bevy_mesh/morph.rs
1use super::Mesh;
2use bevy_asset::{Handle, RenderAssetUsages};
3use bevy_ecs::prelude::*;
4use bevy_image::Image;
5use bevy_math::Vec3;
6use bevy_reflect::prelude::*;
7use bytemuck::{Pod, Zeroable};
8use thiserror::Error;
9use wgpu_types::{Extent3d, TextureDimension, TextureFormat};
10
11const MAX_TEXTURE_WIDTH: u32 = 2048;
12// NOTE: "component" refers to the element count of math objects,
13// Vec3 has 3 components, Mat2 has 4 components.
14const MAX_COMPONENTS: u32 = MAX_TEXTURE_WIDTH * MAX_TEXTURE_WIDTH;
15
16/// Max target count available for [morph targets](MorphWeights).
17pub const MAX_MORPH_WEIGHTS: usize = 64;
18
19#[derive(Error, Clone, Debug)]
20pub enum MorphBuildError {
21 #[error(
22 "Too many vertexĂ—components in morph target, max is {MAX_COMPONENTS}, \
23 got {vertex_count}Ă—{component_count} = {}",
24 *vertex_count * *component_count as usize
25 )]
26 TooManyAttributes {
27 vertex_count: usize,
28 component_count: u32,
29 },
30 #[error(
31 "Bevy only supports up to {} morph targets (individual poses), tried to \
32 create a model with {target_count} morph targets",
33 MAX_MORPH_WEIGHTS
34 )]
35 TooManyTargets { target_count: usize },
36}
37
38/// An image formatted for use with [`MorphWeights`] for rendering the morph target.
39#[derive(Debug)]
40pub struct MorphTargetImage(pub Image);
41
42impl MorphTargetImage {
43 /// Generate textures for each morph target.
44 ///
45 /// This accepts an "iterator of [`MorphAttributes`] iterators". Each item iterated in the top level
46 /// iterator corresponds "the attributes of a specific morph target".
47 ///
48 /// Each pixel of the texture is a component of morph target animated
49 /// attributes. So a set of 9 pixels is this morph's displacement for
50 /// position, normal and tangents of a single vertex (each taking 3 pixels).
51 pub fn new(
52 targets: impl ExactSizeIterator<Item = impl Iterator<Item = MorphAttributes>>,
53 vertex_count: usize,
54 asset_usage: RenderAssetUsages,
55 ) -> Result<Self, MorphBuildError> {
56 let max = MAX_TEXTURE_WIDTH;
57 let target_count = targets.len();
58 if target_count > MAX_MORPH_WEIGHTS {
59 return Err(MorphBuildError::TooManyTargets { target_count });
60 }
61 let component_count = (vertex_count * MorphAttributes::COMPONENT_COUNT) as u32;
62 let Some((Rect(width, height), padding)) = lowest_2d(component_count, max) else {
63 return Err(MorphBuildError::TooManyAttributes {
64 vertex_count,
65 component_count,
66 });
67 };
68 let data = targets
69 .flat_map(|mut attributes| {
70 let layer_byte_count = (padding + component_count) as usize * size_of::<f32>();
71 let mut buffer = Vec::with_capacity(layer_byte_count);
72 for _ in 0..vertex_count {
73 let Some(to_add) = attributes.next() else {
74 break;
75 };
76 buffer.extend_from_slice(bytemuck::bytes_of(&to_add));
77 }
78 // Pad each layer so that they fit width * height
79 buffer.extend(core::iter::repeat_n(0, padding as usize * size_of::<f32>()));
80 debug_assert_eq!(buffer.len(), layer_byte_count);
81 buffer
82 })
83 .collect();
84 let extents = Extent3d {
85 width,
86 height,
87 depth_or_array_layers: target_count as u32,
88 };
89 let image = Image::new(
90 extents,
91 TextureDimension::D3,
92 data,
93 TextureFormat::R32Float,
94 asset_usage,
95 );
96 Ok(MorphTargetImage(image))
97 }
98}
99
100/// Controls the [morph targets] for all child `Mesh3d` entities. In most cases, [`MorphWeights`] should be considered
101/// the "source of truth" when writing morph targets for meshes. However you can choose to write child [`MeshMorphWeights`]
102/// if your situation requires more granularity. Just note that if you set [`MorphWeights`], it will overwrite child
103/// [`MeshMorphWeights`] values.
104///
105/// This exists because Bevy's [`Mesh`] corresponds to a _single_ surface / material, whereas morph targets
106/// as defined in the GLTF spec exist on "multi-primitive meshes" (where each primitive is its own surface with its own material).
107/// Therefore in Bevy [`MorphWeights`] an a parent entity are the "canonical weights" from a GLTF perspective, which then
108/// synchronized to child `Mesh3d` / [`MeshMorphWeights`] (which correspond to "primitives" / "surfaces" from a GLTF perspective).
109///
110/// Add this to the parent of one or more [`Entities`](`Entity`) with a `Mesh3d` with a [`MeshMorphWeights`].
111///
112/// [morph targets]: https://en.wikipedia.org/wiki/Morph_target_animation
113#[derive(Reflect, Default, Debug, Clone, Component)]
114#[reflect(Debug, Component, Default, Clone)]
115pub struct MorphWeights {
116 weights: Vec<f32>,
117 /// The first mesh primitive assigned to these weights
118 first_mesh: Option<Handle<Mesh>>,
119}
120impl MorphWeights {
121 pub fn new(
122 weights: Vec<f32>,
123 first_mesh: Option<Handle<Mesh>>,
124 ) -> Result<Self, MorphBuildError> {
125 if weights.len() > MAX_MORPH_WEIGHTS {
126 let target_count = weights.len();
127 return Err(MorphBuildError::TooManyTargets { target_count });
128 }
129 Ok(MorphWeights {
130 weights,
131 first_mesh,
132 })
133 }
134 /// The first child `Mesh3d` primitive controlled by these weights.
135 /// This can be used to look up metadata information such as [`Mesh::morph_target_names`].
136 pub fn first_mesh(&self) -> Option<&Handle<Mesh>> {
137 self.first_mesh.as_ref()
138 }
139 pub fn weights(&self) -> &[f32] {
140 &self.weights
141 }
142 pub fn weights_mut(&mut self) -> &mut [f32] {
143 &mut self.weights
144 }
145}
146
147/// Control a specific [`Mesh`] instance's [morph targets]. These control the weights of
148/// specific "mesh primitives" in scene formats like GLTF. They can be set manually, but
149/// in most cases they should "automatically" synced by setting the [`MorphWeights`] component
150/// on a parent entity.
151///
152/// See [`MorphWeights`] for more details on Bevy's morph target implementation.
153///
154/// Add this to an [`Entity`] with a `Mesh3d` with a [`MorphAttributes`] set
155/// to control individual weights of each morph target.
156///
157/// [morph targets]: https://en.wikipedia.org/wiki/Morph_target_animation
158#[derive(Reflect, Default, Debug, Clone, Component)]
159#[reflect(Debug, Component, Default, Clone)]
160pub struct MeshMorphWeights {
161 weights: Vec<f32>,
162}
163impl MeshMorphWeights {
164 pub fn new(weights: Vec<f32>) -> Result<Self, MorphBuildError> {
165 if weights.len() > MAX_MORPH_WEIGHTS {
166 let target_count = weights.len();
167 return Err(MorphBuildError::TooManyTargets { target_count });
168 }
169 Ok(MeshMorphWeights { weights })
170 }
171 pub fn weights(&self) -> &[f32] {
172 &self.weights
173 }
174 pub fn weights_mut(&mut self) -> &mut [f32] {
175 &mut self.weights
176 }
177 pub fn clear_weights(&mut self) {
178 self.weights.clear();
179 }
180 pub fn extend_weights(&mut self, weights: &[f32]) {
181 self.weights.extend(weights);
182 }
183}
184
185/// Attributes **differences** used for morph targets.
186///
187/// See [`MorphTargetImage`] for more information.
188#[derive(Copy, Clone, PartialEq, Pod, Zeroable, Default)]
189#[repr(C)]
190pub struct MorphAttributes {
191 /// The vertex position difference between base mesh and this target.
192 pub position: Vec3,
193 /// The vertex normal difference between base mesh and this target.
194 pub normal: Vec3,
195 /// The vertex tangent difference between base mesh and this target.
196 ///
197 /// Note that tangents are a `Vec4`, but only the `xyz` components are
198 /// animated, as the `w` component is the sign and cannot be animated.
199 pub tangent: Vec3,
200}
201impl From<[Vec3; 3]> for MorphAttributes {
202 fn from([position, normal, tangent]: [Vec3; 3]) -> Self {
203 MorphAttributes {
204 position,
205 normal,
206 tangent,
207 }
208 }
209}
210impl MorphAttributes {
211 /// How many components `MorphAttributes` has.
212 ///
213 /// Each `Vec3` has 3 components, we have 3 `Vec3`, for a total of 9.
214 pub const COMPONENT_COUNT: usize = 9;
215
216 pub fn new(position: Vec3, normal: Vec3, tangent: Vec3) -> Self {
217 MorphAttributes {
218 position,
219 normal,
220 tangent,
221 }
222 }
223}
224
225struct Rect(u32, u32);
226
227/// Find the smallest rectangle of maximum edge size `max_edge` that contains
228/// at least `min_includes` cells. `u32` is how many extra cells the rectangle
229/// has.
230///
231/// The following rectangle contains 27 cells, and its longest edge is 9:
232/// ```text
233/// ----------------------------
234/// |1 |2 |3 |4 |5 |6 |7 |8 |9 |
235/// ----------------------------
236/// |2 | | | | | | | | |
237/// ----------------------------
238/// |3 | | | | | | | | |
239/// ----------------------------
240/// ```
241///
242/// Returns `None` if `max_edge` is too small to build a rectangle
243/// containing `min_includes` cells.
244fn lowest_2d(min_includes: u32, max_edge: u32) -> Option<(Rect, u32)> {
245 (1..=max_edge)
246 .filter_map(|a| {
247 let b = min_includes.div_ceil(a);
248 let diff = (a * b).checked_sub(min_includes)?;
249 Some((Rect(a, b), diff))
250 })
251 .filter_map(|(rect, diff)| (rect.1 <= max_edge).then_some((rect, diff)))
252 .min_by_key(|(_, diff)| *diff)
253}