bevy_math/rects/
irect.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
use crate::{IVec2, Rect, URect};

#[cfg(feature = "bevy_reflect")]
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
#[cfg(all(feature = "serialize", feature = "bevy_reflect"))]
use bevy_reflect::{ReflectDeserialize, ReflectSerialize};

/// A rectangle defined by two opposite corners.
///
/// The rectangle is axis aligned, and defined by its minimum and maximum coordinates,
/// stored in `IRect::min` and `IRect::max`, respectively. The minimum/maximum invariant
/// must be upheld by the user when directly assigning the fields, otherwise some methods
/// produce invalid results. It is generally recommended to use one of the constructor
/// methods instead, which will ensure this invariant is met, unless you already have
/// the minimum and maximum corners.
#[repr(C)]
#[derive(Default, Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect),
    reflect(Debug, PartialEq, Hash, Default)
)]
#[cfg_attr(
    all(feature = "serialize", feature = "bevy_reflect"),
    reflect(Serialize, Deserialize)
)]
pub struct IRect {
    /// The minimum corner point of the rect.
    pub min: IVec2,
    /// The maximum corner point of the rect.
    pub max: IVec2,
}

impl IRect {
    /// An empty `IRect`, represented by maximum and minimum corner points
    /// with `max == IVec2::MIN` and `min == IVec2::MAX`, so the
    /// rect has an extremely large negative size.
    /// This is useful, because when taking a union B of a non-empty `IRect` A and
    /// this empty `IRect`, B will simply equal A.
    pub const EMPTY: Self = Self {
        max: IVec2::MIN,
        min: IVec2::MAX,
    };
    /// Create a new rectangle from two corner points.
    ///
    /// The two points do not need to be the minimum and/or maximum corners.
    /// They only need to be two opposite corners.
    ///
    /// # Examples
    ///
    /// ```
    /// # use bevy_math::IRect;
    /// let r = IRect::new(0, 4, 10, 6); // w=10 h=2
    /// let r = IRect::new(2, 3, 5, -1); // w=3 h=4
    /// ```
    #[inline]
    pub fn new(x0: i32, y0: i32, x1: i32, y1: i32) -> Self {
        Self::from_corners(IVec2::new(x0, y0), IVec2::new(x1, y1))
    }

    /// Create a new rectangle from two corner points.
    ///
    /// The two points do not need to be the minimum and/or maximum corners.
    /// They only need to be two opposite corners.
    ///
    /// # Examples
    ///
    /// ```
    /// # use bevy_math::{IRect, IVec2};
    /// // Unit rect from [0,0] to [1,1]
    /// let r = IRect::from_corners(IVec2::ZERO, IVec2::ONE); // w=1 h=1
    /// // Same; the points do not need to be ordered
    /// let r = IRect::from_corners(IVec2::ONE, IVec2::ZERO); // w=1 h=1
    /// ```
    #[inline]
    pub fn from_corners(p0: IVec2, p1: IVec2) -> Self {
        Self {
            min: p0.min(p1),
            max: p0.max(p1),
        }
    }

    /// Create a new rectangle from its center and size.
    ///
    /// # Rounding Behaviour
    ///
    /// If the size contains odd numbers they will be rounded down to the nearest whole number.
    ///
    /// # Panics
    ///
    /// This method panics if any of the components of the size is negative.
    ///
    /// # Examples
    ///
    /// ```
    /// # use bevy_math::{IRect, IVec2};
    /// let r = IRect::from_center_size(IVec2::ZERO, IVec2::new(3, 2)); // w=2 h=2
    /// assert_eq!(r.min, IVec2::splat(-1));
    /// assert_eq!(r.max, IVec2::splat(1));
    /// ```
    #[inline]
    pub fn from_center_size(origin: IVec2, size: IVec2) -> Self {
        debug_assert!(size.cmpge(IVec2::ZERO).all(), "IRect size must be positive");
        let half_size = size / 2;
        Self::from_center_half_size(origin, half_size)
    }

    /// Create a new rectangle from its center and half-size.
    ///
    /// # Panics
    ///
    /// This method panics if any of the components of the half-size is negative.
    ///
    /// # Examples
    ///
    /// ```
    /// # use bevy_math::{IRect, IVec2};
    /// let r = IRect::from_center_half_size(IVec2::ZERO, IVec2::ONE); // w=2 h=2
    /// assert_eq!(r.min, IVec2::splat(-1));
    /// assert_eq!(r.max, IVec2::splat(1));
    /// ```
    #[inline]
    pub fn from_center_half_size(origin: IVec2, half_size: IVec2) -> Self {
        assert!(
            half_size.cmpge(IVec2::ZERO).all(),
            "IRect half_size must be positive"
        );
        Self {
            min: origin - half_size,
            max: origin + half_size,
        }
    }

    /// Check if the rectangle is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// # use bevy_math::{IRect, IVec2};
    /// let r = IRect::from_corners(IVec2::ZERO, IVec2::new(0, 1)); // w=0 h=1
    /// assert!(r.is_empty());
    /// ```
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.min.cmpge(self.max).any()
    }

    /// Rectangle width (max.x - min.x).
    ///
    /// # Examples
    ///
    /// ```
    /// # use bevy_math::IRect;
    /// let r = IRect::new(0, 0, 5, 1); // w=5 h=1
    /// assert_eq!(r.width(), 5);
    /// ```
    #[inline]
    pub fn width(&self) -> i32 {
        self.max.x - self.min.x
    }

    /// Rectangle height (max.y - min.y).
    ///
    /// # Examples
    ///
    /// ```
    /// # use bevy_math::IRect;
    /// let r = IRect::new(0, 0, 5, 1); // w=5 h=1
    /// assert_eq!(r.height(), 1);
    /// ```
    #[inline]
    pub fn height(&self) -> i32 {
        self.max.y - self.min.y
    }

    /// Rectangle size.
    ///
    /// # Examples
    ///
    /// ```
    /// # use bevy_math::{IRect, IVec2};
    /// let r = IRect::new(0, 0, 5, 1); // w=5 h=1
    /// assert_eq!(r.size(), IVec2::new(5, 1));
    /// ```
    #[inline]
    pub fn size(&self) -> IVec2 {
        self.max - self.min
    }

    /// Rectangle half-size.
    ///
    /// # Rounding Behaviour
    ///
    /// If the full size contains odd numbers they will be rounded down to the nearest whole number when calculating the half size.
    ///
    /// # Examples
    ///
    /// ```
    /// # use bevy_math::{IRect, IVec2};
    /// let r = IRect::new(0, 0, 4, 3); // w=4 h=3
    /// assert_eq!(r.half_size(), IVec2::new(2, 1));
    /// ```
    #[inline]
    pub fn half_size(&self) -> IVec2 {
        self.size() / 2
    }

    /// The center point of the rectangle.
    ///
    /// # Rounding Behaviour
    ///
    /// If the (min + max) contains odd numbers they will be rounded down to the nearest whole number when calculating the center.
    ///
    /// # Examples
    ///
    /// ```
    /// # use bevy_math::{IRect, IVec2};
    /// let r = IRect::new(0, 0, 5, 2); // w=5 h=2
    /// assert_eq!(r.center(), IVec2::new(2, 1));
    /// ```
    #[inline]
    pub fn center(&self) -> IVec2 {
        (self.min + self.max) / 2
    }

    /// Check if a point lies within this rectangle, inclusive of its edges.
    ///
    /// # Examples
    ///
    /// ```
    /// # use bevy_math::IRect;
    /// let r = IRect::new(0, 0, 5, 1); // w=5 h=1
    /// assert!(r.contains(r.center()));
    /// assert!(r.contains(r.min));
    /// assert!(r.contains(r.max));
    /// ```
    #[inline]
    pub fn contains(&self, point: IVec2) -> bool {
        (point.cmpge(self.min) & point.cmple(self.max)).all()
    }

    /// Build a new rectangle formed of the union of this rectangle and another rectangle.
    ///
    /// The union is the smallest rectangle enclosing both rectangles.
    ///
    /// # Examples
    ///
    /// ```
    /// # use bevy_math::{IRect, IVec2};
    /// let r1 = IRect::new(0, 0, 5, 1); // w=5 h=1
    /// let r2 = IRect::new(1, -1, 3, 3); // w=2 h=4
    /// let r = r1.union(r2);
    /// assert_eq!(r.min, IVec2::new(0, -1));
    /// assert_eq!(r.max, IVec2::new(5, 3));
    /// ```
    #[inline]
    pub fn union(&self, other: Self) -> Self {
        Self {
            min: self.min.min(other.min),
            max: self.max.max(other.max),
        }
    }

    /// Build a new rectangle formed of the union of this rectangle and a point.
    ///
    /// The union is the smallest rectangle enclosing both the rectangle and the point. If the
    /// point is already inside the rectangle, this method returns a copy of the rectangle.
    ///
    /// # Examples
    ///
    /// ```
    /// # use bevy_math::{IRect, IVec2};
    /// let r = IRect::new(0, 0, 5, 1); // w=5 h=1
    /// let u = r.union_point(IVec2::new(3, 6));
    /// assert_eq!(u.min, IVec2::ZERO);
    /// assert_eq!(u.max, IVec2::new(5, 6));
    /// ```
    #[inline]
    pub fn union_point(&self, other: IVec2) -> Self {
        Self {
            min: self.min.min(other),
            max: self.max.max(other),
        }
    }

    /// Build a new rectangle formed of the intersection of this rectangle and another rectangle.
    ///
    /// The intersection is the largest rectangle enclosed in both rectangles. If the intersection
    /// is empty, this method returns an empty rectangle ([`IRect::is_empty()`] returns `true`), but
    /// the actual values of [`IRect::min`] and [`IRect::max`] are implementation-dependent.
    ///
    /// # Examples
    ///
    /// ```
    /// # use bevy_math::{IRect, IVec2};
    /// let r1 = IRect::new(0, 0, 5, 1); // w=5 h=1
    /// let r2 = IRect::new(1, -1, 3, 3); // w=2 h=4
    /// let r = r1.intersect(r2);
    /// assert_eq!(r.min, IVec2::new(1, 0));
    /// assert_eq!(r.max, IVec2::new(3, 1));
    /// ```
    #[inline]
    pub fn intersect(&self, other: Self) -> Self {
        let mut r = Self {
            min: self.min.max(other.min),
            max: self.max.min(other.max),
        };
        // Collapse min over max to enforce invariants and ensure e.g. width() or
        // height() never return a negative value.
        r.min = r.min.min(r.max);
        r
    }

    /// Create a new rectangle by expanding it evenly on all sides.
    ///
    /// A positive expansion value produces a larger rectangle,
    /// while a negative expansion value produces a smaller rectangle.
    /// If this would result in zero or negative width or height, [`IRect::EMPTY`] is returned instead.
    ///
    /// # Examples
    ///
    /// ```
    /// # use bevy_math::{IRect, IVec2};
    /// let r = IRect::new(0, 0, 5, 1); // w=5 h=1
    /// let r2 = r.inflate(3); // w=11 h=7
    /// assert_eq!(r2.min, IVec2::splat(-3));
    /// assert_eq!(r2.max, IVec2::new(8, 4));
    ///
    /// let r = IRect::new(0, -1, 4, 3); // w=4 h=4
    /// let r2 = r.inflate(-1); // w=2 h=2
    /// assert_eq!(r2.min, IVec2::new(1, 0));
    /// assert_eq!(r2.max, IVec2::new(3, 2));
    /// ```
    #[inline]
    pub fn inflate(&self, expansion: i32) -> Self {
        let mut r = Self {
            min: self.min - expansion,
            max: self.max + expansion,
        };
        // Collapse min over max to enforce invariants and ensure e.g. width() or
        // height() never return a negative value.
        r.min = r.min.min(r.max);
        r
    }

    /// Returns self as [`Rect`] (f32)
    #[inline]
    pub fn as_rect(&self) -> Rect {
        Rect::from_corners(self.min.as_vec2(), self.max.as_vec2())
    }

    /// Returns self as [`URect`] (u32)
    #[inline]
    pub fn as_urect(&self) -> URect {
        URect::from_corners(self.min.as_uvec2(), self.max.as_uvec2())
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn well_formed() {
        let r = IRect::from_center_size(IVec2::new(3, -5), IVec2::new(8, 12));

        assert_eq!(r.min, IVec2::new(-1, -11));
        assert_eq!(r.max, IVec2::new(7, 1));

        assert_eq!(r.center(), IVec2::new(3, -5));

        assert_eq!(r.width().abs(), 8);
        assert_eq!(r.height().abs(), 12);
        assert_eq!(r.size(), IVec2::new(8, 12));
        assert_eq!(r.half_size(), IVec2::new(4, 6));

        assert!(r.contains(IVec2::new(3, -5)));
        assert!(r.contains(IVec2::new(-1, -10)));
        assert!(r.contains(IVec2::new(-1, 0)));
        assert!(r.contains(IVec2::new(7, -10)));
        assert!(r.contains(IVec2::new(7, 0)));
        assert!(!r.contains(IVec2::new(50, -5)));
    }

    #[test]
    fn rect_union() {
        let r = IRect::from_center_size(IVec2::ZERO, IVec2::splat(4)); // [-2, -2] - [2, 2]

        // overlapping
        let r2 = IRect {
            min: IVec2::new(1, 1),
            max: IVec2::new(3, 3),
        };
        let u = r.union(r2);
        assert_eq!(u.min, IVec2::new(-2, -2));
        assert_eq!(u.max, IVec2::new(3, 3));

        // disjoint
        let r2 = IRect {
            min: IVec2::new(1, 4),
            max: IVec2::new(4, 6),
        };
        let u = r.union(r2);
        assert_eq!(u.min, IVec2::new(-2, -2));
        assert_eq!(u.max, IVec2::new(4, 6));

        // included
        let r2 = IRect::from_center_size(IVec2::ZERO, IVec2::splat(2));
        let u = r.union(r2);
        assert_eq!(u.min, r.min);
        assert_eq!(u.max, r.max);

        // including
        let r2 = IRect::from_center_size(IVec2::ZERO, IVec2::splat(6));
        let u = r.union(r2);
        assert_eq!(u.min, r2.min);
        assert_eq!(u.min, r2.min);
    }

    #[test]
    fn rect_union_pt() {
        let r = IRect::from_center_size(IVec2::ZERO, IVec2::splat(4)); // [-2,-2] - [2,2]

        // inside
        let v = IVec2::new(1, -1);
        let u = r.union_point(v);
        assert_eq!(u.min, r.min);
        assert_eq!(u.max, r.max);

        // outside
        let v = IVec2::new(10, -3);
        let u = r.union_point(v);
        assert_eq!(u.min, IVec2::new(-2, -3));
        assert_eq!(u.max, IVec2::new(10, 2));
    }

    #[test]
    fn rect_intersect() {
        let r = IRect::from_center_size(IVec2::ZERO, IVec2::splat(8)); // [-4,-4] - [4,4]

        // overlapping
        let r2 = IRect {
            min: IVec2::new(2, 2),
            max: IVec2::new(6, 6),
        };
        let u = r.intersect(r2);
        assert_eq!(u.min, IVec2::new(2, 2));
        assert_eq!(u.max, IVec2::new(4, 4));

        // disjoint
        let r2 = IRect {
            min: IVec2::new(-8, -2),
            max: IVec2::new(-6, 2),
        };
        let u = r.intersect(r2);
        assert!(u.is_empty());
        assert_eq!(u.width(), 0);

        // included
        let r2 = IRect::from_center_size(IVec2::ZERO, IVec2::splat(2));
        let u = r.intersect(r2);
        assert_eq!(u.min, r2.min);
        assert_eq!(u.max, r2.max);

        // including
        let r2 = IRect::from_center_size(IVec2::ZERO, IVec2::splat(10));
        let u = r.intersect(r2);
        assert_eq!(u.min, r.min);
        assert_eq!(u.max, r.max);
    }

    #[test]
    fn rect_inflate() {
        let r = IRect::from_center_size(IVec2::ZERO, IVec2::splat(4)); // [-2,-2] - [2,2]

        let r2 = r.inflate(2);
        assert_eq!(r2.min, IVec2::new(-4, -4));
        assert_eq!(r2.max, IVec2::new(4, 4));
    }
}