bevy_math/
rotation2d.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
use core::f32::consts::TAU;

use glam::FloatExt;

use crate::{
    ops,
    prelude::{Mat2, Vec2},
};

#[cfg(feature = "bevy_reflect")]
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
#[cfg(all(feature = "serialize", feature = "bevy_reflect"))]
use bevy_reflect::{ReflectDeserialize, ReflectSerialize};

/// A counterclockwise 2D rotation.
///
/// # Example
///
/// ```
/// # use approx::assert_relative_eq;
/// # use bevy_math::{Rot2, Vec2};
/// use std::f32::consts::PI;
///
/// // Create rotations from radians or degrees
/// let rotation1 = Rot2::radians(PI / 2.0);
/// let rotation2 = Rot2::degrees(45.0);
///
/// // Get the angle back as radians or degrees
/// assert_eq!(rotation1.as_degrees(), 90.0);
/// assert_eq!(rotation2.as_radians(), PI / 4.0);
///
/// // "Add" rotations together using `*`
/// assert_relative_eq!(rotation1 * rotation2, Rot2::degrees(135.0));
///
/// // Rotate vectors
/// assert_relative_eq!(rotation1 * Vec2::X, Vec2::Y);
/// ```
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect),
    reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
    all(feature = "serialize", feature = "bevy_reflect"),
    reflect(Serialize, Deserialize)
)]
#[doc(alias = "rotation", alias = "rotation2d", alias = "rotation_2d")]
pub struct Rot2 {
    /// The cosine of the rotation angle in radians.
    ///
    /// This is the real part of the unit complex number representing the rotation.
    pub cos: f32,
    /// The sine of the rotation angle in radians.
    ///
    /// This is the imaginary part of the unit complex number representing the rotation.
    pub sin: f32,
}

impl Default for Rot2 {
    fn default() -> Self {
        Self::IDENTITY
    }
}

impl Rot2 {
    /// No rotation.
    pub const IDENTITY: Self = Self { cos: 1.0, sin: 0.0 };

    /// A rotation of π radians.
    pub const PI: Self = Self {
        cos: -1.0,
        sin: 0.0,
    };

    /// A counterclockwise rotation of π/2 radians.
    pub const FRAC_PI_2: Self = Self { cos: 0.0, sin: 1.0 };

    /// A counterclockwise rotation of π/3 radians.
    pub const FRAC_PI_3: Self = Self {
        cos: 0.5,
        sin: 0.866_025_4,
    };

    /// A counterclockwise rotation of π/4 radians.
    pub const FRAC_PI_4: Self = Self {
        cos: core::f32::consts::FRAC_1_SQRT_2,
        sin: core::f32::consts::FRAC_1_SQRT_2,
    };

    /// A counterclockwise rotation of π/6 radians.
    pub const FRAC_PI_6: Self = Self {
        cos: 0.866_025_4,
        sin: 0.5,
    };

    /// A counterclockwise rotation of π/8 radians.
    pub const FRAC_PI_8: Self = Self {
        cos: 0.923_879_5,
        sin: 0.382_683_43,
    };

    /// Creates a [`Rot2`] from a counterclockwise angle in radians.
    ///
    /// # Note
    ///
    /// The input rotation will always be clamped to the range `(-π, π]` by design.
    ///
    /// # Example
    ///
    /// ```
    /// # use bevy_math::Rot2;
    /// # use approx::assert_relative_eq;
    /// # use std::f32::consts::{FRAC_PI_2, PI};
    ///
    /// let rot1 = Rot2::radians(3.0 * FRAC_PI_2);
    /// let rot2 = Rot2::radians(-FRAC_PI_2);
    /// assert_relative_eq!(rot1, rot2);
    ///
    /// let rot3 = Rot2::radians(PI);
    /// assert_relative_eq!(rot1 * rot1, rot3);
    /// ```
    #[inline]
    pub fn radians(radians: f32) -> Self {
        let (sin, cos) = ops::sin_cos(radians);
        Self::from_sin_cos(sin, cos)
    }

    /// Creates a [`Rot2`] from a counterclockwise angle in degrees.
    ///
    /// # Note
    ///
    /// The input rotation will always be clamped to the range `(-180°, 180°]` by design.
    ///
    /// # Example
    ///
    /// ```
    /// # use bevy_math::Rot2;
    /// # use approx::assert_relative_eq;
    ///
    /// let rot1 = Rot2::degrees(270.0);
    /// let rot2 = Rot2::degrees(-90.0);
    /// assert_relative_eq!(rot1, rot2);
    ///
    /// let rot3 = Rot2::degrees(180.0);
    /// assert_relative_eq!(rot1 * rot1, rot3);
    /// ```
    #[inline]
    pub fn degrees(degrees: f32) -> Self {
        Self::radians(degrees.to_radians())
    }

    /// Creates a [`Rot2`] from a counterclockwise fraction of a full turn of 360 degrees.
    ///
    /// # Note
    ///
    /// The input rotation will always be clamped to the range `(-50%, 50%]` by design.
    ///
    /// # Example
    ///
    /// ```
    /// # use bevy_math::Rot2;
    /// # use approx::assert_relative_eq;
    ///
    /// let rot1 = Rot2::turn_fraction(0.75);
    /// let rot2 = Rot2::turn_fraction(-0.25);
    /// assert_relative_eq!(rot1, rot2);
    ///
    /// let rot3 = Rot2::turn_fraction(0.5);
    /// assert_relative_eq!(rot1 * rot1, rot3);
    /// ```
    #[inline]
    pub fn turn_fraction(fraction: f32) -> Self {
        Self::radians(TAU * fraction)
    }

    /// Creates a [`Rot2`] from the sine and cosine of an angle in radians.
    ///
    /// The rotation is only valid if `sin * sin + cos * cos == 1.0`.
    ///
    /// # Panics
    ///
    /// Panics if `sin * sin + cos * cos != 1.0` when the `glam_assert` feature is enabled.
    #[inline]
    pub fn from_sin_cos(sin: f32, cos: f32) -> Self {
        let rotation = Self { sin, cos };
        debug_assert!(
            rotation.is_normalized(),
            "the given sine and cosine produce an invalid rotation"
        );
        rotation
    }

    /// Returns the rotation in radians in the `(-pi, pi]` range.
    #[inline]
    pub fn as_radians(self) -> f32 {
        ops::atan2(self.sin, self.cos)
    }

    /// Returns the rotation in degrees in the `(-180, 180]` range.
    #[inline]
    pub fn as_degrees(self) -> f32 {
        self.as_radians().to_degrees()
    }

    /// Returns the rotation as a fraction of a full 360 degree turn.
    #[inline]
    pub fn as_turn_fraction(self) -> f32 {
        self.as_radians() / TAU
    }

    /// Returns the sine and cosine of the rotation angle in radians.
    #[inline]
    pub const fn sin_cos(self) -> (f32, f32) {
        (self.sin, self.cos)
    }

    /// Computes the length or norm of the complex number used to represent the rotation.
    ///
    /// The length is typically expected to be `1.0`. Unexpectedly denormalized rotations
    /// can be a result of incorrect construction or floating point error caused by
    /// successive operations.
    #[inline]
    #[doc(alias = "norm")]
    pub fn length(self) -> f32 {
        Vec2::new(self.sin, self.cos).length()
    }

    /// Computes the squared length or norm of the complex number used to represent the rotation.
    ///
    /// This is generally faster than [`Rot2::length()`], as it avoids a square
    /// root operation.
    ///
    /// The length is typically expected to be `1.0`. Unexpectedly denormalized rotations
    /// can be a result of incorrect construction or floating point error caused by
    /// successive operations.
    #[inline]
    #[doc(alias = "norm2")]
    pub fn length_squared(self) -> f32 {
        Vec2::new(self.sin, self.cos).length_squared()
    }

    /// Computes `1.0 / self.length()`.
    ///
    /// For valid results, `self` must _not_ have a length of zero.
    #[inline]
    pub fn length_recip(self) -> f32 {
        Vec2::new(self.sin, self.cos).length_recip()
    }

    /// Returns `self` with a length of `1.0` if possible, and `None` otherwise.
    ///
    /// `None` will be returned if the sine and cosine of `self` are both zero (or very close to zero),
    /// or if either of them is NaN or infinite.
    ///
    /// Note that [`Rot2`] should typically already be normalized by design.
    /// Manual normalization is only needed when successive operations result in
    /// accumulated floating point error, or if the rotation was constructed
    /// with invalid values.
    #[inline]
    pub fn try_normalize(self) -> Option<Self> {
        let recip = self.length_recip();
        if recip.is_finite() && recip > 0.0 {
            Some(Self::from_sin_cos(self.sin * recip, self.cos * recip))
        } else {
            None
        }
    }

    /// Returns `self` with a length of `1.0`.
    ///
    /// Note that [`Rot2`] should typically already be normalized by design.
    /// Manual normalization is only needed when successive operations result in
    /// accumulated floating point error, or if the rotation was constructed
    /// with invalid values.
    ///
    /// # Panics
    ///
    /// Panics if `self` has a length of zero, NaN, or infinity when debug assertions are enabled.
    #[inline]
    pub fn normalize(self) -> Self {
        let length_recip = self.length_recip();
        Self::from_sin_cos(self.sin * length_recip, self.cos * length_recip)
    }

    /// Returns `self` after an approximate normalization, assuming the value is already nearly normalized.
    /// Useful for preventing numerical error accumulation.
    /// See [`Dir3::fast_renormalize`](crate::Dir3::fast_renormalize) for an example of when such error accumulation might occur.
    #[inline]
    pub fn fast_renormalize(self) -> Self {
        let length_squared = self.length_squared();
        // Based on a Taylor approximation of the inverse square root, see [`Dir3::fast_renormalize`](crate::Dir3::fast_renormalize) for more details.
        let length_recip_approx = 0.5 * (3.0 - length_squared);
        Rot2 {
            sin: self.sin * length_recip_approx,
            cos: self.cos * length_recip_approx,
        }
    }

    /// Returns `true` if the rotation is neither infinite nor NaN.
    #[inline]
    pub fn is_finite(self) -> bool {
        self.sin.is_finite() && self.cos.is_finite()
    }

    /// Returns `true` if the rotation is NaN.
    #[inline]
    pub fn is_nan(self) -> bool {
        self.sin.is_nan() || self.cos.is_nan()
    }

    /// Returns whether `self` has a length of `1.0` or not.
    ///
    /// Uses a precision threshold of approximately `1e-4`.
    #[inline]
    pub fn is_normalized(self) -> bool {
        // The allowed length is 1 +/- 1e-4, so the largest allowed
        // squared length is (1 + 1e-4)^2 = 1.00020001, which makes
        // the threshold for the squared length approximately 2e-4.
        (self.length_squared() - 1.0).abs() <= 2e-4
    }

    /// Returns `true` if the rotation is near [`Rot2::IDENTITY`].
    #[inline]
    pub fn is_near_identity(self) -> bool {
        // Same as `Quat::is_near_identity`, but using sine and cosine
        let threshold_angle_sin = 0.000_049_692_047; // let threshold_angle = 0.002_847_144_6;
        self.cos > 0.0 && self.sin.abs() < threshold_angle_sin
    }

    /// Returns the angle in radians needed to make `self` and `other` coincide.
    #[inline]
    #[deprecated(
        since = "0.15.0",
        note = "Use `angle_to` instead, the semantics of `angle_between` will change in the future."
    )]
    pub fn angle_between(self, other: Self) -> f32 {
        self.angle_to(other)
    }

    /// Returns the angle in radians needed to make `self` and `other` coincide.
    #[inline]
    pub fn angle_to(self, other: Self) -> f32 {
        (other * self.inverse()).as_radians()
    }

    /// Returns the inverse of the rotation. This is also the conjugate
    /// of the unit complex number representing the rotation.
    #[inline]
    #[must_use]
    #[doc(alias = "conjugate")]
    pub fn inverse(self) -> Self {
        Self {
            cos: self.cos,
            sin: -self.sin,
        }
    }

    /// Performs a linear interpolation between `self` and `rhs` based on
    /// the value `s`, and normalizes the rotation afterwards.
    ///
    /// When `s == 0.0`, the result will be equal to `self`.
    /// When `s == 1.0`, the result will be equal to `rhs`.
    ///
    /// This is slightly more efficient than [`slerp`](Self::slerp), and produces a similar result
    /// when the difference between the two rotations is small. At larger differences,
    /// the result resembles a kind of ease-in-out effect.
    ///
    /// If you would like the angular velocity to remain constant, consider using [`slerp`](Self::slerp) instead.
    ///
    /// # Details
    ///
    /// `nlerp` corresponds to computing an angle for a point at position `s` on a line drawn
    /// between the endpoints of the arc formed by `self` and `rhs` on a unit circle,
    /// and normalizing the result afterwards.
    ///
    /// Note that if the angles are opposite like 0 and π, the line will pass through the origin,
    /// and the resulting angle will always be either `self` or `rhs` depending on `s`.
    /// If `s` happens to be `0.5` in this case, a valid rotation cannot be computed, and `self`
    /// will be returned as a fallback.
    ///
    /// # Example
    ///
    /// ```
    /// # use bevy_math::Rot2;
    /// #
    /// let rot1 = Rot2::IDENTITY;
    /// let rot2 = Rot2::degrees(135.0);
    ///
    /// let result1 = rot1.nlerp(rot2, 1.0 / 3.0);
    /// assert_eq!(result1.as_degrees(), 28.675055);
    ///
    /// let result2 = rot1.nlerp(rot2, 0.5);
    /// assert_eq!(result2.as_degrees(), 67.5);
    /// ```
    #[inline]
    pub fn nlerp(self, end: Self, s: f32) -> Self {
        Self {
            sin: self.sin.lerp(end.sin, s),
            cos: self.cos.lerp(end.cos, s),
        }
        .try_normalize()
        // Fall back to the start rotation.
        // This can happen when `self` and `end` are opposite angles and `s == 0.5`,
        // because the resulting rotation would be zero, which cannot be normalized.
        .unwrap_or(self)
    }

    /// Performs a spherical linear interpolation between `self` and `end`
    /// based on the value `s`.
    ///
    /// This corresponds to interpolating between the two angles at a constant angular velocity.
    ///
    /// When `s == 0.0`, the result will be equal to `self`.
    /// When `s == 1.0`, the result will be equal to `rhs`.
    ///
    /// If you would like the rotation to have a kind of ease-in-out effect, consider
    /// using the slightly more efficient [`nlerp`](Self::nlerp) instead.
    ///
    /// # Example
    ///
    /// ```
    /// # use bevy_math::Rot2;
    /// #
    /// let rot1 = Rot2::IDENTITY;
    /// let rot2 = Rot2::degrees(135.0);
    ///
    /// let result1 = rot1.slerp(rot2, 1.0 / 3.0);
    /// assert_eq!(result1.as_degrees(), 45.0);
    ///
    /// let result2 = rot1.slerp(rot2, 0.5);
    /// assert_eq!(result2.as_degrees(), 67.5);
    /// ```
    #[inline]
    pub fn slerp(self, end: Self, s: f32) -> Self {
        self * Self::radians(self.angle_to(end) * s)
    }
}

impl From<f32> for Rot2 {
    /// Creates a [`Rot2`] from a counterclockwise angle in radians.
    fn from(rotation: f32) -> Self {
        Self::radians(rotation)
    }
}

impl From<Rot2> for Mat2 {
    /// Creates a [`Mat2`] rotation matrix from a [`Rot2`].
    fn from(rot: Rot2) -> Self {
        Mat2::from_cols_array(&[rot.cos, -rot.sin, rot.sin, rot.cos])
    }
}

impl core::ops::Mul for Rot2 {
    type Output = Self;

    fn mul(self, rhs: Self) -> Self::Output {
        Self {
            cos: self.cos * rhs.cos - self.sin * rhs.sin,
            sin: self.sin * rhs.cos + self.cos * rhs.sin,
        }
    }
}

impl core::ops::MulAssign for Rot2 {
    fn mul_assign(&mut self, rhs: Self) {
        *self = *self * rhs;
    }
}

impl core::ops::Mul<Vec2> for Rot2 {
    type Output = Vec2;

    /// Rotates a [`Vec2`] by a [`Rot2`].
    fn mul(self, rhs: Vec2) -> Self::Output {
        Vec2::new(
            rhs.x * self.cos - rhs.y * self.sin,
            rhs.x * self.sin + rhs.y * self.cos,
        )
    }
}

#[cfg(any(feature = "approx", test))]
impl approx::AbsDiffEq for Rot2 {
    type Epsilon = f32;
    fn default_epsilon() -> f32 {
        f32::EPSILON
    }
    fn abs_diff_eq(&self, other: &Self, epsilon: f32) -> bool {
        self.cos.abs_diff_eq(&other.cos, epsilon) && self.sin.abs_diff_eq(&other.sin, epsilon)
    }
}

#[cfg(any(feature = "approx", test))]
impl approx::RelativeEq for Rot2 {
    fn default_max_relative() -> f32 {
        f32::EPSILON
    }
    fn relative_eq(&self, other: &Self, epsilon: f32, max_relative: f32) -> bool {
        self.cos.relative_eq(&other.cos, epsilon, max_relative)
            && self.sin.relative_eq(&other.sin, epsilon, max_relative)
    }
}

#[cfg(any(feature = "approx", test))]
impl approx::UlpsEq for Rot2 {
    fn default_max_ulps() -> u32 {
        4
    }
    fn ulps_eq(&self, other: &Self, epsilon: f32, max_ulps: u32) -> bool {
        self.cos.ulps_eq(&other.cos, epsilon, max_ulps)
            && self.sin.ulps_eq(&other.sin, epsilon, max_ulps)
    }
}

#[cfg(test)]
mod tests {
    use core::f32::consts::FRAC_PI_2;

    use approx::assert_relative_eq;

    use crate::{Dir2, Rot2, Vec2};

    #[test]
    fn creation() {
        let rotation1 = Rot2::radians(FRAC_PI_2);
        let rotation2 = Rot2::degrees(90.0);
        let rotation3 = Rot2::from_sin_cos(1.0, 0.0);
        let rotation4 = Rot2::turn_fraction(0.25);

        // All three rotations should be equal
        assert_relative_eq!(rotation1.sin, rotation2.sin);
        assert_relative_eq!(rotation1.cos, rotation2.cos);
        assert_relative_eq!(rotation1.sin, rotation3.sin);
        assert_relative_eq!(rotation1.cos, rotation3.cos);
        assert_relative_eq!(rotation1.sin, rotation4.sin);
        assert_relative_eq!(rotation1.cos, rotation4.cos);

        // The rotation should be 90 degrees
        assert_relative_eq!(rotation1.as_radians(), FRAC_PI_2);
        assert_relative_eq!(rotation1.as_degrees(), 90.0);
        assert_relative_eq!(rotation1.as_turn_fraction(), 0.25);
    }

    #[test]
    fn rotate() {
        let rotation = Rot2::degrees(90.0);

        assert_relative_eq!(rotation * Vec2::X, Vec2::Y);
        assert_relative_eq!(rotation * Dir2::Y, Dir2::NEG_X);
    }

    #[test]
    fn rotation_range() {
        // the rotation range is `(-180, 180]` and the constructors
        // normalize the rotations to that range
        assert_relative_eq!(Rot2::radians(3.0 * FRAC_PI_2), Rot2::radians(-FRAC_PI_2));
        assert_relative_eq!(Rot2::degrees(270.0), Rot2::degrees(-90.0));
        assert_relative_eq!(Rot2::turn_fraction(0.75), Rot2::turn_fraction(-0.25));
    }

    #[test]
    fn add() {
        let rotation1 = Rot2::degrees(90.0);
        let rotation2 = Rot2::degrees(180.0);

        // 90 deg + 180 deg becomes -90 deg after it wraps around to be within the `(-180, 180]` range
        assert_eq!((rotation1 * rotation2).as_degrees(), -90.0);
    }

    #[test]
    fn subtract() {
        let rotation1 = Rot2::degrees(90.0);
        let rotation2 = Rot2::degrees(45.0);

        assert_relative_eq!((rotation1 * rotation2.inverse()).as_degrees(), 45.0);

        // This should be equivalent to the above
        assert_relative_eq!(rotation2.angle_to(rotation1), core::f32::consts::FRAC_PI_4);
    }

    #[test]
    fn length() {
        let rotation = Rot2 {
            sin: 10.0,
            cos: 5.0,
        };

        assert_eq!(rotation.length_squared(), 125.0);
        assert_eq!(rotation.length(), 11.18034);
        assert!((rotation.normalize().length() - 1.0).abs() < 10e-7);
    }

    #[test]
    fn is_near_identity() {
        assert!(!Rot2::radians(0.1).is_near_identity());
        assert!(!Rot2::radians(-0.1).is_near_identity());
        assert!(Rot2::radians(0.00001).is_near_identity());
        assert!(Rot2::radians(-0.00001).is_near_identity());
        assert!(Rot2::radians(0.0).is_near_identity());
    }

    #[test]
    fn normalize() {
        let rotation = Rot2 {
            sin: 10.0,
            cos: 5.0,
        };
        let normalized_rotation = rotation.normalize();

        assert_eq!(normalized_rotation.sin, 0.89442724);
        assert_eq!(normalized_rotation.cos, 0.44721362);

        assert!(!rotation.is_normalized());
        assert!(normalized_rotation.is_normalized());
    }

    #[test]
    fn fast_renormalize() {
        let rotation = Rot2 { sin: 1.0, cos: 0.5 };
        let normalized_rotation = rotation.normalize();

        let mut unnormalized_rot = rotation;
        let mut renormalized_rot = rotation;
        let mut initially_normalized_rot = normalized_rotation;
        let mut fully_normalized_rot = normalized_rotation;

        // Compute a 64x (=2⁶) multiple of the rotation.
        for _ in 0..6 {
            unnormalized_rot = unnormalized_rot * unnormalized_rot;
            renormalized_rot = renormalized_rot * renormalized_rot;
            initially_normalized_rot = initially_normalized_rot * initially_normalized_rot;
            fully_normalized_rot = fully_normalized_rot * fully_normalized_rot;

            renormalized_rot = renormalized_rot.fast_renormalize();
            fully_normalized_rot = fully_normalized_rot.normalize();
        }

        assert!(!unnormalized_rot.is_normalized());

        assert!(renormalized_rot.is_normalized());
        assert!(fully_normalized_rot.is_normalized());

        assert_relative_eq!(fully_normalized_rot, renormalized_rot, epsilon = 0.000001);
        assert_relative_eq!(
            fully_normalized_rot,
            unnormalized_rot.normalize(),
            epsilon = 0.000001
        );
        assert_relative_eq!(
            fully_normalized_rot,
            initially_normalized_rot.normalize(),
            epsilon = 0.000001
        );
    }

    #[test]
    fn try_normalize() {
        // Valid
        assert!(Rot2 {
            sin: 10.0,
            cos: 5.0,
        }
        .try_normalize()
        .is_some());

        // NaN
        assert!(Rot2 {
            sin: f32::NAN,
            cos: 5.0,
        }
        .try_normalize()
        .is_none());

        // Zero
        assert!(Rot2 { sin: 0.0, cos: 0.0 }.try_normalize().is_none());

        // Non-finite
        assert!(Rot2 {
            sin: f32::INFINITY,
            cos: 5.0,
        }
        .try_normalize()
        .is_none());
    }

    #[test]
    fn nlerp() {
        let rot1 = Rot2::IDENTITY;
        let rot2 = Rot2::degrees(135.0);

        assert_eq!(rot1.nlerp(rot2, 1.0 / 3.0).as_degrees(), 28.675055);
        assert!(rot1.nlerp(rot2, 0.0).is_near_identity());
        assert_eq!(rot1.nlerp(rot2, 0.5).as_degrees(), 67.5);
        assert_eq!(rot1.nlerp(rot2, 1.0).as_degrees(), 135.0);

        let rot1 = Rot2::IDENTITY;
        let rot2 = Rot2::from_sin_cos(0.0, -1.0);

        assert!(rot1.nlerp(rot2, 1.0 / 3.0).is_near_identity());
        assert!(rot1.nlerp(rot2, 0.0).is_near_identity());
        // At 0.5, there is no valid rotation, so the fallback is the original angle.
        assert_eq!(rot1.nlerp(rot2, 0.5).as_degrees(), 0.0);
        assert_eq!(rot1.nlerp(rot2, 1.0).as_degrees().abs(), 180.0);
    }

    #[test]
    fn slerp() {
        let rot1 = Rot2::IDENTITY;
        let rot2 = Rot2::degrees(135.0);

        assert_eq!(rot1.slerp(rot2, 1.0 / 3.0).as_degrees(), 45.0);
        assert!(rot1.slerp(rot2, 0.0).is_near_identity());
        assert_eq!(rot1.slerp(rot2, 0.5).as_degrees(), 67.5);
        assert_eq!(rot1.slerp(rot2, 1.0).as_degrees(), 135.0);

        let rot1 = Rot2::IDENTITY;
        let rot2 = Rot2::from_sin_cos(0.0, -1.0);

        assert!((rot1.slerp(rot2, 1.0 / 3.0).as_degrees() - 60.0).abs() < 10e-6);
        assert!(rot1.slerp(rot2, 0.0).is_near_identity());
        assert_eq!(rot1.slerp(rot2, 0.5).as_degrees(), 90.0);
        assert_eq!(rot1.slerp(rot2, 1.0).as_degrees().abs(), 180.0);
    }
}