bevy_math/sampling/
shape_sampling.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
//! The [`ShapeSample`] trait, allowing random sampling from geometric shapes.
//!
//! At the most basic level, this allows sampling random points from the interior and boundary of
//! geometric primitives. For example:
//! ```
//! # use bevy_math::primitives::*;
//! # use bevy_math::ShapeSample;
//! # use rand::SeedableRng;
//! # use rand::rngs::StdRng;
//! // Get some `Rng`:
//! let rng = &mut StdRng::from_entropy();
//! // Make a circle of radius 2:
//! let circle = Circle::new(2.0);
//! // Get a point inside this circle uniformly at random:
//! let interior_pt = circle.sample_interior(rng);
//! // Get a point on the circle's boundary uniformly at random:
//! let boundary_pt = circle.sample_boundary(rng);
//! ```
//!
//! For repeated sampling, `ShapeSample` also includes methods for accessing a [`Distribution`]:
//! ```
//! # use bevy_math::primitives::*;
//! # use bevy_math::{Vec2, ShapeSample};
//! # use rand::SeedableRng;
//! # use rand::rngs::StdRng;
//! # use rand::distributions::Distribution;
//! # let rng1 = StdRng::from_entropy();
//! # let rng2 = StdRng::from_entropy();
//! // Use a rectangle this time:
//! let rectangle = Rectangle::new(1.0, 2.0);
//! // Get an iterator that spits out random interior points:
//! let interior_iter = rectangle.interior_dist().sample_iter(rng1);
//! // Collect random interior points from the iterator:
//! let interior_pts: Vec<Vec2> = interior_iter.take(1000).collect();
//! // Similarly, get an iterator over many random boundary points and collect them:
//! let boundary_pts: Vec<Vec2> = rectangle.boundary_dist().sample_iter(rng2).take(1000).collect();
//! ```
//!
//! In any case, the [`Rng`] used as the source of randomness must be provided explicitly.

use core::f32::consts::{PI, TAU};

use crate::{ops, primitives::*, NormedVectorSpace, Vec2, Vec3};
use rand::{
    distributions::{Distribution, WeightedIndex},
    Rng,
};

/// Exposes methods to uniformly sample a variety of primitive shapes.
pub trait ShapeSample {
    /// The type of vector returned by the sample methods, [`Vec2`] for 2D shapes and [`Vec3`] for 3D shapes.
    type Output;

    /// Uniformly sample a point from inside the area/volume of this shape, centered on 0.
    ///
    /// Shapes like [`Cylinder`], [`Capsule2d`] and [`Capsule3d`] are oriented along the y-axis.
    ///
    /// # Example
    /// ```
    /// # use bevy_math::prelude::*;
    /// let square = Rectangle::new(2.0, 2.0);
    ///
    /// // Returns a Vec2 with both x and y between -1 and 1.
    /// println!("{:?}", square.sample_interior(&mut rand::thread_rng()));
    /// ```
    fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::Output;

    /// Uniformly sample a point from the surface of this shape, centered on 0.
    ///
    /// Shapes like [`Cylinder`], [`Capsule2d`] and [`Capsule3d`] are oriented along the y-axis.
    ///
    /// # Example
    /// ```
    /// # use bevy_math::prelude::*;
    /// let square = Rectangle::new(2.0, 2.0);
    ///
    /// // Returns a Vec2 where one of the coordinates is at ±1,
    /// //  and the other is somewhere between -1 and 1.
    /// println!("{:?}", square.sample_boundary(&mut rand::thread_rng()));
    /// ```
    fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::Output;

    /// Extract a [`Distribution`] whose samples are points of this shape's interior, taken uniformly.
    ///
    /// # Example
    ///
    /// ```
    /// # use bevy_math::prelude::*;
    /// # use rand::distributions::Distribution;
    /// let square = Rectangle::new(2.0, 2.0);
    /// let rng = rand::thread_rng();
    ///
    /// // Iterate over points randomly drawn from `square`'s interior:
    /// for random_val in square.interior_dist().sample_iter(rng).take(5) {
    ///     println!("{:?}", random_val);
    /// }
    /// ```
    fn interior_dist(self) -> impl Distribution<Self::Output>
    where
        Self: Sized,
    {
        InteriorOf(self)
    }

    /// Extract a [`Distribution`] whose samples are points of this shape's boundary, taken uniformly.
    ///
    /// # Example
    ///
    /// ```
    /// # use bevy_math::prelude::*;
    /// # use rand::distributions::Distribution;
    /// let square = Rectangle::new(2.0, 2.0);
    /// let rng = rand::thread_rng();
    ///
    /// // Iterate over points randomly drawn from `square`'s boundary:
    /// for random_val in square.boundary_dist().sample_iter(rng).take(5) {
    ///     println!("{:?}", random_val);
    /// }
    /// ```
    fn boundary_dist(self) -> impl Distribution<Self::Output>
    where
        Self: Sized,
    {
        BoundaryOf(self)
    }
}

#[derive(Clone, Copy)]
/// A wrapper struct that allows interior sampling from a [`ShapeSample`] type directly as
/// a [`Distribution`].
pub struct InteriorOf<T: ShapeSample>(pub T);

#[derive(Clone, Copy)]
/// A wrapper struct that allows boundary sampling from a [`ShapeSample`] type directly as
/// a [`Distribution`].
pub struct BoundaryOf<T: ShapeSample>(pub T);

impl<T: ShapeSample> Distribution<<T as ShapeSample>::Output> for InteriorOf<T> {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> <T as ShapeSample>::Output {
        self.0.sample_interior(rng)
    }
}

impl<T: ShapeSample> Distribution<<T as ShapeSample>::Output> for BoundaryOf<T> {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> <T as ShapeSample>::Output {
        self.0.sample_boundary(rng)
    }
}

impl ShapeSample for Circle {
    type Output = Vec2;

    fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec2 {
        // https://mathworld.wolfram.com/DiskPointPicking.html
        let theta = rng.gen_range(0.0..TAU);
        let r_squared = rng.gen_range(0.0..=(self.radius * self.radius));
        let r = r_squared.sqrt();
        let (sin, cos) = ops::sin_cos(theta);
        Vec2::new(r * cos, r * sin)
    }

    fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec2 {
        let theta = rng.gen_range(0.0..TAU);
        let (sin, cos) = ops::sin_cos(theta);
        Vec2::new(self.radius * cos, self.radius * sin)
    }
}

/// Boundary sampling for unit-spheres
#[inline]
fn sample_unit_sphere_boundary<R: Rng + ?Sized>(rng: &mut R) -> Vec3 {
    let z = rng.gen_range(-1f32..=1f32);
    let (a_sin, a_cos) = ops::sin_cos(rng.gen_range(-PI..=PI));
    let c = (1f32 - z * z).sqrt();
    let x = a_sin * c;
    let y = a_cos * c;

    Vec3::new(x, y, z)
}

impl ShapeSample for Sphere {
    type Output = Vec3;

    fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec3 {
        let r_cubed = rng.gen_range(0.0..=(self.radius * self.radius * self.radius));
        let r = ops::cbrt(r_cubed);

        r * sample_unit_sphere_boundary(rng)
    }

    fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec3 {
        self.radius * sample_unit_sphere_boundary(rng)
    }
}

impl ShapeSample for Annulus {
    type Output = Vec2;

    fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::Output {
        let inner_radius = self.inner_circle.radius;
        let outer_radius = self.outer_circle.radius;

        // Like random sampling for a circle, radius is weighted by the square.
        let r_squared = rng.gen_range((inner_radius * inner_radius)..(outer_radius * outer_radius));
        let r = r_squared.sqrt();
        let theta = rng.gen_range(0.0..TAU);
        let (sin, cos) = ops::sin_cos(theta);

        Vec2::new(r * cos, r * sin)
    }

    fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::Output {
        let total_perimeter = self.inner_circle.perimeter() + self.outer_circle.perimeter();
        let inner_prob = (self.inner_circle.perimeter() / total_perimeter) as f64;

        // Sample from boundary circles, choosing which one by weighting by perimeter:
        let inner = rng.gen_bool(inner_prob);
        if inner {
            self.inner_circle.sample_boundary(rng)
        } else {
            self.outer_circle.sample_boundary(rng)
        }
    }
}

impl ShapeSample for Rectangle {
    type Output = Vec2;

    fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec2 {
        let x = rng.gen_range(-self.half_size.x..=self.half_size.x);
        let y = rng.gen_range(-self.half_size.y..=self.half_size.y);
        Vec2::new(x, y)
    }

    fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec2 {
        let primary_side = rng.gen_range(-1.0..1.0);
        let other_side = if rng.gen() { -1.0 } else { 1.0 };

        if self.half_size.x + self.half_size.y > 0.0 {
            if rng.gen_bool((self.half_size.x / (self.half_size.x + self.half_size.y)) as f64) {
                Vec2::new(primary_side, other_side) * self.half_size
            } else {
                Vec2::new(other_side, primary_side) * self.half_size
            }
        } else {
            Vec2::ZERO
        }
    }
}

impl ShapeSample for Cuboid {
    type Output = Vec3;

    fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec3 {
        let x = rng.gen_range(-self.half_size.x..=self.half_size.x);
        let y = rng.gen_range(-self.half_size.y..=self.half_size.y);
        let z = rng.gen_range(-self.half_size.z..=self.half_size.z);
        Vec3::new(x, y, z)
    }

    fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec3 {
        let primary_side1 = rng.gen_range(-1.0..1.0);
        let primary_side2 = rng.gen_range(-1.0..1.0);
        let other_side = if rng.gen() { -1.0 } else { 1.0 };

        if let Ok(dist) = WeightedIndex::new([
            self.half_size.y * self.half_size.z,
            self.half_size.x * self.half_size.z,
            self.half_size.x * self.half_size.y,
        ]) {
            match dist.sample(rng) {
                0 => Vec3::new(other_side, primary_side1, primary_side2) * self.half_size,
                1 => Vec3::new(primary_side1, other_side, primary_side2) * self.half_size,
                2 => Vec3::new(primary_side1, primary_side2, other_side) * self.half_size,
                _ => unreachable!(),
            }
        } else {
            Vec3::ZERO
        }
    }
}

/// Interior sampling for triangles which doesn't depend on the ambient dimension.
fn sample_triangle_interior<P: NormedVectorSpace, R: Rng + ?Sized>(
    vertices: [P; 3],
    rng: &mut R,
) -> P {
    let [a, b, c] = vertices;
    let ab = b - a;
    let ac = c - a;

    // Generate random points on a parallelipiped and reflect so that
    // we can use the points that lie outside the triangle
    let u = rng.gen_range(0.0..=1.0);
    let v = rng.gen_range(0.0..=1.0);

    if u + v > 1. {
        let u1 = 1. - v;
        let v1 = 1. - u;
        a + (ab * u1 + ac * v1)
    } else {
        a + (ab * u + ac * v)
    }
}

/// Boundary sampling for triangles which doesn't depend on the ambient dimension.
fn sample_triangle_boundary<P: NormedVectorSpace, R: Rng + ?Sized>(
    vertices: [P; 3],
    rng: &mut R,
) -> P {
    let [a, b, c] = vertices;
    let ab = b - a;
    let ac = c - a;
    let bc = c - b;

    let t = rng.gen_range(0.0..=1.0);

    if let Ok(dist) = WeightedIndex::new([ab.norm(), ac.norm(), bc.norm()]) {
        match dist.sample(rng) {
            0 => a.lerp(b, t),
            1 => a.lerp(c, t),
            2 => b.lerp(c, t),
            _ => unreachable!(),
        }
    } else {
        // This should only occur when the triangle is 0-dimensional degenerate
        // so this is actually the correct result.
        a
    }
}

impl ShapeSample for Triangle2d {
    type Output = Vec2;

    fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::Output {
        sample_triangle_interior(self.vertices, rng)
    }

    fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::Output {
        sample_triangle_boundary(self.vertices, rng)
    }
}

impl ShapeSample for Triangle3d {
    type Output = Vec3;

    fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::Output {
        sample_triangle_interior(self.vertices, rng)
    }

    fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::Output {
        sample_triangle_boundary(self.vertices, rng)
    }
}

impl ShapeSample for Tetrahedron {
    type Output = Vec3;

    fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::Output {
        let [v0, v1, v2, v3] = self.vertices;

        // Generate a random point in a cube:
        let mut coords: [f32; 3] = [
            rng.gen_range(0.0..1.0),
            rng.gen_range(0.0..1.0),
            rng.gen_range(0.0..1.0),
        ];

        // The cube is broken into six tetrahedra of the form 0 <= c_0 <= c_1 <= c_2 <= 1,
        // where c_i are the three euclidean coordinates in some permutation. (Since 3! = 6,
        // there are six of them). Sorting the coordinates folds these six tetrahedra into the
        // tetrahedron 0 <= x <= y <= z <= 1 (i.e. a fundamental domain of the permutation action).
        coords.sort_by(|x, y| x.partial_cmp(y).unwrap());

        // Now, convert a point from the fundamental tetrahedron into barycentric coordinates by
        // taking the four successive differences of coordinates; note that these telescope to sum
        // to 1, and this transformation is linear, hence preserves the probability density, since
        // the latter comes from the Lebesgue measure.
        //
        // (See https://en.wikipedia.org/wiki/Lebesgue_measure#Properties — specifically, that
        // Lebesgue measure of a linearly transformed set is its original measure times the
        // determinant.)
        let (a, b, c, d) = (
            coords[0],
            coords[1] - coords[0],
            coords[2] - coords[1],
            1. - coords[2],
        );

        // This is also a linear mapping, so probability density is still preserved.
        v0 * a + v1 * b + v2 * c + v3 * d
    }

    fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::Output {
        let triangles = self.faces();
        let areas = triangles.iter().map(Measured2d::area);

        if areas.clone().sum::<f32>() > 0.0 {
            // There is at least one triangle with nonzero area, so this unwrap succeeds.
            let dist = WeightedIndex::new(areas).unwrap();

            // Get a random index, then sample the interior of the associated triangle.
            let idx = dist.sample(rng);
            triangles[idx].sample_interior(rng)
        } else {
            // In this branch the tetrahedron has zero surface area; just return a point that's on
            // the tetrahedron.
            self.vertices[0]
        }
    }
}

impl ShapeSample for Cylinder {
    type Output = Vec3;

    fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec3 {
        let Vec2 { x, y: z } = self.base().sample_interior(rng);
        let y = rng.gen_range(-self.half_height..=self.half_height);
        Vec3::new(x, y, z)
    }

    fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec3 {
        // This uses the area of the ends divided by the overall surface area (optimized)
        // [2 (\pi r^2)]/[2 (\pi r^2) + 2 \pi r h] = r/(r + h)
        if self.radius + 2.0 * self.half_height > 0.0 {
            if rng.gen_bool((self.radius / (self.radius + 2.0 * self.half_height)) as f64) {
                let Vec2 { x, y: z } = self.base().sample_interior(rng);
                if rng.gen() {
                    Vec3::new(x, self.half_height, z)
                } else {
                    Vec3::new(x, -self.half_height, z)
                }
            } else {
                let Vec2 { x, y: z } = self.base().sample_boundary(rng);
                let y = rng.gen_range(-self.half_height..=self.half_height);
                Vec3::new(x, y, z)
            }
        } else {
            Vec3::ZERO
        }
    }
}

impl ShapeSample for Capsule2d {
    type Output = Vec2;

    fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec2 {
        let rectangle_area = self.half_length * self.radius * 4.0;
        let capsule_area = rectangle_area + PI * self.radius * self.radius;
        if capsule_area > 0.0 {
            // Check if the random point should be inside the rectangle
            if rng.gen_bool((rectangle_area / capsule_area) as f64) {
                self.to_inner_rectangle().sample_interior(rng)
            } else {
                let circle = Circle::new(self.radius);
                let point = circle.sample_interior(rng);
                // Add half length if it is the top semi-circle, otherwise subtract half
                if point.y > 0.0 {
                    point + Vec2::Y * self.half_length
                } else {
                    point - Vec2::Y * self.half_length
                }
            }
        } else {
            Vec2::ZERO
        }
    }

    fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec2 {
        let rectangle_surface = 4.0 * self.half_length;
        let capsule_surface = rectangle_surface + TAU * self.radius;
        if capsule_surface > 0.0 {
            if rng.gen_bool((rectangle_surface / capsule_surface) as f64) {
                let side_distance =
                    rng.gen_range((-2.0 * self.half_length)..=(2.0 * self.half_length));
                if side_distance < 0.0 {
                    Vec2::new(self.radius, side_distance + self.half_length)
                } else {
                    Vec2::new(-self.radius, side_distance - self.half_length)
                }
            } else {
                let circle = Circle::new(self.radius);
                let point = circle.sample_boundary(rng);
                // Add half length if it is the top semi-circle, otherwise subtract half
                if point.y > 0.0 {
                    point + Vec2::Y * self.half_length
                } else {
                    point - Vec2::Y * self.half_length
                }
            }
        } else {
            Vec2::ZERO
        }
    }
}

impl ShapeSample for Capsule3d {
    type Output = Vec3;

    fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec3 {
        let cylinder_vol = PI * self.radius * self.radius * 2.0 * self.half_length;
        // Add 4/3 pi r^3
        let capsule_vol = cylinder_vol + 4.0 / 3.0 * PI * self.radius * self.radius * self.radius;
        if capsule_vol > 0.0 {
            // Check if the random point should be inside the cylinder
            if rng.gen_bool((cylinder_vol / capsule_vol) as f64) {
                self.to_cylinder().sample_interior(rng)
            } else {
                let sphere = Sphere::new(self.radius);
                let point = sphere.sample_interior(rng);
                // Add half length if it is the top semi-sphere, otherwise subtract half
                if point.y > 0.0 {
                    point + Vec3::Y * self.half_length
                } else {
                    point - Vec3::Y * self.half_length
                }
            }
        } else {
            Vec3::ZERO
        }
    }

    fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec3 {
        let cylinder_surface = TAU * self.radius * 2.0 * self.half_length;
        let capsule_surface = cylinder_surface + 4.0 * PI * self.radius * self.radius;
        if capsule_surface > 0.0 {
            if rng.gen_bool((cylinder_surface / capsule_surface) as f64) {
                let Vec2 { x, y: z } = Circle::new(self.radius).sample_boundary(rng);
                let y = rng.gen_range(-self.half_length..=self.half_length);
                Vec3::new(x, y, z)
            } else {
                let sphere = Sphere::new(self.radius);
                let point = sphere.sample_boundary(rng);
                // Add half length if it is the top semi-sphere, otherwise subtract half
                if point.y > 0.0 {
                    point + Vec3::Y * self.half_length
                } else {
                    point - Vec3::Y * self.half_length
                }
            }
        } else {
            Vec3::ZERO
        }
    }
}

impl<P: Primitive2d + Measured2d + ShapeSample<Output = Vec2>> ShapeSample for Extrusion<P> {
    type Output = Vec3;

    fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::Output {
        let base_point = self.base_shape.sample_interior(rng);
        let depth = rng.gen_range(-self.half_depth..self.half_depth);
        base_point.extend(depth)
    }

    fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::Output {
        let base_area = self.base_shape.area();
        let total_area = self.area();

        let random = rng.gen_range(0.0..total_area);
        match random {
            x if x < base_area => self.base_shape.sample_interior(rng).extend(self.half_depth),
            x if x < 2. * base_area => self
                .base_shape
                .sample_interior(rng)
                .extend(-self.half_depth),
            _ => self
                .base_shape
                .sample_boundary(rng)
                .extend(rng.gen_range(-self.half_depth..self.half_depth)),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use rand::SeedableRng;
    use rand_chacha::ChaCha8Rng;

    #[test]
    fn circle_interior_sampling() {
        let mut rng = ChaCha8Rng::from_seed(Default::default());
        let circle = Circle::new(8.0);

        let boxes = [
            (-3.0, 3.0),
            (1.0, 2.0),
            (-1.0, -2.0),
            (3.0, -2.0),
            (1.0, -6.0),
            (-3.0, -7.0),
            (-7.0, -3.0),
            (-6.0, 1.0),
        ];
        let mut box_hits = [0; 8];

        // Checks which boxes (if any) the sampled points are in
        for _ in 0..5000 {
            let point = circle.sample_interior(&mut rng);

            for (i, box_) in boxes.iter().enumerate() {
                if (point.x > box_.0 && point.x < box_.0 + 4.0)
                    && (point.y > box_.1 && point.y < box_.1 + 4.0)
                {
                    box_hits[i] += 1;
                }
            }
        }

        assert_eq!(
            box_hits,
            [396, 377, 415, 404, 366, 408, 408, 430],
            "samples will occur across all array items at statistically equal chance"
        );
    }

    #[test]
    fn circle_boundary_sampling() {
        let mut rng = ChaCha8Rng::from_seed(Default::default());
        let circle = Circle::new(1.0);

        let mut wedge_hits = [0; 8];

        // Checks in which eighth of the circle each sampled point is in
        for _ in 0..5000 {
            let point = circle.sample_boundary(&mut rng);

            let angle = ops::atan(point.y / point.x) + PI / 2.0;
            let wedge = (angle * 8.0 / PI).floor() as usize;
            wedge_hits[wedge] += 1;
        }

        assert_eq!(
            wedge_hits,
            [636, 608, 639, 603, 614, 650, 640, 610],
            "samples will occur across all array items at statistically equal chance"
        );
    }
}