bevy_mesh/mesh.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
use bevy_transform::components::Transform;
pub use wgpu::PrimitiveTopology;
use super::{
face_normal, generate_tangents_for_mesh, scale_normal, FourIterators, GenerateTangentsError,
Indices, MeshAttributeData, MeshTrianglesError, MeshVertexAttribute, MeshVertexAttributeId,
MeshVertexBufferLayout, MeshVertexBufferLayoutRef, MeshVertexBufferLayouts,
MeshWindingInvertError, VertexAttributeValues, VertexBufferLayout, VertexFormatSize,
};
use alloc::collections::BTreeMap;
use bevy_asset::{Asset, Handle, RenderAssetUsages};
use bevy_image::Image;
use bevy_math::{primitives::Triangle3d, *};
use bevy_reflect::Reflect;
use bevy_utils::tracing::warn;
use bytemuck::cast_slice;
use wgpu::{VertexAttribute, VertexFormat, VertexStepMode};
pub const INDEX_BUFFER_ASSET_INDEX: u64 = 0;
pub const VERTEX_ATTRIBUTE_BUFFER_ID: u64 = 10;
/// A 3D object made out of vertices representing triangles, lines, or points,
/// with "attribute" values for each vertex.
///
/// Meshes can be automatically generated by a bevy `AssetLoader` (generally by loading a `Gltf` file),
/// or by converting a [primitive](bevy_math::primitives) using [`into`](Into).
/// It is also possible to create one manually. They can be edited after creation.
///
/// Meshes can be rendered with a `Mesh2d` and `MeshMaterial2d`
/// or `Mesh3d` and `MeshMaterial3d` for 2D and 3D respectively.
///
/// A [`Mesh`] in Bevy is equivalent to a "primitive" in the glTF format, for a
/// glTF Mesh representation, see `GltfMesh`.
///
/// ## Manual creation
///
/// The following function will construct a flat mesh, to be rendered with a
/// `StandardMaterial` or `ColorMaterial`:
///
/// ```
/// # use bevy_mesh::{Mesh, Indices, PrimitiveTopology};
/// # use bevy_asset::RenderAssetUsages;
/// fn create_simple_parallelogram() -> Mesh {
/// // Create a new mesh using a triangle list topology, where each set of 3 vertices composes a triangle.
/// Mesh::new(PrimitiveTopology::TriangleList, RenderAssetUsages::default())
/// // Add 4 vertices, each with its own position attribute (coordinate in
/// // 3D space), for each of the corners of the parallelogram.
/// .with_inserted_attribute(
/// Mesh::ATTRIBUTE_POSITION,
/// vec![[0.0, 0.0, 0.0], [1.0, 2.0, 0.0], [2.0, 2.0, 0.0], [1.0, 0.0, 0.0]]
/// )
/// // Assign a UV coordinate to each vertex.
/// .with_inserted_attribute(
/// Mesh::ATTRIBUTE_UV_0,
/// vec![[0.0, 1.0], [0.5, 0.0], [1.0, 0.0], [0.5, 1.0]]
/// )
/// // Assign normals (everything points outwards)
/// .with_inserted_attribute(
/// Mesh::ATTRIBUTE_NORMAL,
/// vec![[0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0]]
/// )
/// // After defining all the vertices and their attributes, build each triangle using the
/// // indices of the vertices that make it up in a counter-clockwise order.
/// .with_inserted_indices(Indices::U32(vec![
/// // First triangle
/// 0, 3, 1,
/// // Second triangle
/// 1, 3, 2
/// ]))
/// }
/// ```
///
/// You can see how it looks like [here](https://github.com/bevyengine/bevy/blob/main/assets/docs/Mesh.png),
/// used in a `Mesh3d` with a square bevy logo texture, with added axis, points,
/// lines and text for clarity.
///
/// ## Other examples
///
/// For further visualization, explanation, and examples, see the built-in Bevy examples,
/// and the [implementation of the built-in shapes](https://github.com/bevyengine/bevy/tree/main/crates/bevy_mesh/src/primitives).
/// In particular, [generate_custom_mesh](https://github.com/bevyengine/bevy/blob/main/examples/3d/generate_custom_mesh.rs)
/// teaches you to access and modify the attributes of a [`Mesh`] after creating it.
///
/// ## Common points of confusion
///
/// - UV maps in Bevy start at the top-left, see [`ATTRIBUTE_UV_0`](Mesh::ATTRIBUTE_UV_0),
/// other APIs can have other conventions, `OpenGL` starts at bottom-left.
/// - It is possible and sometimes useful for multiple vertices to have the same
/// [position attribute](Mesh::ATTRIBUTE_POSITION) value,
/// it's a common technique in 3D modeling for complex UV mapping or other calculations.
/// - Bevy performs frustum culling based on the `Aabb` of meshes, which is calculated
/// and added automatically for new meshes only. If a mesh is modified, the entity's `Aabb`
/// needs to be updated manually or deleted so that it is re-calculated.
///
/// ## Use with `StandardMaterial`
///
/// To render correctly with `StandardMaterial`, a mesh needs to have properly defined:
/// - [`UVs`](Mesh::ATTRIBUTE_UV_0): Bevy needs to know how to map a texture onto the mesh
/// (also true for `ColorMaterial`).
/// - [`Normals`](Mesh::ATTRIBUTE_NORMAL): Bevy needs to know how light interacts with your mesh.
/// [0.0, 0.0, 1.0] is very common for simple flat meshes on the XY plane,
/// because simple meshes are smooth and they don't require complex light calculations.
/// - Vertex winding order: by default, `StandardMaterial.cull_mode` is `Some(Face::Back)`,
/// which means that Bevy would *only* render the "front" of each triangle, which
/// is the side of the triangle from where the vertices appear in a *counter-clockwise* order.
#[derive(Asset, Debug, Clone, Reflect)]
pub struct Mesh {
#[reflect(ignore)]
primitive_topology: PrimitiveTopology,
/// `std::collections::BTreeMap` with all defined vertex attributes (Positions, Normals, ...)
/// for this mesh. Attribute ids to attribute values.
/// Uses a [`BTreeMap`] because, unlike `HashMap`, it has a defined iteration order,
/// which allows easy stable `VertexBuffers` (i.e. same buffer order)
#[reflect(ignore)]
attributes: BTreeMap<MeshVertexAttributeId, MeshAttributeData>,
indices: Option<Indices>,
morph_targets: Option<Handle<Image>>,
morph_target_names: Option<Vec<String>>,
pub asset_usage: RenderAssetUsages,
}
impl Mesh {
/// Where the vertex is located in space. Use in conjunction with [`Mesh::insert_attribute`]
/// or [`Mesh::with_inserted_attribute`].
///
/// The format of this attribute is [`VertexFormat::Float32x3`].
pub const ATTRIBUTE_POSITION: MeshVertexAttribute =
MeshVertexAttribute::new("Vertex_Position", 0, VertexFormat::Float32x3);
/// The direction the vertex normal is facing in.
/// Use in conjunction with [`Mesh::insert_attribute`] or [`Mesh::with_inserted_attribute`].
///
/// The format of this attribute is [`VertexFormat::Float32x3`].
pub const ATTRIBUTE_NORMAL: MeshVertexAttribute =
MeshVertexAttribute::new("Vertex_Normal", 1, VertexFormat::Float32x3);
/// Texture coordinates for the vertex. Use in conjunction with [`Mesh::insert_attribute`]
/// or [`Mesh::with_inserted_attribute`].
///
/// Generally `[0.,0.]` is mapped to the top left of the texture, and `[1.,1.]` to the bottom-right.
///
/// By default values outside will be clamped per pixel not for the vertex,
/// "stretching" the borders of the texture.
/// This behavior can be useful in some cases, usually when the borders have only
/// one color, for example a logo, and you want to "extend" those borders.
///
/// For different mapping outside of `0..=1` range,
/// see [`ImageAddressMode`](bevy_image::ImageAddressMode).
///
/// The format of this attribute is [`VertexFormat::Float32x2`].
pub const ATTRIBUTE_UV_0: MeshVertexAttribute =
MeshVertexAttribute::new("Vertex_Uv", 2, VertexFormat::Float32x2);
/// Alternate texture coordinates for the vertex. Use in conjunction with
/// [`Mesh::insert_attribute`] or [`Mesh::with_inserted_attribute`].
///
/// Typically, these are used for lightmaps, textures that provide
/// precomputed illumination.
///
/// The format of this attribute is [`VertexFormat::Float32x2`].
pub const ATTRIBUTE_UV_1: MeshVertexAttribute =
MeshVertexAttribute::new("Vertex_Uv_1", 3, VertexFormat::Float32x2);
/// The direction of the vertex tangent. Used for normal mapping.
/// Usually generated with [`generate_tangents`](Mesh::generate_tangents) or
/// [`with_generated_tangents`](Mesh::with_generated_tangents).
///
/// The format of this attribute is [`VertexFormat::Float32x4`].
pub const ATTRIBUTE_TANGENT: MeshVertexAttribute =
MeshVertexAttribute::new("Vertex_Tangent", 4, VertexFormat::Float32x4);
/// Per vertex coloring. Use in conjunction with [`Mesh::insert_attribute`]
/// or [`Mesh::with_inserted_attribute`].
///
/// The format of this attribute is [`VertexFormat::Float32x4`].
pub const ATTRIBUTE_COLOR: MeshVertexAttribute =
MeshVertexAttribute::new("Vertex_Color", 5, VertexFormat::Float32x4);
/// Per vertex joint transform matrix weight. Use in conjunction with [`Mesh::insert_attribute`]
/// or [`Mesh::with_inserted_attribute`].
///
/// The format of this attribute is [`VertexFormat::Float32x4`].
pub const ATTRIBUTE_JOINT_WEIGHT: MeshVertexAttribute =
MeshVertexAttribute::new("Vertex_JointWeight", 6, VertexFormat::Float32x4);
/// Per vertex joint transform matrix index. Use in conjunction with [`Mesh::insert_attribute`]
/// or [`Mesh::with_inserted_attribute`].
///
/// The format of this attribute is [`VertexFormat::Uint16x4`].
pub const ATTRIBUTE_JOINT_INDEX: MeshVertexAttribute =
MeshVertexAttribute::new("Vertex_JointIndex", 7, VertexFormat::Uint16x4);
/// Construct a new mesh. You need to provide a [`PrimitiveTopology`] so that the
/// renderer knows how to treat the vertex data. Most of the time this will be
/// [`PrimitiveTopology::TriangleList`].
pub fn new(primitive_topology: PrimitiveTopology, asset_usage: RenderAssetUsages) -> Self {
Mesh {
primitive_topology,
attributes: Default::default(),
indices: None,
morph_targets: None,
morph_target_names: None,
asset_usage,
}
}
/// Returns the topology of the mesh.
pub fn primitive_topology(&self) -> PrimitiveTopology {
self.primitive_topology
}
/// Sets the data for a vertex attribute (position, normal, etc.). The name will
/// often be one of the associated constants such as [`Mesh::ATTRIBUTE_POSITION`].
///
/// `Aabb` of entities with modified mesh are not updated automatically.
///
/// # Panics
/// Panics when the format of the values does not match the attribute's format.
#[inline]
pub fn insert_attribute(
&mut self,
attribute: MeshVertexAttribute,
values: impl Into<VertexAttributeValues>,
) {
let values = values.into();
let values_format = VertexFormat::from(&values);
if values_format != attribute.format {
panic!(
"Failed to insert attribute. Invalid attribute format for {}. Given format is {values_format:?} but expected {:?}",
attribute.name, attribute.format
);
}
self.attributes
.insert(attribute.id, MeshAttributeData { attribute, values });
}
/// Consumes the mesh and returns a mesh with data set for a vertex attribute (position, normal, etc.).
/// The name will often be one of the associated constants such as [`Mesh::ATTRIBUTE_POSITION`].
///
/// (Alternatively, you can use [`Mesh::insert_attribute`] to mutate an existing mesh in-place)
///
/// `Aabb` of entities with modified mesh are not updated automatically.
///
/// # Panics
/// Panics when the format of the values does not match the attribute's format.
#[must_use]
#[inline]
pub fn with_inserted_attribute(
mut self,
attribute: MeshVertexAttribute,
values: impl Into<VertexAttributeValues>,
) -> Self {
self.insert_attribute(attribute, values);
self
}
/// Removes the data for a vertex attribute
pub fn remove_attribute(
&mut self,
attribute: impl Into<MeshVertexAttributeId>,
) -> Option<VertexAttributeValues> {
self.attributes
.remove(&attribute.into())
.map(|data| data.values)
}
/// Consumes the mesh and returns a mesh without the data for a vertex attribute
///
/// (Alternatively, you can use [`Mesh::remove_attribute`] to mutate an existing mesh in-place)
#[must_use]
pub fn with_removed_attribute(mut self, attribute: impl Into<MeshVertexAttributeId>) -> Self {
self.remove_attribute(attribute);
self
}
#[inline]
pub fn contains_attribute(&self, id: impl Into<MeshVertexAttributeId>) -> bool {
self.attributes.contains_key(&id.into())
}
/// Retrieves the data currently set to the vertex attribute with the specified `name`.
#[inline]
pub fn attribute(
&self,
id: impl Into<MeshVertexAttributeId>,
) -> Option<&VertexAttributeValues> {
self.attributes.get(&id.into()).map(|data| &data.values)
}
/// Retrieves the data currently set to the vertex attribute with the specified `name` mutably.
#[inline]
pub fn attribute_mut(
&mut self,
id: impl Into<MeshVertexAttributeId>,
) -> Option<&mut VertexAttributeValues> {
self.attributes
.get_mut(&id.into())
.map(|data| &mut data.values)
}
/// Returns an iterator that yields references to the data of each vertex attribute.
pub fn attributes(
&self,
) -> impl Iterator<Item = (&MeshVertexAttribute, &VertexAttributeValues)> {
self.attributes
.values()
.map(|data| (&data.attribute, &data.values))
}
/// Returns an iterator that yields mutable references to the data of each vertex attribute.
pub fn attributes_mut(
&mut self,
) -> impl Iterator<Item = (&MeshVertexAttribute, &mut VertexAttributeValues)> {
self.attributes
.values_mut()
.map(|data| (&data.attribute, &mut data.values))
}
/// Sets the vertex indices of the mesh. They describe how triangles are constructed out of the
/// vertex attributes and are therefore only useful for the [`PrimitiveTopology`] variants
/// that use triangles.
#[inline]
pub fn insert_indices(&mut self, indices: Indices) {
self.indices = Some(indices);
}
/// Consumes the mesh and returns a mesh with the given vertex indices. They describe how triangles
/// are constructed out of the vertex attributes and are therefore only useful for the
/// [`PrimitiveTopology`] variants that use triangles.
///
/// (Alternatively, you can use [`Mesh::insert_indices`] to mutate an existing mesh in-place)
#[must_use]
#[inline]
pub fn with_inserted_indices(mut self, indices: Indices) -> Self {
self.insert_indices(indices);
self
}
/// Retrieves the vertex `indices` of the mesh.
#[inline]
pub fn indices(&self) -> Option<&Indices> {
self.indices.as_ref()
}
/// Retrieves the vertex `indices` of the mesh mutably.
#[inline]
pub fn indices_mut(&mut self) -> Option<&mut Indices> {
self.indices.as_mut()
}
/// Removes the vertex `indices` from the mesh and returns them.
#[inline]
pub fn remove_indices(&mut self) -> Option<Indices> {
core::mem::take(&mut self.indices)
}
/// Consumes the mesh and returns a mesh without the vertex `indices` of the mesh.
///
/// (Alternatively, you can use [`Mesh::remove_indices`] to mutate an existing mesh in-place)
#[must_use]
pub fn with_removed_indices(mut self) -> Self {
self.remove_indices();
self
}
/// Returns the size of a vertex in bytes.
pub fn get_vertex_size(&self) -> u64 {
self.attributes
.values()
.map(|data| data.attribute.format.get_size())
.sum()
}
/// Returns the size required for the vertex buffer in bytes.
pub fn get_vertex_buffer_size(&self) -> usize {
let vertex_size = self.get_vertex_size() as usize;
let vertex_count = self.count_vertices();
vertex_count * vertex_size
}
/// Computes and returns the index data of the mesh as bytes.
/// This is used to transform the index data into a GPU friendly format.
pub fn get_index_buffer_bytes(&self) -> Option<&[u8]> {
self.indices.as_ref().map(|indices| match &indices {
Indices::U16(indices) => cast_slice(&indices[..]),
Indices::U32(indices) => cast_slice(&indices[..]),
})
}
/// Get this `Mesh`'s [`MeshVertexBufferLayout`], used in `SpecializedMeshPipeline`.
pub fn get_mesh_vertex_buffer_layout(
&self,
mesh_vertex_buffer_layouts: &mut MeshVertexBufferLayouts,
) -> MeshVertexBufferLayoutRef {
let mut attributes = Vec::with_capacity(self.attributes.len());
let mut attribute_ids = Vec::with_capacity(self.attributes.len());
let mut accumulated_offset = 0;
for (index, data) in self.attributes.values().enumerate() {
attribute_ids.push(data.attribute.id);
attributes.push(VertexAttribute {
offset: accumulated_offset,
format: data.attribute.format,
shader_location: index as u32,
});
accumulated_offset += data.attribute.format.get_size();
}
let layout = MeshVertexBufferLayout {
layout: VertexBufferLayout {
array_stride: accumulated_offset,
step_mode: VertexStepMode::Vertex,
attributes,
},
attribute_ids,
};
mesh_vertex_buffer_layouts.insert(layout)
}
/// Counts all vertices of the mesh.
///
/// If the attributes have different vertex counts, the smallest is returned.
pub fn count_vertices(&self) -> usize {
let mut vertex_count: Option<usize> = None;
for (attribute_id, attribute_data) in &self.attributes {
let attribute_len = attribute_data.values.len();
if let Some(previous_vertex_count) = vertex_count {
if previous_vertex_count != attribute_len {
let name = self
.attributes
.get(attribute_id)
.map(|data| data.attribute.name.to_string())
.unwrap_or_else(|| format!("{attribute_id:?}"));
warn!("{name} has a different vertex count ({attribute_len}) than other attributes ({previous_vertex_count}) in this mesh, \
all attributes will be truncated to match the smallest.");
vertex_count = Some(core::cmp::min(previous_vertex_count, attribute_len));
}
} else {
vertex_count = Some(attribute_len);
}
}
vertex_count.unwrap_or(0)
}
/// Computes and returns the vertex data of the mesh as bytes.
/// Therefore the attributes are located in the order of their [`MeshVertexAttribute::id`].
/// This is used to transform the vertex data into a GPU friendly format.
///
/// If the vertex attributes have different lengths, they are all truncated to
/// the length of the smallest.
///
/// This is a convenience method which allocates a Vec.
/// Prefer pre-allocating and using [`Mesh::write_packed_vertex_buffer_data`] when possible.
pub fn create_packed_vertex_buffer_data(&self) -> Vec<u8> {
let mut attributes_interleaved_buffer = vec![0; self.get_vertex_buffer_size()];
self.write_packed_vertex_buffer_data(&mut attributes_interleaved_buffer);
attributes_interleaved_buffer
}
/// Computes and write the vertex data of the mesh into a mutable byte slice.
/// The attributes are located in the order of their [`MeshVertexAttribute::id`].
/// This is used to transform the vertex data into a GPU friendly format.
///
/// If the vertex attributes have different lengths, they are all truncated to
/// the length of the smallest.
pub fn write_packed_vertex_buffer_data(&self, slice: &mut [u8]) {
let vertex_size = self.get_vertex_size() as usize;
let vertex_count = self.count_vertices();
// bundle into interleaved buffers
let mut attribute_offset = 0;
for attribute_data in self.attributes.values() {
let attribute_size = attribute_data.attribute.format.get_size() as usize;
let attributes_bytes = attribute_data.values.get_bytes();
for (vertex_index, attribute_bytes) in attributes_bytes
.chunks_exact(attribute_size)
.take(vertex_count)
.enumerate()
{
let offset = vertex_index * vertex_size + attribute_offset;
slice[offset..offset + attribute_size].copy_from_slice(attribute_bytes);
}
attribute_offset += attribute_size;
}
}
/// Duplicates the vertex attributes so that no vertices are shared.
///
/// This can dramatically increase the vertex count, so make sure this is what you want.
/// Does nothing if no [Indices] are set.
#[allow(clippy::match_same_arms)]
pub fn duplicate_vertices(&mut self) {
fn duplicate<T: Copy>(values: &[T], indices: impl Iterator<Item = usize>) -> Vec<T> {
indices.map(|i| values[i]).collect()
}
let Some(indices) = self.indices.take() else {
return;
};
for attributes in self.attributes.values_mut() {
let indices = indices.iter();
match &mut attributes.values {
VertexAttributeValues::Float32(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Sint32(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Uint32(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Float32x2(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Sint32x2(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Uint32x2(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Float32x3(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Sint32x3(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Uint32x3(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Sint32x4(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Uint32x4(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Float32x4(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Sint16x2(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Snorm16x2(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Uint16x2(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Unorm16x2(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Sint16x4(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Snorm16x4(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Uint16x4(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Unorm16x4(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Sint8x2(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Snorm8x2(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Uint8x2(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Unorm8x2(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Sint8x4(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Snorm8x4(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Uint8x4(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Unorm8x4(vec) => *vec = duplicate(vec, indices),
}
}
}
/// Consumes the mesh and returns a mesh with no shared vertices.
///
/// This can dramatically increase the vertex count, so make sure this is what you want.
/// Does nothing if no [`Indices`] are set.
///
/// (Alternatively, you can use [`Mesh::duplicate_vertices`] to mutate an existing mesh in-place)
#[must_use]
pub fn with_duplicated_vertices(mut self) -> Self {
self.duplicate_vertices();
self
}
/// Inverts the winding of the indices such that all counter-clockwise triangles are now
/// clockwise and vice versa.
/// For lines, their start and end indices are flipped.
///
/// Does nothing if no [`Indices`] are set.
/// If this operation succeeded, an [`Ok`] result is returned.
pub fn invert_winding(&mut self) -> Result<(), MeshWindingInvertError> {
fn invert<I>(
indices: &mut [I],
topology: PrimitiveTopology,
) -> Result<(), MeshWindingInvertError> {
match topology {
PrimitiveTopology::TriangleList => {
// Early return if the index count doesn't match
if indices.len() % 3 != 0 {
return Err(MeshWindingInvertError::AbruptIndicesEnd);
}
for chunk in indices.chunks_mut(3) {
// This currently can only be optimized away with unsafe, rework this when `feature(slice_as_chunks)` gets stable.
let [_, b, c] = chunk else {
return Err(MeshWindingInvertError::AbruptIndicesEnd);
};
core::mem::swap(b, c);
}
Ok(())
}
PrimitiveTopology::LineList => {
// Early return if the index count doesn't match
if indices.len() % 2 != 0 {
return Err(MeshWindingInvertError::AbruptIndicesEnd);
}
indices.reverse();
Ok(())
}
PrimitiveTopology::TriangleStrip | PrimitiveTopology::LineStrip => {
indices.reverse();
Ok(())
}
_ => Err(MeshWindingInvertError::WrongTopology),
}
}
match &mut self.indices {
Some(Indices::U16(vec)) => invert(vec, self.primitive_topology),
Some(Indices::U32(vec)) => invert(vec, self.primitive_topology),
None => Ok(()),
}
}
/// Consumes the mesh and returns a mesh with inverted winding of the indices such
/// that all counter-clockwise triangles are now clockwise and vice versa.
///
/// Does nothing if no [`Indices`] are set.
pub fn with_inverted_winding(mut self) -> Result<Self, MeshWindingInvertError> {
self.invert_winding().map(|_| self)
}
/// Calculates the [`Mesh::ATTRIBUTE_NORMAL`] of a mesh.
/// If the mesh is indexed, this defaults to smooth normals. Otherwise, it defaults to flat
/// normals.
///
/// # Panics
/// Panics if [`Mesh::ATTRIBUTE_POSITION`] is not of type `float3`.
/// Panics if the mesh has any other topology than [`PrimitiveTopology::TriangleList`].
///
/// FIXME: This should handle more cases since this is called as a part of gltf
/// mesh loading where we can't really blame users for loading meshes that might
/// not conform to the limitations here!
pub fn compute_normals(&mut self) {
assert!(
matches!(self.primitive_topology, PrimitiveTopology::TriangleList),
"`compute_normals` can only work on `TriangleList`s"
);
if self.indices().is_none() {
self.compute_flat_normals();
} else {
self.compute_smooth_normals();
}
}
/// Calculates the [`Mesh::ATTRIBUTE_NORMAL`] of a mesh.
///
/// # Panics
/// Panics if [`Indices`] are set or [`Mesh::ATTRIBUTE_POSITION`] is not of type `float3`.
/// Panics if the mesh has any other topology than [`PrimitiveTopology::TriangleList`].
/// Consider calling [`Mesh::duplicate_vertices`] or exporting your mesh with normal
/// attributes.
///
/// FIXME: This should handle more cases since this is called as a part of gltf
/// mesh loading where we can't really blame users for loading meshes that might
/// not conform to the limitations here!
pub fn compute_flat_normals(&mut self) {
assert!(
self.indices().is_none(),
"`compute_flat_normals` can't work on indexed geometry. Consider calling either `Mesh::compute_smooth_normals` or `Mesh::duplicate_vertices` followed by `Mesh::compute_flat_normals`."
);
assert!(
matches!(self.primitive_topology, PrimitiveTopology::TriangleList),
"`compute_flat_normals` can only work on `TriangleList`s"
);
let positions = self
.attribute(Mesh::ATTRIBUTE_POSITION)
.unwrap()
.as_float3()
.expect("`Mesh::ATTRIBUTE_POSITION` vertex attributes should be of type `float3`");
let normals: Vec<_> = positions
.chunks_exact(3)
.map(|p| face_normal(p[0], p[1], p[2]))
.flat_map(|normal| [normal; 3])
.collect();
self.insert_attribute(Mesh::ATTRIBUTE_NORMAL, normals);
}
/// Calculates the [`Mesh::ATTRIBUTE_NORMAL`] of an indexed mesh, smoothing normals for shared
/// vertices.
///
/// # Panics
/// Panics if [`Mesh::ATTRIBUTE_POSITION`] is not of type `float3`.
/// Panics if the mesh has any other topology than [`PrimitiveTopology::TriangleList`].
/// Panics if the mesh does not have indices defined.
///
/// FIXME: This should handle more cases since this is called as a part of gltf
/// mesh loading where we can't really blame users for loading meshes that might
/// not conform to the limitations here!
pub fn compute_smooth_normals(&mut self) {
assert!(
matches!(self.primitive_topology, PrimitiveTopology::TriangleList),
"`compute_smooth_normals` can only work on `TriangleList`s"
);
assert!(
self.indices().is_some(),
"`compute_smooth_normals` can only work on indexed meshes"
);
let positions = self
.attribute(Mesh::ATTRIBUTE_POSITION)
.unwrap()
.as_float3()
.expect("`Mesh::ATTRIBUTE_POSITION` vertex attributes should be of type `float3`");
let mut normals = vec![Vec3::ZERO; positions.len()];
self.indices()
.unwrap()
.iter()
.collect::<Vec<usize>>()
.chunks_exact(3)
.for_each(|face| {
let [a, b, c] = [face[0], face[1], face[2]];
let normal = Vec3::from(face_normal(positions[a], positions[b], positions[c]));
[a, b, c].iter().for_each(|pos| {
normals[*pos] += normal;
});
});
// average (smooth) normals for shared vertices...
// TODO: support different methods of weighting the average
for normal in &mut normals {
*normal = normal.try_normalize().unwrap_or(Vec3::ZERO);
}
self.insert_attribute(Mesh::ATTRIBUTE_NORMAL, normals);
}
/// Consumes the mesh and returns a mesh with calculated [`Mesh::ATTRIBUTE_NORMAL`].
/// If the mesh is indexed, this defaults to smooth normals. Otherwise, it defaults to flat
/// normals.
///
/// (Alternatively, you can use [`Mesh::compute_normals`] to mutate an existing mesh in-place)
///
/// # Panics
/// Panics if [`Mesh::ATTRIBUTE_POSITION`] is not of type `float3`.
/// Panics if the mesh has any other topology than [`PrimitiveTopology::TriangleList`].
#[must_use]
pub fn with_computed_normals(mut self) -> Self {
self.compute_normals();
self
}
/// Consumes the mesh and returns a mesh with calculated [`Mesh::ATTRIBUTE_NORMAL`].
///
/// (Alternatively, you can use [`Mesh::compute_flat_normals`] to mutate an existing mesh in-place)
///
/// # Panics
/// Panics if [`Mesh::ATTRIBUTE_POSITION`] is not of type `float3`.
/// Panics if the mesh has any other topology than [`PrimitiveTopology::TriangleList`].
/// Panics if the mesh has indices defined
#[must_use]
pub fn with_computed_flat_normals(mut self) -> Self {
self.compute_flat_normals();
self
}
/// Consumes the mesh and returns a mesh with calculated [`Mesh::ATTRIBUTE_NORMAL`].
///
/// (Alternatively, you can use [`Mesh::compute_smooth_normals`] to mutate an existing mesh in-place)
///
/// # Panics
/// Panics if [`Mesh::ATTRIBUTE_POSITION`] is not of type `float3`.
/// Panics if the mesh has any other topology than [`PrimitiveTopology::TriangleList`].
/// Panics if the mesh does not have indices defined.
#[must_use]
pub fn with_computed_smooth_normals(mut self) -> Self {
self.compute_smooth_normals();
self
}
/// Generate tangents for the mesh using the `mikktspace` algorithm.
///
/// Sets the [`Mesh::ATTRIBUTE_TANGENT`] attribute if successful.
/// Requires a [`PrimitiveTopology::TriangleList`] topology and the [`Mesh::ATTRIBUTE_POSITION`], [`Mesh::ATTRIBUTE_NORMAL`] and [`Mesh::ATTRIBUTE_UV_0`] attributes set.
pub fn generate_tangents(&mut self) -> Result<(), GenerateTangentsError> {
let tangents = generate_tangents_for_mesh(self)?;
self.insert_attribute(Mesh::ATTRIBUTE_TANGENT, tangents);
Ok(())
}
/// Consumes the mesh and returns a mesh with tangents generated using the `mikktspace` algorithm.
///
/// The resulting mesh will have the [`Mesh::ATTRIBUTE_TANGENT`] attribute if successful.
///
/// (Alternatively, you can use [`Mesh::generate_tangents`] to mutate an existing mesh in-place)
///
/// Requires a [`PrimitiveTopology::TriangleList`] topology and the [`Mesh::ATTRIBUTE_POSITION`], [`Mesh::ATTRIBUTE_NORMAL`] and [`Mesh::ATTRIBUTE_UV_0`] attributes set.
pub fn with_generated_tangents(mut self) -> Result<Mesh, GenerateTangentsError> {
self.generate_tangents()?;
Ok(self)
}
/// Merges the [`Mesh`] data of `other` with `self`. The attributes and indices of `other` will be appended to `self`.
///
/// Note that attributes of `other` that don't exist on `self` will be ignored.
///
/// `Aabb` of entities with modified mesh are not updated automatically.
///
/// # Panics
///
/// Panics if the vertex attribute values of `other` are incompatible with `self`.
/// For example, [`VertexAttributeValues::Float32`] is incompatible with [`VertexAttributeValues::Float32x3`].
#[allow(clippy::match_same_arms)]
pub fn merge(&mut self, other: &Mesh) {
use VertexAttributeValues::*;
// The indices of `other` should start after the last vertex of `self`.
let index_offset = self
.attribute(Mesh::ATTRIBUTE_POSITION)
.get_or_insert(&Float32x3(Vec::default()))
.len();
// Extend attributes of `self` with attributes of `other`.
for (attribute, values) in self.attributes_mut() {
let enum_variant_name = values.enum_variant_name();
if let Some(other_values) = other.attribute(attribute.id) {
match (values, other_values) {
(Float32(vec1), Float32(vec2)) => vec1.extend(vec2),
(Sint32(vec1), Sint32(vec2)) => vec1.extend(vec2),
(Uint32(vec1), Uint32(vec2)) => vec1.extend(vec2),
(Float32x2(vec1), Float32x2(vec2)) => vec1.extend(vec2),
(Sint32x2(vec1), Sint32x2(vec2)) => vec1.extend(vec2),
(Uint32x2(vec1), Uint32x2(vec2)) => vec1.extend(vec2),
(Float32x3(vec1), Float32x3(vec2)) => vec1.extend(vec2),
(Sint32x3(vec1), Sint32x3(vec2)) => vec1.extend(vec2),
(Uint32x3(vec1), Uint32x3(vec2)) => vec1.extend(vec2),
(Sint32x4(vec1), Sint32x4(vec2)) => vec1.extend(vec2),
(Uint32x4(vec1), Uint32x4(vec2)) => vec1.extend(vec2),
(Float32x4(vec1), Float32x4(vec2)) => vec1.extend(vec2),
(Sint16x2(vec1), Sint16x2(vec2)) => vec1.extend(vec2),
(Snorm16x2(vec1), Snorm16x2(vec2)) => vec1.extend(vec2),
(Uint16x2(vec1), Uint16x2(vec2)) => vec1.extend(vec2),
(Unorm16x2(vec1), Unorm16x2(vec2)) => vec1.extend(vec2),
(Sint16x4(vec1), Sint16x4(vec2)) => vec1.extend(vec2),
(Snorm16x4(vec1), Snorm16x4(vec2)) => vec1.extend(vec2),
(Uint16x4(vec1), Uint16x4(vec2)) => vec1.extend(vec2),
(Unorm16x4(vec1), Unorm16x4(vec2)) => vec1.extend(vec2),
(Sint8x2(vec1), Sint8x2(vec2)) => vec1.extend(vec2),
(Snorm8x2(vec1), Snorm8x2(vec2)) => vec1.extend(vec2),
(Uint8x2(vec1), Uint8x2(vec2)) => vec1.extend(vec2),
(Unorm8x2(vec1), Unorm8x2(vec2)) => vec1.extend(vec2),
(Sint8x4(vec1), Sint8x4(vec2)) => vec1.extend(vec2),
(Snorm8x4(vec1), Snorm8x4(vec2)) => vec1.extend(vec2),
(Uint8x4(vec1), Uint8x4(vec2)) => vec1.extend(vec2),
(Unorm8x4(vec1), Unorm8x4(vec2)) => vec1.extend(vec2),
_ => panic!(
"Incompatible vertex attribute types {} and {}",
enum_variant_name,
other_values.enum_variant_name()
),
}
}
}
// Extend indices of `self` with indices of `other`.
if let (Some(indices), Some(other_indices)) = (self.indices_mut(), other.indices()) {
match (indices, other_indices) {
(Indices::U16(i1), Indices::U16(i2)) => {
i1.extend(i2.iter().map(|i| *i + index_offset as u16));
}
(Indices::U32(i1), Indices::U32(i2)) => {
i1.extend(i2.iter().map(|i| *i + index_offset as u32));
}
(Indices::U16(i1), Indices::U32(i2)) => {
i1.extend(i2.iter().map(|i| *i as u16 + index_offset as u16));
}
(Indices::U32(i1), Indices::U16(i2)) => {
i1.extend(i2.iter().map(|i| *i as u32 + index_offset as u32));
}
}
}
}
/// Transforms the vertex positions, normals, and tangents of the mesh by the given [`Transform`].
///
/// `Aabb` of entities with modified mesh are not updated automatically.
pub fn transformed_by(mut self, transform: Transform) -> Self {
self.transform_by(transform);
self
}
/// Transforms the vertex positions, normals, and tangents of the mesh in place by the given [`Transform`].
///
/// `Aabb` of entities with modified mesh are not updated automatically.
pub fn transform_by(&mut self, transform: Transform) {
// Needed when transforming normals and tangents
let scale_recip = 1. / transform.scale;
debug_assert!(
transform.scale.yzx() * transform.scale.zxy() != Vec3::ZERO,
"mesh transform scale cannot be zero on more than one axis"
);
if let Some(VertexAttributeValues::Float32x3(ref mut positions)) =
self.attribute_mut(Mesh::ATTRIBUTE_POSITION)
{
// Apply scale, rotation, and translation to vertex positions
positions
.iter_mut()
.for_each(|pos| *pos = transform.transform_point(Vec3::from_slice(pos)).to_array());
}
// No need to transform normals or tangents if rotation is near identity and scale is uniform
if transform.rotation.is_near_identity()
&& transform.scale.x == transform.scale.y
&& transform.scale.y == transform.scale.z
{
return;
}
if let Some(VertexAttributeValues::Float32x3(ref mut normals)) =
self.attribute_mut(Mesh::ATTRIBUTE_NORMAL)
{
// Transform normals, taking into account non-uniform scaling and rotation
normals.iter_mut().for_each(|normal| {
*normal = (transform.rotation
* scale_normal(Vec3::from_array(*normal), scale_recip))
.to_array();
});
}
if let Some(VertexAttributeValues::Float32x3(ref mut tangents)) =
self.attribute_mut(Mesh::ATTRIBUTE_TANGENT)
{
// Transform tangents, taking into account non-uniform scaling and rotation
tangents.iter_mut().for_each(|tangent| {
let scaled_tangent = Vec3::from_slice(tangent) * transform.scale;
*tangent = (transform.rotation * scaled_tangent.normalize_or_zero()).to_array();
});
}
}
/// Translates the vertex positions of the mesh by the given [`Vec3`].
///
/// `Aabb` of entities with modified mesh are not updated automatically.
pub fn translated_by(mut self, translation: Vec3) -> Self {
self.translate_by(translation);
self
}
/// Translates the vertex positions of the mesh in place by the given [`Vec3`].
///
/// `Aabb` of entities with modified mesh are not updated automatically.
pub fn translate_by(&mut self, translation: Vec3) {
if translation == Vec3::ZERO {
return;
}
if let Some(VertexAttributeValues::Float32x3(ref mut positions)) =
self.attribute_mut(Mesh::ATTRIBUTE_POSITION)
{
// Apply translation to vertex positions
positions
.iter_mut()
.for_each(|pos| *pos = (Vec3::from_slice(pos) + translation).to_array());
}
}
/// Rotates the vertex positions, normals, and tangents of the mesh by the given [`Quat`].
///
/// `Aabb` of entities with modified mesh are not updated automatically.
pub fn rotated_by(mut self, rotation: Quat) -> Self {
self.rotate_by(rotation);
self
}
/// Rotates the vertex positions, normals, and tangents of the mesh in place by the given [`Quat`].
///
/// `Aabb` of entities with modified mesh are not updated automatically.
pub fn rotate_by(&mut self, rotation: Quat) {
if let Some(VertexAttributeValues::Float32x3(ref mut positions)) =
self.attribute_mut(Mesh::ATTRIBUTE_POSITION)
{
// Apply rotation to vertex positions
positions
.iter_mut()
.for_each(|pos| *pos = (rotation * Vec3::from_slice(pos)).to_array());
}
// No need to transform normals or tangents if rotation is near identity
if rotation.is_near_identity() {
return;
}
if let Some(VertexAttributeValues::Float32x3(ref mut normals)) =
self.attribute_mut(Mesh::ATTRIBUTE_NORMAL)
{
// Transform normals
normals.iter_mut().for_each(|normal| {
*normal = (rotation * Vec3::from_slice(normal).normalize_or_zero()).to_array();
});
}
if let Some(VertexAttributeValues::Float32x3(ref mut tangents)) =
self.attribute_mut(Mesh::ATTRIBUTE_TANGENT)
{
// Transform tangents
tangents.iter_mut().for_each(|tangent| {
*tangent = (rotation * Vec3::from_slice(tangent).normalize_or_zero()).to_array();
});
}
}
/// Scales the vertex positions, normals, and tangents of the mesh by the given [`Vec3`].
///
/// `Aabb` of entities with modified mesh are not updated automatically.
pub fn scaled_by(mut self, scale: Vec3) -> Self {
self.scale_by(scale);
self
}
/// Scales the vertex positions, normals, and tangents of the mesh in place by the given [`Vec3`].
///
/// `Aabb` of entities with modified mesh are not updated automatically.
pub fn scale_by(&mut self, scale: Vec3) {
// Needed when transforming normals and tangents
let scale_recip = 1. / scale;
debug_assert!(
scale.yzx() * scale.zxy() != Vec3::ZERO,
"mesh transform scale cannot be zero on more than one axis"
);
if let Some(VertexAttributeValues::Float32x3(ref mut positions)) =
self.attribute_mut(Mesh::ATTRIBUTE_POSITION)
{
// Apply scale to vertex positions
positions
.iter_mut()
.for_each(|pos| *pos = (scale * Vec3::from_slice(pos)).to_array());
}
// No need to transform normals or tangents if scale is uniform
if scale.x == scale.y && scale.y == scale.z {
return;
}
if let Some(VertexAttributeValues::Float32x3(ref mut normals)) =
self.attribute_mut(Mesh::ATTRIBUTE_NORMAL)
{
// Transform normals, taking into account non-uniform scaling
normals.iter_mut().for_each(|normal| {
*normal = scale_normal(Vec3::from_array(*normal), scale_recip).to_array();
});
}
if let Some(VertexAttributeValues::Float32x3(ref mut tangents)) =
self.attribute_mut(Mesh::ATTRIBUTE_TANGENT)
{
// Transform tangents, taking into account non-uniform scaling
tangents.iter_mut().for_each(|tangent| {
let scaled_tangent = Vec3::from_slice(tangent) * scale;
*tangent = scaled_tangent.normalize_or_zero().to_array();
});
}
}
/// Whether this mesh has morph targets.
pub fn has_morph_targets(&self) -> bool {
self.morph_targets.is_some()
}
/// Set [morph targets] image for this mesh. This requires a "morph target image". See [`MorphTargetImage`](crate::morph::MorphTargetImage) for info.
///
/// [morph targets]: https://en.wikipedia.org/wiki/Morph_target_animation
pub fn set_morph_targets(&mut self, morph_targets: Handle<Image>) {
self.morph_targets = Some(morph_targets);
}
pub fn morph_targets(&self) -> Option<&Handle<Image>> {
self.morph_targets.as_ref()
}
/// Consumes the mesh and returns a mesh with the given [morph targets].
///
/// This requires a "morph target image". See [`MorphTargetImage`](crate::morph::MorphTargetImage) for info.
///
/// (Alternatively, you can use [`Mesh::set_morph_targets`] to mutate an existing mesh in-place)
///
/// [morph targets]: https://en.wikipedia.org/wiki/Morph_target_animation
#[must_use]
pub fn with_morph_targets(mut self, morph_targets: Handle<Image>) -> Self {
self.set_morph_targets(morph_targets);
self
}
/// Sets the names of each morph target. This should correspond to the order of the morph targets in `set_morph_targets`.
pub fn set_morph_target_names(&mut self, names: Vec<String>) {
self.morph_target_names = Some(names);
}
/// Consumes the mesh and returns a mesh with morph target names.
/// Names should correspond to the order of the morph targets in `set_morph_targets`.
///
/// (Alternatively, you can use [`Mesh::set_morph_target_names`] to mutate an existing mesh in-place)
#[must_use]
pub fn with_morph_target_names(mut self, names: Vec<String>) -> Self {
self.set_morph_target_names(names);
self
}
/// Gets a list of all morph target names, if they exist.
pub fn morph_target_names(&self) -> Option<&[String]> {
self.morph_target_names.as_deref()
}
/// Normalize joint weights so they sum to 1.
pub fn normalize_joint_weights(&mut self) {
if let Some(joints) = self.attribute_mut(Self::ATTRIBUTE_JOINT_WEIGHT) {
let VertexAttributeValues::Float32x4(ref mut joints) = joints else {
panic!("unexpected joint weight format");
};
for weights in joints.iter_mut() {
// force negative weights to zero
weights.iter_mut().for_each(|w| *w = w.max(0.0));
let sum: f32 = weights.iter().sum();
if sum == 0.0 {
// all-zero weights are invalid
weights[0] = 1.0;
} else {
let recip = sum.recip();
for weight in weights.iter_mut() {
*weight *= recip;
}
}
}
}
}
/// Get a list of this Mesh's [triangles] as an iterator if possible.
///
/// Returns an error if any of the following conditions are met (see [`MeshTrianglesError`]):
/// * The Mesh's [primitive topology] is not `TriangleList` or `TriangleStrip`.
/// * The Mesh is missing position or index data.
/// * The Mesh's position data has the wrong format (not `Float32x3`).
///
/// [primitive topology]: PrimitiveTopology
/// [triangles]: Triangle3d
pub fn triangles(&self) -> Result<impl Iterator<Item = Triangle3d> + '_, MeshTrianglesError> {
let Some(position_data) = self.attribute(Mesh::ATTRIBUTE_POSITION) else {
return Err(MeshTrianglesError::MissingPositions);
};
let Some(vertices) = position_data.as_float3() else {
return Err(MeshTrianglesError::PositionsFormat);
};
let Some(indices) = self.indices() else {
return Err(MeshTrianglesError::MissingIndices);
};
match self.primitive_topology {
PrimitiveTopology::TriangleList => {
// When indices reference out-of-bounds vertex data, the triangle is omitted.
// This implicitly truncates the indices to a multiple of 3.
let iterator = match indices {
Indices::U16(vec) => FourIterators::First(
vec.as_slice()
.chunks_exact(3)
.flat_map(move |indices| indices_to_triangle(vertices, indices)),
),
Indices::U32(vec) => FourIterators::Second(
vec.as_slice()
.chunks_exact(3)
.flat_map(move |indices| indices_to_triangle(vertices, indices)),
),
};
return Ok(iterator);
}
PrimitiveTopology::TriangleStrip => {
// When indices reference out-of-bounds vertex data, the triangle is omitted.
// If there aren't enough indices to make a triangle, then an empty vector will be
// returned.
let iterator = match indices {
Indices::U16(vec) => {
FourIterators::Third(vec.as_slice().windows(3).enumerate().flat_map(
move |(i, indices)| {
if i % 2 == 0 {
indices_to_triangle(vertices, indices)
} else {
indices_to_triangle(
vertices,
&[indices[1], indices[0], indices[2]],
)
}
},
))
}
Indices::U32(vec) => {
FourIterators::Fourth(vec.as_slice().windows(3).enumerate().flat_map(
move |(i, indices)| {
if i % 2 == 0 {
indices_to_triangle(vertices, indices)
} else {
indices_to_triangle(
vertices,
&[indices[1], indices[0], indices[2]],
)
}
},
))
}
};
return Ok(iterator);
}
_ => {
return Err(MeshTrianglesError::WrongTopology);
}
};
fn indices_to_triangle<T: TryInto<usize> + Copy>(
vertices: &[[f32; 3]],
indices: &[T],
) -> Option<Triangle3d> {
let vert0: Vec3 = Vec3::from(*vertices.get(indices[0].try_into().ok()?)?);
let vert1: Vec3 = Vec3::from(*vertices.get(indices[1].try_into().ok()?)?);
let vert2: Vec3 = Vec3::from(*vertices.get(indices[2].try_into().ok()?)?);
Some(Triangle3d {
vertices: [vert0, vert1, vert2],
})
}
}
}
impl core::ops::Mul<Mesh> for Transform {
type Output = Mesh;
fn mul(self, rhs: Mesh) -> Self::Output {
rhs.transformed_by(self)
}
}
#[cfg(test)]
mod tests {
use super::Mesh;
use crate::mesh::{Indices, MeshWindingInvertError, VertexAttributeValues};
use bevy_asset::RenderAssetUsages;
use bevy_math::primitives::Triangle3d;
use bevy_math::Vec3;
use bevy_transform::components::Transform;
use wgpu::PrimitiveTopology;
#[test]
#[should_panic]
fn panic_invalid_format() {
let _mesh = Mesh::new(
PrimitiveTopology::TriangleList,
RenderAssetUsages::default(),
)
.with_inserted_attribute(Mesh::ATTRIBUTE_UV_0, vec![[0.0, 0.0, 0.0]]);
}
#[test]
fn transform_mesh() {
let mesh = Mesh::new(
PrimitiveTopology::TriangleList,
RenderAssetUsages::default(),
)
.with_inserted_attribute(
Mesh::ATTRIBUTE_POSITION,
vec![[-1., -1., 2.], [1., -1., 2.], [0., 1., 2.]],
)
.with_inserted_attribute(
Mesh::ATTRIBUTE_NORMAL,
vec![
Vec3::new(-1., -1., 1.).normalize().to_array(),
Vec3::new(1., -1., 1.).normalize().to_array(),
[0., 0., 1.],
],
)
.with_inserted_attribute(Mesh::ATTRIBUTE_UV_0, vec![[0., 0.], [1., 0.], [0.5, 1.]]);
let mesh = mesh.transformed_by(
Transform::from_translation(Vec3::splat(-2.)).with_scale(Vec3::new(2., 0., -1.)),
);
if let Some(VertexAttributeValues::Float32x3(positions)) =
mesh.attribute(Mesh::ATTRIBUTE_POSITION)
{
// All positions are first scaled resulting in `vec![[-2, 0., -2.], [2., 0., -2.], [0., 0., -2.]]`
// and then shifted by `-2.` along each axis
assert_eq!(
positions,
&vec![[-4.0, -2.0, -4.0], [0.0, -2.0, -4.0], [-2.0, -2.0, -4.0]]
);
} else {
panic!("Mesh does not have a position attribute");
}
if let Some(VertexAttributeValues::Float32x3(normals)) =
mesh.attribute(Mesh::ATTRIBUTE_NORMAL)
{
assert_eq!(normals, &vec![[0., -1., 0.], [0., -1., 0.], [0., 0., -1.]]);
} else {
panic!("Mesh does not have a normal attribute");
}
if let Some(VertexAttributeValues::Float32x2(uvs)) = mesh.attribute(Mesh::ATTRIBUTE_UV_0) {
assert_eq!(uvs, &vec![[0., 0.], [1., 0.], [0.5, 1.]]);
} else {
panic!("Mesh does not have a uv attribute");
}
}
#[test]
fn point_list_mesh_invert_winding() {
let mesh = Mesh::new(PrimitiveTopology::PointList, RenderAssetUsages::default())
.with_inserted_indices(Indices::U32(vec![]));
assert!(matches!(
mesh.with_inverted_winding(),
Err(MeshWindingInvertError::WrongTopology)
));
}
#[test]
fn line_list_mesh_invert_winding() {
let mesh = Mesh::new(PrimitiveTopology::LineList, RenderAssetUsages::default())
.with_inserted_indices(Indices::U32(vec![0, 1, 1, 2, 2, 3]));
let mesh = mesh.with_inverted_winding().unwrap();
assert_eq!(
mesh.indices().unwrap().iter().collect::<Vec<usize>>(),
vec![3, 2, 2, 1, 1, 0]
);
}
#[test]
fn line_list_mesh_invert_winding_fail() {
let mesh = Mesh::new(PrimitiveTopology::LineList, RenderAssetUsages::default())
.with_inserted_indices(Indices::U32(vec![0, 1, 1]));
assert!(matches!(
mesh.with_inverted_winding(),
Err(MeshWindingInvertError::AbruptIndicesEnd)
));
}
#[test]
fn line_strip_mesh_invert_winding() {
let mesh = Mesh::new(PrimitiveTopology::LineStrip, RenderAssetUsages::default())
.with_inserted_indices(Indices::U32(vec![0, 1, 2, 3]));
let mesh = mesh.with_inverted_winding().unwrap();
assert_eq!(
mesh.indices().unwrap().iter().collect::<Vec<usize>>(),
vec![3, 2, 1, 0]
);
}
#[test]
fn triangle_list_mesh_invert_winding() {
let mesh = Mesh::new(
PrimitiveTopology::TriangleList,
RenderAssetUsages::default(),
)
.with_inserted_indices(Indices::U32(vec![
0, 3, 1, // First triangle
1, 3, 2, // Second triangle
]));
let mesh = mesh.with_inverted_winding().unwrap();
assert_eq!(
mesh.indices().unwrap().iter().collect::<Vec<usize>>(),
vec![
0, 1, 3, // First triangle
1, 2, 3, // Second triangle
]
);
}
#[test]
fn triangle_list_mesh_invert_winding_fail() {
let mesh = Mesh::new(
PrimitiveTopology::TriangleList,
RenderAssetUsages::default(),
)
.with_inserted_indices(Indices::U32(vec![0, 3, 1, 2]));
assert!(matches!(
mesh.with_inverted_winding(),
Err(MeshWindingInvertError::AbruptIndicesEnd)
));
}
#[test]
fn triangle_strip_mesh_invert_winding() {
let mesh = Mesh::new(
PrimitiveTopology::TriangleStrip,
RenderAssetUsages::default(),
)
.with_inserted_indices(Indices::U32(vec![0, 1, 2, 3]));
let mesh = mesh.with_inverted_winding().unwrap();
assert_eq!(
mesh.indices().unwrap().iter().collect::<Vec<usize>>(),
vec![3, 2, 1, 0]
);
}
#[test]
fn compute_smooth_normals() {
let mut mesh = Mesh::new(
PrimitiveTopology::TriangleList,
RenderAssetUsages::default(),
);
// z y
// | /
// 3---2
// | / \
// 0-----1--x
mesh.insert_attribute(
Mesh::ATTRIBUTE_POSITION,
vec![[0., 0., 0.], [1., 0., 0.], [0., 1., 0.], [0., 0., 1.]],
);
mesh.insert_indices(Indices::U16(vec![0, 1, 2, 0, 2, 3]));
mesh.compute_smooth_normals();
let normals = mesh
.attribute(Mesh::ATTRIBUTE_NORMAL)
.unwrap()
.as_float3()
.unwrap();
assert_eq!(4, normals.len());
// 0
assert_eq!(Vec3::new(1., 0., 1.).normalize().to_array(), normals[0]);
// 1
assert_eq!([0., 0., 1.], normals[1]);
// 2
assert_eq!(Vec3::new(1., 0., 1.).normalize().to_array(), normals[2]);
// 3
assert_eq!([1., 0., 0.], normals[3]);
}
#[test]
fn triangles_from_triangle_list() {
let mut mesh = Mesh::new(
PrimitiveTopology::TriangleList,
RenderAssetUsages::default(),
);
mesh.insert_attribute(
Mesh::ATTRIBUTE_POSITION,
vec![[0., 0., 0.], [1., 0., 0.], [1., 1., 0.], [0., 1., 0.]],
);
mesh.insert_indices(Indices::U32(vec![0, 1, 2, 2, 3, 0]));
assert_eq!(
vec![
Triangle3d {
vertices: [
Vec3::new(0., 0., 0.),
Vec3::new(1., 0., 0.),
Vec3::new(1., 1., 0.),
]
},
Triangle3d {
vertices: [
Vec3::new(1., 1., 0.),
Vec3::new(0., 1., 0.),
Vec3::new(0., 0., 0.),
]
}
],
mesh.triangles().unwrap().collect::<Vec<Triangle3d>>()
);
}
#[test]
fn triangles_from_triangle_strip() {
let mut mesh = Mesh::new(
PrimitiveTopology::TriangleStrip,
RenderAssetUsages::default(),
);
// Triangles: (0, 1, 2), (2, 1, 3), (2, 3, 4), (4, 3, 5)
//
// 4 - 5
// | \ |
// 2 - 3
// | \ |
// 0 - 1
let positions: Vec<Vec3> = [
[0., 0., 0.],
[1., 0., 0.],
[0., 1., 0.],
[1., 1., 0.],
[0., 2., 0.],
[1., 2., 0.],
]
.into_iter()
.map(Vec3::from_array)
.collect();
mesh.insert_attribute(Mesh::ATTRIBUTE_POSITION, positions.clone());
mesh.insert_indices(Indices::U32(vec![0, 1, 2, 3, 4, 5]));
assert_eq!(
vec![
Triangle3d {
vertices: [positions[0], positions[1], positions[2]]
},
Triangle3d {
vertices: [positions[2], positions[1], positions[3]]
},
Triangle3d {
vertices: [positions[2], positions[3], positions[4]]
},
Triangle3d {
vertices: [positions[4], positions[3], positions[5]]
},
],
mesh.triangles().unwrap().collect::<Vec<Triangle3d>>()
);
}
}