bevy_math/primitives/dim3.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
use core::f32::consts::{FRAC_PI_3, PI};
use super::{Circle, Measured2d, Measured3d, Primitive2d, Primitive3d};
use crate::{ops, ops::FloatPow, Dir3, InvalidDirectionError, Isometry3d, Mat3, Vec2, Vec3};
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
#[cfg(all(feature = "serialize", feature = "bevy_reflect"))]
use bevy_reflect::{ReflectDeserialize, ReflectSerialize};
use glam::Quat;
/// A sphere primitive, representing the set of all points some distance from the origin
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Sphere {
/// The radius of the sphere
pub radius: f32,
}
impl Primitive3d for Sphere {}
impl Default for Sphere {
/// Returns the default [`Sphere`] with a radius of `0.5`.
fn default() -> Self {
Self { radius: 0.5 }
}
}
impl Sphere {
/// Create a new [`Sphere`] from a `radius`
#[inline(always)]
pub const fn new(radius: f32) -> Self {
Self { radius }
}
/// Get the diameter of the sphere
#[inline(always)]
pub fn diameter(&self) -> f32 {
2.0 * self.radius
}
/// Finds the point on the sphere that is closest to the given `point`.
///
/// If the point is outside the sphere, the returned point will be on the surface of the sphere.
/// Otherwise, it will be inside the sphere and returned as is.
#[inline(always)]
pub fn closest_point(&self, point: Vec3) -> Vec3 {
let distance_squared = point.length_squared();
if distance_squared <= self.radius.squared() {
// The point is inside the sphere.
point
} else {
// The point is outside the sphere.
// Find the closest point on the surface of the sphere.
let dir_to_point = point / distance_squared.sqrt();
self.radius * dir_to_point
}
}
}
impl Measured3d for Sphere {
/// Get the surface area of the sphere
#[inline(always)]
fn area(&self) -> f32 {
4.0 * PI * self.radius.squared()
}
/// Get the volume of the sphere
#[inline(always)]
fn volume(&self) -> f32 {
4.0 * FRAC_PI_3 * self.radius.cubed()
}
}
/// A bounded plane in 3D space. It forms a surface starting from the origin with a defined height and width.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Plane3d {
/// The normal of the plane. The plane will be placed perpendicular to this direction
pub normal: Dir3,
/// Half of the width and height of the plane
pub half_size: Vec2,
}
impl Primitive3d for Plane3d {}
impl Default for Plane3d {
/// Returns the default [`Plane3d`] with a normal pointing in the `+Y` direction, width and height of `1.0`.
fn default() -> Self {
Self {
normal: Dir3::Y,
half_size: Vec2::splat(0.5),
}
}
}
impl Plane3d {
/// Create a new `Plane3d` from a normal and a half size
///
/// # Panics
///
/// Panics if the given `normal` is zero (or very close to zero), or non-finite.
#[inline(always)]
pub fn new(normal: Vec3, half_size: Vec2) -> Self {
Self {
normal: Dir3::new(normal).expect("normal must be nonzero and finite"),
half_size,
}
}
/// Create a new `Plane3d` based on three points and compute the geometric center
/// of those points.
///
/// The direction of the plane normal is determined by the winding order
/// of the triangular shape formed by the points.
///
/// # Panics
///
/// Panics if a valid normal can not be computed, for example when the points
/// are *collinear* and lie on the same line.
#[inline(always)]
pub fn from_points(a: Vec3, b: Vec3, c: Vec3) -> (Self, Vec3) {
let normal = Dir3::new((b - a).cross(c - a)).expect(
"finite plane must be defined by three finite points that don't lie on the same line",
);
let translation = (a + b + c) / 3.0;
(
Self {
normal,
..Default::default()
},
translation,
)
}
}
/// An unbounded plane in 3D space. It forms a separating surface through the origin,
/// stretching infinitely far
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct InfinitePlane3d {
/// The normal of the plane. The plane will be placed perpendicular to this direction
pub normal: Dir3,
}
impl Primitive3d for InfinitePlane3d {}
impl Default for InfinitePlane3d {
/// Returns the default [`InfinitePlane3d`] with a normal pointing in the `+Y` direction.
fn default() -> Self {
Self { normal: Dir3::Y }
}
}
impl InfinitePlane3d {
/// Create a new `InfinitePlane3d` from a normal
///
/// # Panics
///
/// Panics if the given `normal` is zero (or very close to zero), or non-finite.
#[inline(always)]
pub fn new<T: TryInto<Dir3>>(normal: T) -> Self
where
<T as TryInto<Dir3>>::Error: core::fmt::Debug,
{
Self {
normal: normal
.try_into()
.expect("normal must be nonzero and finite"),
}
}
/// Create a new `InfinitePlane3d` based on three points and compute the geometric center
/// of those points.
///
/// The direction of the plane normal is determined by the winding order
/// of the triangular shape formed by the points.
///
/// # Panics
///
/// Panics if a valid normal can not be computed, for example when the points
/// are *collinear* and lie on the same line.
#[inline(always)]
pub fn from_points(a: Vec3, b: Vec3, c: Vec3) -> (Self, Vec3) {
let normal = Dir3::new((b - a).cross(c - a)).expect(
"infinite plane must be defined by three finite points that don't lie on the same line",
);
let translation = (a + b + c) / 3.0;
(Self { normal }, translation)
}
/// Computes the shortest distance between a plane transformed with the given `isometry` and a
/// `point`. The result is a signed value; it's positive if the point lies in the half-space
/// that the plane's normal vector points towards.
#[inline]
pub fn signed_distance(&self, isometry: impl Into<Isometry3d>, point: Vec3) -> f32 {
let isometry = isometry.into();
self.normal.dot(isometry.inverse() * point)
}
/// Injects the `point` into this plane transformed with the given `isometry`.
///
/// This projects the point orthogonally along the shortest path onto the plane.
#[inline]
pub fn project_point(&self, isometry: impl Into<Isometry3d>, point: Vec3) -> Vec3 {
point - self.normal * self.signed_distance(isometry, point)
}
/// Computes an [`Isometry3d`] which transforms points from the plane in 3D space with the given
/// `origin` to the XY-plane.
///
/// ## Guarantees
///
/// * the transformation is a [congruence] meaning it will preserve all distances and angles of
/// the transformed geometry
/// * uses the least rotation possible to transform the geometry
/// * if two geometries are transformed with the same isometry, then the relations between
/// them, like distances, are also preserved
/// * compared to projections, the transformation is lossless (up to floating point errors)
/// reversible
///
/// ## Non-Guarantees
///
/// * the rotation used is generally not unique
/// * the orientation of the transformed geometry in the XY plane might be arbitrary, to
/// enforce some kind of alignment the user has to use an extra transformation ontop of this
/// one
///
/// See [`isometries_xy`] for example usescases.
///
/// [congruence]: https://en.wikipedia.org/wiki/Congruence_(geometry)
/// [`isometries_xy`]: `InfinitePlane3d::isometries_xy`
#[inline]
pub fn isometry_into_xy(&self, origin: Vec3) -> Isometry3d {
let rotation = Quat::from_rotation_arc(self.normal.as_vec3(), Vec3::Z);
let transformed_origin = rotation * origin;
Isometry3d::new(-Vec3::Z * transformed_origin.z, rotation)
}
/// Computes an [`Isometry3d`] which transforms points from the XY-plane to this plane with the
/// given `origin`.
///
/// ## Guarantees
///
/// * the transformation is a [congruence] meaning it will preserve all distances and angles of
/// the transformed geometry
/// * uses the least rotation possible to transform the geometry
/// * if two geometries are transformed with the same isometry, then the relations between
/// them, like distances, are also preserved
/// * compared to projections, the transformation is lossless (up to floating point errors)
/// reversible
///
/// ## Non-Guarantees
///
/// * the rotation used is generally not unique
/// * the orientation of the transformed geometry in the XY plane might be arbitrary, to
/// enforce some kind of alignment the user has to use an extra transformation ontop of this
/// one
///
/// See [`isometries_xy`] for example usescases.
///
/// [congruence]: https://en.wikipedia.org/wiki/Congruence_(geometry)
/// [`isometries_xy`]: `InfinitePlane3d::isometries_xy`
#[inline]
pub fn isometry_from_xy(&self, origin: Vec3) -> Isometry3d {
self.isometry_into_xy(origin).inverse()
}
/// Computes both [isometries] which transforms points from the plane in 3D space with the
/// given `origin` to the XY-plane and back.
///
/// [isometries]: `Isometry3d`
///
/// # Example
///
/// The projection and its inverse can be used to run 2D algorithms on flat shapes in 3D. The
/// workflow would usually look like this:
///
/// ```
/// # use bevy_math::{Vec3, Dir3};
/// # use bevy_math::primitives::InfinitePlane3d;
///
/// let triangle_3d @ [a, b, c] = [Vec3::X, Vec3::Y, Vec3::Z];
/// let center = (a + b + c) / 3.0;
///
/// let plane = InfinitePlane3d::new(Vec3::ONE);
///
/// let (to_xy, from_xy) = plane.isometries_xy(center);
///
/// let triangle_2d = triangle_3d.map(|vec3| to_xy * vec3).map(|vec3| vec3.truncate());
///
/// // apply some algorithm to `triangle_2d`
///
/// let triangle_3d = triangle_2d.map(|vec2| vec2.extend(0.0)).map(|vec3| from_xy * vec3);
/// ```
#[inline]
pub fn isometries_xy(&self, origin: Vec3) -> (Isometry3d, Isometry3d) {
let projection = self.isometry_into_xy(origin);
(projection, projection.inverse())
}
}
/// An infinite line going through the origin along a direction in 3D space.
///
/// For a finite line: [`Segment3d`]
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, PartialEq))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Line3d {
/// The direction of the line
pub direction: Dir3,
}
impl Primitive3d for Line3d {}
/// A segment of a line going through the origin along a direction in 3D space.
#[doc(alias = "LineSegment3d")]
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, PartialEq))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Segment3d {
/// The direction of the line
pub direction: Dir3,
/// Half the length of the line segment. The segment extends by this amount in both
/// the given direction and its opposite direction
pub half_length: f32,
}
impl Primitive3d for Segment3d {}
impl Segment3d {
/// Create a new `Segment3d` from a direction and full length of the segment
#[inline(always)]
pub fn new(direction: Dir3, length: f32) -> Self {
Self {
direction,
half_length: length / 2.0,
}
}
/// Create a new `Segment3d` from its endpoints and compute its geometric center
///
/// # Panics
///
/// Panics if `point1 == point2`
#[inline(always)]
pub fn from_points(point1: Vec3, point2: Vec3) -> (Self, Vec3) {
let diff = point2 - point1;
let length = diff.length();
(
// We are dividing by the length here, so the vector is normalized.
Self::new(Dir3::new_unchecked(diff / length), length),
(point1 + point2) / 2.,
)
}
/// Get the position of the first point on the line segment
#[inline(always)]
pub fn point1(&self) -> Vec3 {
*self.direction * -self.half_length
}
/// Get the position of the second point on the line segment
#[inline(always)]
pub fn point2(&self) -> Vec3 {
*self.direction * self.half_length
}
}
/// A series of connected line segments in 3D space.
///
/// For a version without generics: [`BoxedPolyline3d`]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, PartialEq))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Polyline3d<const N: usize> {
/// The vertices of the polyline
#[cfg_attr(feature = "serialize", serde(with = "super::serde::array"))]
pub vertices: [Vec3; N],
}
impl<const N: usize> Primitive3d for Polyline3d<N> {}
impl<const N: usize> FromIterator<Vec3> for Polyline3d<N> {
fn from_iter<I: IntoIterator<Item = Vec3>>(iter: I) -> Self {
let mut vertices: [Vec3; N] = [Vec3::ZERO; N];
for (index, i) in iter.into_iter().take(N).enumerate() {
vertices[index] = i;
}
Self { vertices }
}
}
impl<const N: usize> Polyline3d<N> {
/// Create a new `Polyline3d` from its vertices
pub fn new(vertices: impl IntoIterator<Item = Vec3>) -> Self {
Self::from_iter(vertices)
}
}
/// A series of connected line segments in 3D space, allocated on the heap
/// in a `Box<[Vec3]>`.
///
/// For a version without alloc: [`Polyline3d`]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct BoxedPolyline3d {
/// The vertices of the polyline
pub vertices: Box<[Vec3]>,
}
impl Primitive3d for BoxedPolyline3d {}
impl FromIterator<Vec3> for BoxedPolyline3d {
fn from_iter<I: IntoIterator<Item = Vec3>>(iter: I) -> Self {
let vertices: Vec<Vec3> = iter.into_iter().collect();
Self {
vertices: vertices.into_boxed_slice(),
}
}
}
impl BoxedPolyline3d {
/// Create a new `BoxedPolyline3d` from its vertices
pub fn new(vertices: impl IntoIterator<Item = Vec3>) -> Self {
Self::from_iter(vertices)
}
}
/// A cuboid primitive, which is like a cube, except that the x, y, and z dimensions are not
/// required to be the same.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Cuboid {
/// Half of the width, height and depth of the cuboid
pub half_size: Vec3,
}
impl Primitive3d for Cuboid {}
impl Default for Cuboid {
/// Returns the default [`Cuboid`] with a width, height, and depth of `1.0`.
fn default() -> Self {
Self {
half_size: Vec3::splat(0.5),
}
}
}
impl Cuboid {
/// Create a new `Cuboid` from a full x, y, and z length
#[inline(always)]
pub fn new(x_length: f32, y_length: f32, z_length: f32) -> Self {
Self::from_size(Vec3::new(x_length, y_length, z_length))
}
/// Create a new `Cuboid` from a given full size
#[inline(always)]
pub fn from_size(size: Vec3) -> Self {
Self {
half_size: size / 2.0,
}
}
/// Create a new `Cuboid` from two corner points
#[inline(always)]
pub fn from_corners(point1: Vec3, point2: Vec3) -> Self {
Self {
half_size: (point2 - point1).abs() / 2.0,
}
}
/// Create a `Cuboid` from a single length.
/// The resulting `Cuboid` will be the same size in every direction.
#[inline(always)]
pub fn from_length(length: f32) -> Self {
Self {
half_size: Vec3::splat(length / 2.0),
}
}
/// Get the size of the cuboid
#[inline(always)]
pub fn size(&self) -> Vec3 {
2.0 * self.half_size
}
/// Finds the point on the cuboid that is closest to the given `point`.
///
/// If the point is outside the cuboid, the returned point will be on the surface of the cuboid.
/// Otherwise, it will be inside the cuboid and returned as is.
#[inline(always)]
pub fn closest_point(&self, point: Vec3) -> Vec3 {
// Clamp point coordinates to the cuboid
point.clamp(-self.half_size, self.half_size)
}
}
impl Measured3d for Cuboid {
/// Get the surface area of the cuboid
#[inline(always)]
fn area(&self) -> f32 {
8.0 * (self.half_size.x * self.half_size.y
+ self.half_size.y * self.half_size.z
+ self.half_size.x * self.half_size.z)
}
/// Get the volume of the cuboid
#[inline(always)]
fn volume(&self) -> f32 {
8.0 * self.half_size.x * self.half_size.y * self.half_size.z
}
}
/// A cylinder primitive centered on the origin
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Cylinder {
/// The radius of the cylinder
pub radius: f32,
/// The half height of the cylinder
pub half_height: f32,
}
impl Primitive3d for Cylinder {}
impl Default for Cylinder {
/// Returns the default [`Cylinder`] with a radius of `0.5` and a height of `1.0`.
fn default() -> Self {
Self {
radius: 0.5,
half_height: 0.5,
}
}
}
impl Cylinder {
/// Create a new `Cylinder` from a radius and full height
#[inline(always)]
pub fn new(radius: f32, height: f32) -> Self {
Self {
radius,
half_height: height / 2.0,
}
}
/// Get the base of the cylinder as a [`Circle`]
#[inline(always)]
pub fn base(&self) -> Circle {
Circle {
radius: self.radius,
}
}
/// Get the surface area of the side of the cylinder,
/// also known as the lateral area
#[inline(always)]
#[doc(alias = "side_area")]
pub fn lateral_area(&self) -> f32 {
4.0 * PI * self.radius * self.half_height
}
/// Get the surface area of one base of the cylinder
#[inline(always)]
pub fn base_area(&self) -> f32 {
PI * self.radius.squared()
}
}
impl Measured3d for Cylinder {
/// Get the total surface area of the cylinder
#[inline(always)]
fn area(&self) -> f32 {
2.0 * PI * self.radius * (self.radius + 2.0 * self.half_height)
}
/// Get the volume of the cylinder
#[inline(always)]
fn volume(&self) -> f32 {
self.base_area() * 2.0 * self.half_height
}
}
/// A 3D capsule primitive centered on the origin
/// A three-dimensional capsule is defined as a surface at a distance (radius) from a line
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Capsule3d {
/// The radius of the capsule
pub radius: f32,
/// Half the height of the capsule, excluding the hemispheres
pub half_length: f32,
}
impl Primitive3d for Capsule3d {}
impl Default for Capsule3d {
/// Returns the default [`Capsule3d`] with a radius of `0.5` and a segment length of `1.0`.
/// The total height is `2.0`.
fn default() -> Self {
Self {
radius: 0.5,
half_length: 0.5,
}
}
}
impl Capsule3d {
/// Create a new `Capsule3d` from a radius and length
pub fn new(radius: f32, length: f32) -> Self {
Self {
radius,
half_length: length / 2.0,
}
}
/// Get the part connecting the hemispherical ends
/// of the capsule as a [`Cylinder`]
#[inline(always)]
pub fn to_cylinder(&self) -> Cylinder {
Cylinder {
radius: self.radius,
half_height: self.half_length,
}
}
}
impl Measured3d for Capsule3d {
/// Get the surface area of the capsule
#[inline(always)]
fn area(&self) -> f32 {
// Modified version of 2pi * r * (2r + h)
4.0 * PI * self.radius * (self.radius + self.half_length)
}
/// Get the volume of the capsule
#[inline(always)]
fn volume(&self) -> f32 {
// Modified version of pi * r^2 * (4/3 * r + a)
let diameter = self.radius * 2.0;
PI * self.radius * diameter * (diameter / 3.0 + self.half_length)
}
}
/// A cone primitive centered on the midpoint between the tip of the cone and the center of its base.
///
/// The cone is oriented with its tip pointing towards the Y axis.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Cone {
/// The radius of the base
pub radius: f32,
/// The height of the cone
pub height: f32,
}
impl Primitive3d for Cone {}
impl Default for Cone {
/// Returns the default [`Cone`] with a base radius of `0.5` and a height of `1.0`.
fn default() -> Self {
Self {
radius: 0.5,
height: 1.0,
}
}
}
impl Cone {
/// Create a new [`Cone`] from a radius and height.
pub fn new(radius: f32, height: f32) -> Self {
Self { radius, height }
}
/// Get the base of the cone as a [`Circle`]
#[inline(always)]
pub fn base(&self) -> Circle {
Circle {
radius: self.radius,
}
}
/// Get the slant height of the cone, the length of the line segment
/// connecting a point on the base to the apex
#[inline(always)]
#[doc(alias = "side_length")]
pub fn slant_height(&self) -> f32 {
ops::hypot(self.radius, self.height)
}
/// Get the surface area of the side of the cone,
/// also known as the lateral area
#[inline(always)]
#[doc(alias = "side_area")]
pub fn lateral_area(&self) -> f32 {
PI * self.radius * self.slant_height()
}
/// Get the surface area of the base of the cone
#[inline(always)]
pub fn base_area(&self) -> f32 {
PI * self.radius.squared()
}
}
impl Measured3d for Cone {
/// Get the total surface area of the cone
#[inline(always)]
fn area(&self) -> f32 {
self.base_area() + self.lateral_area()
}
/// Get the volume of the cone
#[inline(always)]
fn volume(&self) -> f32 {
(self.base_area() * self.height) / 3.0
}
}
/// A conical frustum primitive.
/// A conical frustum can be created
/// by slicing off a section of a cone.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct ConicalFrustum {
/// The radius of the top of the frustum
pub radius_top: f32,
/// The radius of the base of the frustum
pub radius_bottom: f32,
/// The height of the frustum
pub height: f32,
}
impl Primitive3d for ConicalFrustum {}
impl Default for ConicalFrustum {
/// Returns the default [`ConicalFrustum`] with a top radius of `0.25`, bottom radius of `0.5`, and a height of `0.5`.
fn default() -> Self {
Self {
radius_top: 0.25,
radius_bottom: 0.5,
height: 0.5,
}
}
}
/// The type of torus determined by the minor and major radii
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum TorusKind {
/// A torus that has a ring.
/// The major radius is greater than the minor radius
Ring,
/// A torus that has no hole but also doesn't intersect itself.
/// The major radius is equal to the minor radius
Horn,
/// A self-intersecting torus.
/// The major radius is less than the minor radius
Spindle,
/// A torus with non-geometric properties like
/// a minor or major radius that is non-positive,
/// infinite, or `NaN`
Invalid,
}
/// A torus primitive, often representing a ring or donut shape
/// The set of points some distance from a circle centered at the origin
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Torus {
/// The radius of the tube of the torus
#[doc(
alias = "ring_radius",
alias = "tube_radius",
alias = "cross_section_radius"
)]
pub minor_radius: f32,
/// The distance from the center of the torus to the center of the tube
#[doc(alias = "radius_of_revolution")]
pub major_radius: f32,
}
impl Primitive3d for Torus {}
impl Default for Torus {
/// Returns the default [`Torus`] with a minor radius of `0.25` and a major radius of `0.75`.
fn default() -> Self {
Self {
minor_radius: 0.25,
major_radius: 0.75,
}
}
}
impl Torus {
/// Create a new `Torus` from an inner and outer radius.
///
/// The inner radius is the radius of the hole, and the outer radius
/// is the radius of the entire object
#[inline(always)]
pub fn new(inner_radius: f32, outer_radius: f32) -> Self {
let minor_radius = (outer_radius - inner_radius) / 2.0;
let major_radius = outer_radius - minor_radius;
Self {
minor_radius,
major_radius,
}
}
/// Get the inner radius of the torus.
/// For a ring torus, this corresponds to the radius of the hole,
/// or `major_radius - minor_radius`
#[inline(always)]
pub fn inner_radius(&self) -> f32 {
self.major_radius - self.minor_radius
}
/// Get the outer radius of the torus.
/// This corresponds to the overall radius of the entire object,
/// or `major_radius + minor_radius`
#[inline(always)]
pub fn outer_radius(&self) -> f32 {
self.major_radius + self.minor_radius
}
/// Get the [`TorusKind`] determined by the minor and major radii.
///
/// The torus can either be a *ring torus* that has a hole,
/// a *horn torus* that doesn't have a hole but also isn't self-intersecting,
/// or a *spindle torus* that is self-intersecting.
///
/// If the minor or major radius is non-positive, infinite, or `NaN`,
/// [`TorusKind::Invalid`] is returned
#[inline(always)]
pub fn kind(&self) -> TorusKind {
// Invalid if minor or major radius is non-positive, infinite, or NaN
if self.minor_radius <= 0.0
|| !self.minor_radius.is_finite()
|| self.major_radius <= 0.0
|| !self.major_radius.is_finite()
{
return TorusKind::Invalid;
}
match self.major_radius.partial_cmp(&self.minor_radius).unwrap() {
core::cmp::Ordering::Greater => TorusKind::Ring,
core::cmp::Ordering::Equal => TorusKind::Horn,
core::cmp::Ordering::Less => TorusKind::Spindle,
}
}
}
impl Measured3d for Torus {
/// Get the surface area of the torus. Note that this only produces
/// the expected result when the torus has a ring and isn't self-intersecting
#[inline(always)]
fn area(&self) -> f32 {
4.0 * PI.squared() * self.major_radius * self.minor_radius
}
/// Get the volume of the torus. Note that this only produces
/// the expected result when the torus has a ring and isn't self-intersecting
#[inline(always)]
fn volume(&self) -> f32 {
2.0 * PI.squared() * self.major_radius * self.minor_radius.squared()
}
}
/// A 3D triangle primitive.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Triangle3d {
/// The vertices of the triangle.
pub vertices: [Vec3; 3],
}
impl Primitive3d for Triangle3d {}
impl Default for Triangle3d {
/// Returns the default [`Triangle3d`] with the vertices `[0.0, 0.5, 0.0]`, `[-0.5, -0.5, 0.0]`, and `[0.5, -0.5, 0.0]`.
fn default() -> Self {
Self {
vertices: [
Vec3::new(0.0, 0.5, 0.0),
Vec3::new(-0.5, -0.5, 0.0),
Vec3::new(0.5, -0.5, 0.0),
],
}
}
}
impl Triangle3d {
/// Create a new [`Triangle3d`] from points `a`, `b`, and `c`.
#[inline(always)]
pub fn new(a: Vec3, b: Vec3, c: Vec3) -> Self {
Self {
vertices: [a, b, c],
}
}
/// Get the normal of the triangle in the direction of the right-hand rule, assuming
/// the vertices are ordered in a counter-clockwise direction.
///
/// The normal is computed as the cross product of the vectors `ab` and `ac`.
///
/// # Errors
///
/// Returns [`Err(InvalidDirectionError)`](InvalidDirectionError) if the length
/// of the given vector is zero (or very close to zero), infinite, or `NaN`.
#[inline(always)]
pub fn normal(&self) -> Result<Dir3, InvalidDirectionError> {
let [a, b, c] = self.vertices;
let ab = b - a;
let ac = c - a;
Dir3::new(ab.cross(ac))
}
/// Checks if the triangle is degenerate, meaning it has zero area.
///
/// A triangle is degenerate if the cross product of the vectors `ab` and `ac` has a length less than `10e-7`.
/// This indicates that the three vertices are collinear or nearly collinear.
#[inline(always)]
pub fn is_degenerate(&self) -> bool {
let [a, b, c] = self.vertices;
let ab = b - a;
let ac = c - a;
ab.cross(ac).length() < 10e-7
}
/// Checks if the triangle is acute, meaning all angles are less than 90 degrees
#[inline(always)]
pub fn is_acute(&self) -> bool {
let [a, b, c] = self.vertices;
let ab = b - a;
let bc = c - b;
let ca = a - c;
// a^2 + b^2 < c^2 for an acute triangle
let mut side_lengths = [
ab.length_squared(),
bc.length_squared(),
ca.length_squared(),
];
side_lengths.sort_by(|a, b| a.partial_cmp(b).unwrap());
side_lengths[0] + side_lengths[1] > side_lengths[2]
}
/// Checks if the triangle is obtuse, meaning one angle is greater than 90 degrees
#[inline(always)]
pub fn is_obtuse(&self) -> bool {
let [a, b, c] = self.vertices;
let ab = b - a;
let bc = c - b;
let ca = a - c;
// a^2 + b^2 > c^2 for an obtuse triangle
let mut side_lengths = [
ab.length_squared(),
bc.length_squared(),
ca.length_squared(),
];
side_lengths.sort_by(|a, b| a.partial_cmp(b).unwrap());
side_lengths[0] + side_lengths[1] < side_lengths[2]
}
/// Reverse the triangle by swapping the first and last vertices.
#[inline(always)]
pub fn reverse(&mut self) {
self.vertices.swap(0, 2);
}
/// This triangle but reversed.
#[inline(always)]
#[must_use]
pub fn reversed(mut self) -> Triangle3d {
self.reverse();
self
}
/// Get the centroid of the triangle.
///
/// This function finds the geometric center of the triangle by averaging the vertices:
/// `centroid = (a + b + c) / 3`.
#[doc(alias("center", "barycenter", "baricenter"))]
#[inline(always)]
pub fn centroid(&self) -> Vec3 {
(self.vertices[0] + self.vertices[1] + self.vertices[2]) / 3.0
}
/// Get the largest side of the triangle.
///
/// Returns the two points that form the largest side of the triangle.
#[inline(always)]
pub fn largest_side(&self) -> (Vec3, Vec3) {
let [a, b, c] = self.vertices;
let ab = b - a;
let bc = c - b;
let ca = a - c;
let mut largest_side_points = (a, b);
let mut largest_side_length = ab.length();
if bc.length() > largest_side_length {
largest_side_points = (b, c);
largest_side_length = bc.length();
}
if ca.length() > largest_side_length {
largest_side_points = (a, c);
}
largest_side_points
}
/// Get the circumcenter of the triangle.
#[inline(always)]
pub fn circumcenter(&self) -> Vec3 {
if self.is_degenerate() {
// If the triangle is degenerate, the circumcenter is the midpoint of the largest side.
let (p1, p2) = self.largest_side();
return (p1 + p2) / 2.0;
}
let [a, b, c] = self.vertices;
let ab = b - a;
let ac = c - a;
let n = ab.cross(ac);
// Reference: https://gamedev.stackexchange.com/questions/60630/how-do-i-find-the-circumcenter-of-a-triangle-in-3d
a + ((ac.length_squared() * n.cross(ab) + ab.length_squared() * ac.cross(ab).cross(ac))
/ (2.0 * n.length_squared()))
}
}
impl Measured2d for Triangle3d {
/// Get the area of the triangle.
#[inline(always)]
fn area(&self) -> f32 {
let [a, b, c] = self.vertices;
let ab = b - a;
let ac = c - a;
ab.cross(ac).length() / 2.0
}
/// Get the perimeter of the triangle.
#[inline(always)]
fn perimeter(&self) -> f32 {
let [a, b, c] = self.vertices;
a.distance(b) + b.distance(c) + c.distance(a)
}
}
/// A tetrahedron primitive.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Tetrahedron {
/// The vertices of the tetrahedron.
pub vertices: [Vec3; 4],
}
impl Primitive3d for Tetrahedron {}
impl Default for Tetrahedron {
/// Returns the default [`Tetrahedron`] with the vertices
/// `[0.5, 0.5, 0.5]`, `[-0.5, 0.5, -0.5]`, `[-0.5, -0.5, 0.5]` and `[0.5, -0.5, -0.5]`.
fn default() -> Self {
Self {
vertices: [
Vec3::new(0.5, 0.5, 0.5),
Vec3::new(-0.5, 0.5, -0.5),
Vec3::new(-0.5, -0.5, 0.5),
Vec3::new(0.5, -0.5, -0.5),
],
}
}
}
impl Tetrahedron {
/// Create a new [`Tetrahedron`] from points `a`, `b`, `c` and `d`.
#[inline(always)]
pub fn new(a: Vec3, b: Vec3, c: Vec3, d: Vec3) -> Self {
Self {
vertices: [a, b, c, d],
}
}
/// Get the signed volume of the tetrahedron.
///
/// If it's negative, the normal vector of the face defined by
/// the first three points using the right-hand rule points
/// away from the fourth vertex.
#[inline(always)]
pub fn signed_volume(&self) -> f32 {
let [a, b, c, d] = self.vertices;
let ab = b - a;
let ac = c - a;
let ad = d - a;
Mat3::from_cols(ab, ac, ad).determinant() / 6.0
}
/// Get the centroid of the tetrahedron.
///
/// This function finds the geometric center of the tetrahedron
/// by averaging the vertices: `centroid = (a + b + c + d) / 4`.
#[doc(alias("center", "barycenter", "baricenter"))]
#[inline(always)]
pub fn centroid(&self) -> Vec3 {
(self.vertices[0] + self.vertices[1] + self.vertices[2] + self.vertices[3]) / 4.0
}
/// Get the triangles that form the faces of this tetrahedron.
///
/// Note that the orientations of the faces are determined by that of the tetrahedron; if the
/// signed volume of this tetrahedron is positive, then the triangles' normals will point
/// outward, and if the signed volume is negative they will point inward.
#[inline(always)]
pub fn faces(&self) -> [Triangle3d; 4] {
let [a, b, c, d] = self.vertices;
[
Triangle3d::new(b, c, d),
Triangle3d::new(a, c, d).reversed(),
Triangle3d::new(a, b, d),
Triangle3d::new(a, b, c).reversed(),
]
}
}
impl Measured3d for Tetrahedron {
/// Get the surface area of the tetrahedron.
#[inline(always)]
fn area(&self) -> f32 {
let [a, b, c, d] = self.vertices;
let ab = b - a;
let ac = c - a;
let ad = d - a;
let bc = c - b;
let bd = d - b;
(ab.cross(ac).length()
+ ab.cross(ad).length()
+ ac.cross(ad).length()
+ bc.cross(bd).length())
/ 2.0
}
/// Get the volume of the tetrahedron.
#[inline(always)]
fn volume(&self) -> f32 {
self.signed_volume().abs()
}
}
/// A 3D shape representing an extruded 2D `base_shape`.
///
/// Extruding a shape effectively "thickens" a 2D shapes,
/// creating a shape with the same cross-section over the entire depth.
///
/// The resulting volumes are prisms.
/// For example, a triangle becomes a triangular prism, while a circle becomes a cylinder.
#[doc(alias = "Prism")]
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Extrusion<T: Primitive2d> {
/// The base shape of the extrusion
pub base_shape: T,
/// Half of the depth of the extrusion
pub half_depth: f32,
}
impl<T: Primitive2d> Primitive3d for Extrusion<T> {}
impl<T: Primitive2d> Extrusion<T> {
/// Create a new `Extrusion<T>` from a given `base_shape` and `depth`
pub fn new(base_shape: T, depth: f32) -> Self {
Self {
base_shape,
half_depth: depth / 2.,
}
}
}
impl<T: Primitive2d + Measured2d> Measured3d for Extrusion<T> {
/// Get the surface area of the extrusion
fn area(&self) -> f32 {
2. * (self.base_shape.area() + self.half_depth * self.base_shape.perimeter())
}
/// Get the volume of the extrusion
fn volume(&self) -> f32 {
2. * self.base_shape.area() * self.half_depth
}
}
#[cfg(test)]
mod tests {
// Reference values were computed by hand and/or with external tools
use super::*;
use crate::{InvalidDirectionError, Quat};
use approx::assert_relative_eq;
#[test]
fn direction_creation() {
assert_eq!(Dir3::new(Vec3::X * 12.5), Ok(Dir3::X));
assert_eq!(
Dir3::new(Vec3::new(0.0, 0.0, 0.0)),
Err(InvalidDirectionError::Zero)
);
assert_eq!(
Dir3::new(Vec3::new(f32::INFINITY, 0.0, 0.0)),
Err(InvalidDirectionError::Infinite)
);
assert_eq!(
Dir3::new(Vec3::new(f32::NEG_INFINITY, 0.0, 0.0)),
Err(InvalidDirectionError::Infinite)
);
assert_eq!(
Dir3::new(Vec3::new(f32::NAN, 0.0, 0.0)),
Err(InvalidDirectionError::NaN)
);
assert_eq!(Dir3::new_and_length(Vec3::X * 6.5), Ok((Dir3::X, 6.5)));
// Test rotation
assert!(
(Quat::from_rotation_z(core::f32::consts::FRAC_PI_2) * Dir3::X)
.abs_diff_eq(Vec3::Y, 10e-6)
);
}
#[test]
fn cuboid_closest_point() {
let cuboid = Cuboid::new(2.0, 2.0, 2.0);
assert_eq!(cuboid.closest_point(Vec3::X * 10.0), Vec3::X);
assert_eq!(cuboid.closest_point(Vec3::NEG_ONE * 10.0), Vec3::NEG_ONE);
assert_eq!(
cuboid.closest_point(Vec3::new(0.25, 0.1, 0.3)),
Vec3::new(0.25, 0.1, 0.3)
);
}
#[test]
fn sphere_closest_point() {
let sphere = Sphere { radius: 1.0 };
assert_eq!(sphere.closest_point(Vec3::X * 10.0), Vec3::X);
assert_eq!(
sphere.closest_point(Vec3::NEG_ONE * 10.0),
Vec3::NEG_ONE.normalize()
);
assert_eq!(
sphere.closest_point(Vec3::new(0.25, 0.1, 0.3)),
Vec3::new(0.25, 0.1, 0.3)
);
}
#[test]
fn sphere_math() {
let sphere = Sphere { radius: 4.0 };
assert_eq!(sphere.diameter(), 8.0, "incorrect diameter");
assert_eq!(sphere.area(), 201.06193, "incorrect area");
assert_eq!(sphere.volume(), 268.08257, "incorrect volume");
}
#[test]
fn plane_from_points() {
let (plane, translation) = Plane3d::from_points(Vec3::X, Vec3::Z, Vec3::NEG_X);
assert_eq!(*plane.normal, Vec3::NEG_Y, "incorrect normal");
assert_eq!(plane.half_size, Vec2::new(0.5, 0.5), "incorrect half size");
assert_eq!(translation, Vec3::Z * 0.33333334, "incorrect translation");
}
#[test]
fn infinite_plane_math() {
let (plane, origin) = InfinitePlane3d::from_points(Vec3::X, Vec3::Z, Vec3::NEG_X);
assert_eq!(*plane.normal, Vec3::NEG_Y, "incorrect normal");
assert_eq!(origin, Vec3::Z * 0.33333334, "incorrect translation");
let point_in_plane = Vec3::X + Vec3::Z;
assert_eq!(
plane.signed_distance(origin, point_in_plane),
0.0,
"incorrect distance"
);
assert_eq!(
plane.project_point(origin, point_in_plane),
point_in_plane,
"incorrect point"
);
let point_outside = Vec3::Y;
assert_eq!(
plane.signed_distance(origin, point_outside),
-1.0,
"incorrect distance"
);
assert_eq!(
plane.project_point(origin, point_outside),
Vec3::ZERO,
"incorrect point"
);
let point_outside = Vec3::NEG_Y;
assert_eq!(
plane.signed_distance(origin, point_outside),
1.0,
"incorrect distance"
);
assert_eq!(
plane.project_point(origin, point_outside),
Vec3::ZERO,
"incorrect point"
);
let area_f = |[a, b, c]: [Vec3; 3]| (a - b).cross(a - c).length() * 0.5;
let (proj, inj) = plane.isometries_xy(origin);
let triangle = [Vec3::X, Vec3::Y, Vec3::ZERO];
assert_eq!(area_f(triangle), 0.5, "incorrect area");
let triangle_proj = triangle.map(|vec3| proj * vec3);
assert_relative_eq!(area_f(triangle_proj), 0.5);
let triangle_proj_inj = triangle_proj.map(|vec3| inj * vec3);
assert_relative_eq!(area_f(triangle_proj_inj), 0.5);
}
#[test]
fn cuboid_math() {
let cuboid = Cuboid::new(3.0, 7.0, 2.0);
assert_eq!(
cuboid,
Cuboid::from_corners(Vec3::new(-1.5, -3.5, -1.0), Vec3::new(1.5, 3.5, 1.0)),
"incorrect dimensions when created from corners"
);
assert_eq!(cuboid.area(), 82.0, "incorrect area");
assert_eq!(cuboid.volume(), 42.0, "incorrect volume");
}
#[test]
fn cylinder_math() {
let cylinder = Cylinder::new(2.0, 9.0);
assert_eq!(
cylinder.base(),
Circle { radius: 2.0 },
"base produces incorrect circle"
);
assert_eq!(
cylinder.lateral_area(),
113.097336,
"incorrect lateral area"
);
assert_eq!(cylinder.base_area(), 12.566371, "incorrect base area");
assert_relative_eq!(cylinder.area(), 138.23007);
assert_eq!(cylinder.volume(), 113.097336, "incorrect volume");
}
#[test]
fn capsule_math() {
let capsule = Capsule3d::new(2.0, 9.0);
assert_eq!(
capsule.to_cylinder(),
Cylinder::new(2.0, 9.0),
"cylinder wasn't created correctly from a capsule"
);
assert_eq!(capsule.area(), 163.36282, "incorrect area");
assert_relative_eq!(capsule.volume(), 146.60765);
}
#[test]
fn cone_math() {
let cone = Cone {
radius: 2.0,
height: 9.0,
};
assert_eq!(
cone.base(),
Circle { radius: 2.0 },
"base produces incorrect circle"
);
assert_eq!(cone.slant_height(), 9.219544, "incorrect slant height");
assert_eq!(cone.lateral_area(), 57.92811, "incorrect lateral area");
assert_eq!(cone.base_area(), 12.566371, "incorrect base area");
assert_relative_eq!(cone.area(), 70.49447);
assert_eq!(cone.volume(), 37.699111, "incorrect volume");
}
#[test]
fn torus_math() {
let torus = Torus {
minor_radius: 0.3,
major_radius: 2.8,
};
assert_eq!(torus.inner_radius(), 2.5, "incorrect inner radius");
assert_eq!(torus.outer_radius(), 3.1, "incorrect outer radius");
assert_eq!(torus.kind(), TorusKind::Ring, "incorrect torus kind");
assert_eq!(
Torus::new(0.0, 1.0).kind(),
TorusKind::Horn,
"incorrect torus kind"
);
assert_eq!(
Torus::new(-0.5, 1.0).kind(),
TorusKind::Spindle,
"incorrect torus kind"
);
assert_eq!(
Torus::new(1.5, 1.0).kind(),
TorusKind::Invalid,
"torus should be invalid"
);
assert_relative_eq!(torus.area(), 33.16187);
assert_relative_eq!(torus.volume(), 4.97428, epsilon = 0.00001);
}
#[test]
fn tetrahedron_math() {
let tetrahedron = Tetrahedron {
vertices: [
Vec3::new(0.3, 1.0, 1.7),
Vec3::new(-2.0, -1.0, 0.0),
Vec3::new(1.8, 0.5, 1.0),
Vec3::new(-1.0, -2.0, 3.5),
],
};
assert_eq!(tetrahedron.area(), 19.251068, "incorrect area");
assert_eq!(tetrahedron.volume(), 3.2058334, "incorrect volume");
assert_eq!(
tetrahedron.signed_volume(),
3.2058334,
"incorrect signed volume"
);
assert_relative_eq!(tetrahedron.centroid(), Vec3::new(-0.225, -0.375, 1.55));
assert_eq!(Tetrahedron::default().area(), 3.4641016, "incorrect area");
assert_eq!(
Tetrahedron::default().volume(),
0.33333334,
"incorrect volume"
);
assert_eq!(
Tetrahedron::default().signed_volume(),
-0.33333334,
"incorrect signed volume"
);
assert_relative_eq!(Tetrahedron::default().centroid(), Vec3::ZERO);
}
#[test]
fn extrusion_math() {
let circle = Circle::new(0.75);
let cylinder = Extrusion::new(circle, 2.5);
assert_eq!(cylinder.area(), 15.315264, "incorrect surface area");
assert_eq!(cylinder.volume(), 4.417865, "incorrect volume");
let annulus = crate::primitives::Annulus::new(0.25, 1.375);
let tube = Extrusion::new(annulus, 0.333);
assert_eq!(tube.area(), 14.886437, "incorrect surface area");
assert_eq!(tube.volume(), 1.9124937, "incorrect volume");
let polygon = crate::primitives::RegularPolygon::new(3.8, 7);
let regular_prism = Extrusion::new(polygon, 1.25);
assert_eq!(regular_prism.area(), 107.8808, "incorrect surface area");
assert_eq!(regular_prism.volume(), 49.392204, "incorrect volume");
}
#[test]
fn triangle_math() {
// Default triangle tests
let mut default_triangle = Triangle3d::default();
let reverse_default_triangle = Triangle3d::new(
Vec3::new(0.5, -0.5, 0.0),
Vec3::new(-0.5, -0.5, 0.0),
Vec3::new(0.0, 0.5, 0.0),
);
assert_eq!(default_triangle.area(), 0.5, "incorrect area");
assert_relative_eq!(
default_triangle.perimeter(),
1.0 + 2.0 * 1.25_f32.sqrt(),
epsilon = 10e-9
);
assert_eq!(default_triangle.normal(), Ok(Dir3::Z), "incorrect normal");
assert!(
!default_triangle.is_degenerate(),
"incorrect degenerate check"
);
assert_eq!(
default_triangle.centroid(),
Vec3::new(0.0, -0.16666667, 0.0),
"incorrect centroid"
);
assert_eq!(
default_triangle.largest_side(),
(Vec3::new(0.0, 0.5, 0.0), Vec3::new(-0.5, -0.5, 0.0))
);
default_triangle.reverse();
assert_eq!(
default_triangle, reverse_default_triangle,
"incorrect reverse"
);
assert_eq!(
default_triangle.circumcenter(),
Vec3::new(0.0, -0.125, 0.0),
"incorrect circumcenter"
);
// Custom triangle tests
let right_triangle = Triangle3d::new(Vec3::ZERO, Vec3::X, Vec3::Y);
let obtuse_triangle = Triangle3d::new(Vec3::NEG_X, Vec3::X, Vec3::new(0.0, 0.1, 0.0));
let acute_triangle = Triangle3d::new(Vec3::ZERO, Vec3::X, Vec3::new(0.5, 5.0, 0.0));
assert_eq!(
right_triangle.circumcenter(),
Vec3::new(0.5, 0.5, 0.0),
"incorrect circumcenter"
);
assert_eq!(
obtuse_triangle.circumcenter(),
Vec3::new(0.0, -4.95, 0.0),
"incorrect circumcenter"
);
assert_eq!(
acute_triangle.circumcenter(),
Vec3::new(0.5, 2.475, 0.0),
"incorrect circumcenter"
);
assert!(acute_triangle.is_acute());
assert!(!acute_triangle.is_obtuse());
assert!(!obtuse_triangle.is_acute());
assert!(obtuse_triangle.is_obtuse());
// Arbitrary triangle tests
let [a, b, c] = [Vec3::ZERO, Vec3::new(1., 1., 0.5), Vec3::new(-3., 2.5, 1.)];
let triangle = Triangle3d::new(a, b, c);
assert!(!triangle.is_degenerate(), "incorrectly found degenerate");
assert_eq!(triangle.area(), 3.0233467, "incorrect area");
assert_eq!(triangle.perimeter(), 9.832292, "incorrect perimeter");
assert_eq!(
triangle.circumcenter(),
Vec3::new(-1., 1.75, 0.75),
"incorrect circumcenter"
);
assert_eq!(
triangle.normal(),
Ok(Dir3::new_unchecked(Vec3::new(
-0.04134491,
-0.4134491,
0.90958804
))),
"incorrect normal"
);
// Degenerate triangle tests
let zero_degenerate_triangle = Triangle3d::new(Vec3::ZERO, Vec3::ZERO, Vec3::ZERO);
assert!(
zero_degenerate_triangle.is_degenerate(),
"incorrect degenerate check"
);
assert_eq!(
zero_degenerate_triangle.normal(),
Err(InvalidDirectionError::Zero),
"incorrect normal"
);
assert_eq!(
zero_degenerate_triangle.largest_side(),
(Vec3::ZERO, Vec3::ZERO),
"incorrect largest side"
);
let dup_degenerate_triangle = Triangle3d::new(Vec3::ZERO, Vec3::X, Vec3::X);
assert!(
dup_degenerate_triangle.is_degenerate(),
"incorrect degenerate check"
);
assert_eq!(
dup_degenerate_triangle.normal(),
Err(InvalidDirectionError::Zero),
"incorrect normal"
);
assert_eq!(
dup_degenerate_triangle.largest_side(),
(Vec3::ZERO, Vec3::X),
"incorrect largest side"
);
let collinear_degenerate_triangle = Triangle3d::new(Vec3::NEG_X, Vec3::ZERO, Vec3::X);
assert!(
collinear_degenerate_triangle.is_degenerate(),
"incorrect degenerate check"
);
assert_eq!(
collinear_degenerate_triangle.normal(),
Err(InvalidDirectionError::Zero),
"incorrect normal"
);
assert_eq!(
collinear_degenerate_triangle.largest_side(),
(Vec3::NEG_X, Vec3::X),
"incorrect largest side"
);
}
}