dup_degenerate_triangle.is_degenerate(),
            "incorrect degenerate check"
        );
        assert_eq!(
            dup_degenerate_triangle.normal(),
            Err(InvalidDirectionError::Zero),
            "incorrect normal"
        );
        assert_eq!(
            dup_degenerate_triangle.largest_side(),
            (Vec3::ZERO, Vec3::X),
            "incorrect largest side"
        );

        let collinear_degenerate_triangle = Triangle3d::new(Vec3::NEG_X, Vec3::ZERO, Vec3::X);
        assert!(
            collinear_degenerate_triangle.is_degenerate(),
            "incorrect degenerate check"
        );
        assert_eq!(
            collinear_degenerate_triangle.normal(),
            Err(InvalidDirectionError::Zero),
            "incorrect normal"
        );
        assert_eq!(
            collinear_degenerate_triangle.largest_side(),
            (Vec3::NEG_X, Vec3::X),
            "incorrect largest side"
        );
    }
}