bevy_mesh/primitives/dim3/
capsule.rs

1use crate::{Indices, Mesh, MeshBuilder, Meshable, PrimitiveTopology};
2use bevy_asset::RenderAssetUsages;
3use bevy_math::{ops, primitives::Capsule3d, Vec2, Vec3};
4use bevy_reflect::prelude::*;
5
6/// Manner in which UV coordinates are distributed vertically.
7#[derive(Clone, Copy, Debug, Default, Reflect)]
8#[reflect(Default, Debug, Clone)]
9pub enum CapsuleUvProfile {
10    /// UV space is distributed by how much of the capsule consists of the hemispheres.
11    #[default]
12    Aspect,
13    /// Hemispheres get UV space according to the ratio of latitudes to rings.
14    Uniform,
15    /// Upper third of the texture goes to the northern hemisphere, middle third to the cylinder
16    /// and lower third to the southern one.
17    Fixed,
18}
19
20/// A builder used for creating a [`Mesh`] with a [`Capsule3d`] shape.
21#[derive(Clone, Copy, Debug, Reflect)]
22#[reflect(Default, Debug, Clone)]
23pub struct Capsule3dMeshBuilder {
24    /// The [`Capsule3d`] shape.
25    pub capsule: Capsule3d,
26    /// The number of horizontal lines subdividing the cylindrical part of the capsule.
27    /// The default is `0`.
28    pub rings: u32,
29    /// The number of vertical lines subdividing the hemispheres of the capsule.
30    /// The default is `32`.
31    pub longitudes: u32,
32    /// The number of horizontal lines subdividing the hemispheres of the capsule.
33    /// The default is `16`.
34    pub latitudes: u32,
35    /// The manner in which UV coordinates are distributed vertically.
36    /// The default is [`CapsuleUvProfile::Aspect`].
37    pub uv_profile: CapsuleUvProfile,
38}
39
40impl Default for Capsule3dMeshBuilder {
41    fn default() -> Self {
42        Self {
43            capsule: Capsule3d::default(),
44            rings: 0,
45            longitudes: 32,
46            latitudes: 16,
47            uv_profile: CapsuleUvProfile::default(),
48        }
49    }
50}
51
52impl Capsule3dMeshBuilder {
53    /// Creates a new [`Capsule3dMeshBuilder`] from a given radius, height, longitudes, and latitudes.
54    ///
55    /// Note that `height` is the distance between the centers of the hemispheres.
56    /// `radius` will be added to both ends to get the real height of the mesh.
57    #[inline]
58    pub fn new(radius: f32, height: f32, longitudes: u32, latitudes: u32) -> Self {
59        Self {
60            capsule: Capsule3d::new(radius, height),
61            longitudes,
62            latitudes,
63            ..Default::default()
64        }
65    }
66
67    /// Sets the number of horizontal lines subdividing the cylindrical part of the capsule.
68    #[inline]
69    pub const fn rings(mut self, rings: u32) -> Self {
70        self.rings = rings;
71        self
72    }
73
74    /// Sets the number of vertical lines subdividing the hemispheres of the capsule.
75    #[inline]
76    pub const fn longitudes(mut self, longitudes: u32) -> Self {
77        self.longitudes = longitudes;
78        self
79    }
80
81    /// Sets the number of horizontal lines subdividing the hemispheres of the capsule.
82    #[inline]
83    pub const fn latitudes(mut self, latitudes: u32) -> Self {
84        self.latitudes = latitudes;
85        self
86    }
87
88    /// Sets the manner in which UV coordinates are distributed vertically.
89    #[inline]
90    pub const fn uv_profile(mut self, uv_profile: CapsuleUvProfile) -> Self {
91        self.uv_profile = uv_profile;
92        self
93    }
94}
95
96impl MeshBuilder for Capsule3dMeshBuilder {
97    fn build(&self) -> Mesh {
98        // code adapted from https://behreajj.medium.com/making-a-capsule-mesh-via-script-in-five-3d-environments-c2214abf02db
99        let Capsule3dMeshBuilder {
100            capsule,
101            rings,
102            longitudes,
103            latitudes,
104            uv_profile,
105        } = *self;
106        let Capsule3d {
107            radius,
108            half_length,
109        } = capsule;
110
111        let calc_middle = rings > 0;
112        let half_lats = latitudes / 2;
113        let half_latsn1 = half_lats - 1;
114        let half_latsn2 = half_lats - 2;
115        let ringsp1 = rings + 1;
116        let lonsp1 = longitudes + 1;
117        let summit = half_length + radius;
118
119        // Vertex index offsets.
120        let vert_offset_north_hemi = longitudes;
121        let vert_offset_north_equator = vert_offset_north_hemi + lonsp1 * half_latsn1;
122        let vert_offset_cylinder = vert_offset_north_equator + lonsp1;
123        let vert_offset_south_equator = if calc_middle {
124            vert_offset_cylinder + lonsp1 * rings
125        } else {
126            vert_offset_cylinder
127        };
128        let vert_offset_south_hemi = vert_offset_south_equator + lonsp1;
129        let vert_offset_south_polar = vert_offset_south_hemi + lonsp1 * half_latsn2;
130        let vert_offset_south_cap = vert_offset_south_polar + lonsp1;
131
132        // Initialize arrays.
133        let vert_len = (vert_offset_south_cap + longitudes) as usize;
134
135        let mut vs: Vec<Vec3> = vec![Vec3::ZERO; vert_len];
136        let mut vts: Vec<Vec2> = vec![Vec2::ZERO; vert_len];
137        let mut vns: Vec<Vec3> = vec![Vec3::ZERO; vert_len];
138
139        let to_theta = 2.0 * core::f32::consts::PI / longitudes as f32;
140        let to_phi = core::f32::consts::PI / latitudes as f32;
141        let to_tex_horizontal = 1.0 / longitudes as f32;
142        let to_tex_vertical = 1.0 / half_lats as f32;
143
144        let vt_aspect_ratio = match uv_profile {
145            CapsuleUvProfile::Aspect => radius / (2.0 * half_length + radius + radius),
146            CapsuleUvProfile::Uniform => half_lats as f32 / (ringsp1 + latitudes) as f32,
147            CapsuleUvProfile::Fixed => 1.0 / 3.0,
148        };
149        let vt_aspect_north = 1.0 - vt_aspect_ratio;
150        let vt_aspect_south = vt_aspect_ratio;
151
152        let mut theta_cartesian: Vec<Vec2> = vec![Vec2::ZERO; longitudes as usize];
153        let mut rho_theta_cartesian: Vec<Vec2> = vec![Vec2::ZERO; longitudes as usize];
154        let mut s_texture_cache: Vec<f32> = vec![0.0; lonsp1 as usize];
155
156        for j in 0..longitudes as usize {
157            let jf = j as f32;
158            let s_texture_polar = 1.0 - ((jf + 0.5) * to_tex_horizontal);
159            let theta = jf * to_theta;
160
161            theta_cartesian[j] = Vec2::from_angle(theta);
162            rho_theta_cartesian[j] = radius * theta_cartesian[j];
163
164            // North.
165            vs[j] = Vec3::new(0.0, summit, 0.0);
166            vts[j] = Vec2::new(s_texture_polar, 1.0);
167            vns[j] = Vec3::Y;
168
169            // South.
170            let idx = vert_offset_south_cap as usize + j;
171            vs[idx] = Vec3::new(0.0, -summit, 0.0);
172            vts[idx] = Vec2::new(s_texture_polar, 0.0);
173            vns[idx] = Vec3::new(0.0, -1.0, 0.0);
174        }
175
176        // Equatorial vertices.
177        for (j, s_texture_cache_j) in s_texture_cache.iter_mut().enumerate().take(lonsp1 as usize) {
178            let s_texture = 1.0 - j as f32 * to_tex_horizontal;
179            *s_texture_cache_j = s_texture;
180
181            // Wrap to first element upon reaching last.
182            let j_mod = j % longitudes as usize;
183            let tc = theta_cartesian[j_mod];
184            let rtc = rho_theta_cartesian[j_mod];
185
186            // North equator.
187            let idxn = vert_offset_north_equator as usize + j;
188            vs[idxn] = Vec3::new(rtc.x, half_length, -rtc.y);
189            vts[idxn] = Vec2::new(s_texture, vt_aspect_north);
190            vns[idxn] = Vec3::new(tc.x, 0.0, -tc.y);
191
192            // South equator.
193            let idxs = vert_offset_south_equator as usize + j;
194            vs[idxs] = Vec3::new(rtc.x, -half_length, -rtc.y);
195            vts[idxs] = Vec2::new(s_texture, vt_aspect_south);
196            vns[idxs] = Vec3::new(tc.x, 0.0, -tc.y);
197        }
198
199        // Hemisphere vertices.
200        for i in 0..half_latsn1 {
201            let ip1f = i as f32 + 1.0;
202            let phi = ip1f * to_phi;
203
204            // For coordinates.
205            let (sin_phi_south, cos_phi_south) = ops::sin_cos(phi);
206
207            // Symmetrical hemispheres mean cosine and sine only needs
208            // to be calculated once.
209            let cos_phi_north = sin_phi_south;
210            let sin_phi_north = -cos_phi_south;
211
212            let rho_cos_phi_north = radius * cos_phi_north;
213            let rho_sin_phi_north = radius * sin_phi_north;
214            let z_offset_north = half_length - rho_sin_phi_north;
215
216            let rho_cos_phi_south = radius * cos_phi_south;
217            let rho_sin_phi_south = radius * sin_phi_south;
218            let z_offset_sout = -half_length - rho_sin_phi_south;
219
220            // For texture coordinates.
221            let t_tex_fac = ip1f * to_tex_vertical;
222            let cmpl_tex_fac = 1.0 - t_tex_fac;
223            let t_tex_north = cmpl_tex_fac + vt_aspect_north * t_tex_fac;
224            let t_tex_south = cmpl_tex_fac * vt_aspect_south;
225
226            let i_lonsp1 = i * lonsp1;
227            let vert_curr_lat_north = vert_offset_north_hemi + i_lonsp1;
228            let vert_curr_lat_south = vert_offset_south_hemi + i_lonsp1;
229
230            for (j, s_texture) in s_texture_cache.iter().enumerate().take(lonsp1 as usize) {
231                let j_mod = j % longitudes as usize;
232
233                let tc = theta_cartesian[j_mod];
234
235                // North hemisphere.
236                let idxn = vert_curr_lat_north as usize + j;
237                vs[idxn] = Vec3::new(
238                    rho_cos_phi_north * tc.x,
239                    z_offset_north,
240                    -rho_cos_phi_north * tc.y,
241                );
242                vts[idxn] = Vec2::new(*s_texture, t_tex_north);
243                vns[idxn] = Vec3::new(cos_phi_north * tc.x, -sin_phi_north, -cos_phi_north * tc.y);
244
245                // South hemisphere.
246                let idxs = vert_curr_lat_south as usize + j;
247                vs[idxs] = Vec3::new(
248                    rho_cos_phi_south * tc.x,
249                    z_offset_sout,
250                    -rho_cos_phi_south * tc.y,
251                );
252                vts[idxs] = Vec2::new(*s_texture, t_tex_south);
253                vns[idxs] = Vec3::new(cos_phi_south * tc.x, -sin_phi_south, -cos_phi_south * tc.y);
254            }
255        }
256
257        // Cylinder vertices.
258        if calc_middle {
259            // Exclude both origin and destination edges
260            // (North and South equators) from the interpolation.
261            let to_fac = 1.0 / ringsp1 as f32;
262            let mut idx_cyl_lat = vert_offset_cylinder as usize;
263
264            for h in 1..ringsp1 {
265                let fac = h as f32 * to_fac;
266                let cmpl_fac = 1.0 - fac;
267                let t_texture = cmpl_fac * vt_aspect_north + fac * vt_aspect_south;
268                let z = half_length - 2.0 * half_length * fac;
269
270                for (j, s_texture) in s_texture_cache.iter().enumerate().take(lonsp1 as usize) {
271                    let j_mod = j % longitudes as usize;
272                    let tc = theta_cartesian[j_mod];
273                    let rtc = rho_theta_cartesian[j_mod];
274
275                    vs[idx_cyl_lat] = Vec3::new(rtc.x, z, -rtc.y);
276                    vts[idx_cyl_lat] = Vec2::new(*s_texture, t_texture);
277                    vns[idx_cyl_lat] = Vec3::new(tc.x, 0.0, -tc.y);
278
279                    idx_cyl_lat += 1;
280                }
281            }
282        }
283
284        // Triangle indices.
285
286        // Stride is 3 for polar triangles;
287        // stride is 6 for two triangles forming a quad.
288        let lons3 = longitudes * 3;
289        let lons6 = longitudes * 6;
290        let hemi_lons = half_latsn1 * lons6;
291
292        let tri_offset_north_hemi = lons3;
293        let tri_offset_cylinder = tri_offset_north_hemi + hemi_lons;
294        let tri_offset_south_hemi = tri_offset_cylinder + ringsp1 * lons6;
295        let tri_offset_south_cap = tri_offset_south_hemi + hemi_lons;
296
297        let fs_len = tri_offset_south_cap + lons3;
298        let mut tris: Vec<u32> = vec![0; fs_len as usize];
299
300        // Polar caps.
301        let mut i = 0;
302        let mut k = 0;
303        let mut m = tri_offset_south_cap as usize;
304        while i < longitudes {
305            // North.
306            tris[k] = i;
307            tris[k + 1] = vert_offset_north_hemi + i;
308            tris[k + 2] = vert_offset_north_hemi + i + 1;
309
310            // South.
311            tris[m] = vert_offset_south_cap + i;
312            tris[m + 1] = vert_offset_south_polar + i + 1;
313            tris[m + 2] = vert_offset_south_polar + i;
314
315            i += 1;
316            k += 3;
317            m += 3;
318        }
319
320        // Hemispheres.
321
322        let mut i = 0;
323        let mut k = tri_offset_north_hemi as usize;
324        let mut m = tri_offset_south_hemi as usize;
325
326        while i < half_latsn1 {
327            let i_lonsp1 = i * lonsp1;
328
329            let vert_curr_lat_north = vert_offset_north_hemi + i_lonsp1;
330            let vert_next_lat_north = vert_curr_lat_north + lonsp1;
331
332            let vert_curr_lat_south = vert_offset_south_equator + i_lonsp1;
333            let vert_next_lat_south = vert_curr_lat_south + lonsp1;
334
335            let mut j = 0;
336            while j < longitudes {
337                // North.
338                let north00 = vert_curr_lat_north + j;
339                let north01 = vert_next_lat_north + j;
340                let north11 = vert_next_lat_north + j + 1;
341                let north10 = vert_curr_lat_north + j + 1;
342
343                tris[k] = north00;
344                tris[k + 1] = north11;
345                tris[k + 2] = north10;
346
347                tris[k + 3] = north00;
348                tris[k + 4] = north01;
349                tris[k + 5] = north11;
350
351                // South.
352                let south00 = vert_curr_lat_south + j;
353                let south01 = vert_next_lat_south + j;
354                let south11 = vert_next_lat_south + j + 1;
355                let south10 = vert_curr_lat_south + j + 1;
356
357                tris[m] = south00;
358                tris[m + 1] = south11;
359                tris[m + 2] = south10;
360
361                tris[m + 3] = south00;
362                tris[m + 4] = south01;
363                tris[m + 5] = south11;
364
365                j += 1;
366                k += 6;
367                m += 6;
368            }
369
370            i += 1;
371        }
372
373        // Cylinder.
374        let mut i = 0;
375        let mut k = tri_offset_cylinder as usize;
376
377        while i < ringsp1 {
378            let vert_curr_lat = vert_offset_north_equator + i * lonsp1;
379            let vert_next_lat = vert_curr_lat + lonsp1;
380
381            let mut j = 0;
382            while j < longitudes {
383                let cy00 = vert_curr_lat + j;
384                let cy01 = vert_next_lat + j;
385                let cy11 = vert_next_lat + j + 1;
386                let cy10 = vert_curr_lat + j + 1;
387
388                tris[k] = cy00;
389                tris[k + 1] = cy11;
390                tris[k + 2] = cy10;
391
392                tris[k + 3] = cy00;
393                tris[k + 4] = cy01;
394                tris[k + 5] = cy11;
395
396                j += 1;
397                k += 6;
398            }
399
400            i += 1;
401        }
402
403        let vs: Vec<[f32; 3]> = vs.into_iter().map(Into::into).collect();
404        let vns: Vec<[f32; 3]> = vns.into_iter().map(Into::into).collect();
405        let vts: Vec<[f32; 2]> = vts.into_iter().map(Into::into).collect();
406
407        assert_eq!(vs.len(), vert_len);
408        assert_eq!(tris.len(), fs_len as usize);
409
410        Mesh::new(
411            PrimitiveTopology::TriangleList,
412            RenderAssetUsages::default(),
413        )
414        .with_inserted_attribute(Mesh::ATTRIBUTE_POSITION, vs)
415        .with_inserted_attribute(Mesh::ATTRIBUTE_NORMAL, vns)
416        .with_inserted_attribute(Mesh::ATTRIBUTE_UV_0, vts)
417        .with_inserted_indices(Indices::U32(tris))
418    }
419}
420
421impl Meshable for Capsule3d {
422    type Output = Capsule3dMeshBuilder;
423
424    fn mesh(&self) -> Self::Output {
425        Capsule3dMeshBuilder {
426            capsule: *self,
427            ..Default::default()
428        }
429    }
430}
431
432impl From<Capsule3d> for Mesh {
433    fn from(capsule: Capsule3d) -> Self {
434        capsule.mesh().build()
435    }
436}