bevy_mesh/primitives/dim3/
capsule.rs1use crate::{Indices, Mesh, MeshBuilder, Meshable, PrimitiveTopology};
2use bevy_asset::RenderAssetUsages;
3use bevy_math::{ops, primitives::Capsule3d, Vec2, Vec3};
4use bevy_reflect::prelude::*;
5
6#[derive(Clone, Copy, Debug, Default, Reflect)]
8#[reflect(Default, Debug, Clone)]
9pub enum CapsuleUvProfile {
10 #[default]
12 Aspect,
13 Uniform,
15 Fixed,
18}
19
20#[derive(Clone, Copy, Debug, Reflect)]
22#[reflect(Default, Debug, Clone)]
23pub struct Capsule3dMeshBuilder {
24 pub capsule: Capsule3d,
26 pub rings: u32,
29 pub longitudes: u32,
32 pub latitudes: u32,
35 pub uv_profile: CapsuleUvProfile,
38}
39
40impl Default for Capsule3dMeshBuilder {
41 fn default() -> Self {
42 Self {
43 capsule: Capsule3d::default(),
44 rings: 0,
45 longitudes: 32,
46 latitudes: 16,
47 uv_profile: CapsuleUvProfile::default(),
48 }
49 }
50}
51
52impl Capsule3dMeshBuilder {
53 #[inline]
58 pub fn new(radius: f32, height: f32, longitudes: u32, latitudes: u32) -> Self {
59 Self {
60 capsule: Capsule3d::new(radius, height),
61 longitudes,
62 latitudes,
63 ..Default::default()
64 }
65 }
66
67 #[inline]
69 pub const fn rings(mut self, rings: u32) -> Self {
70 self.rings = rings;
71 self
72 }
73
74 #[inline]
76 pub const fn longitudes(mut self, longitudes: u32) -> Self {
77 self.longitudes = longitudes;
78 self
79 }
80
81 #[inline]
83 pub const fn latitudes(mut self, latitudes: u32) -> Self {
84 self.latitudes = latitudes;
85 self
86 }
87
88 #[inline]
90 pub const fn uv_profile(mut self, uv_profile: CapsuleUvProfile) -> Self {
91 self.uv_profile = uv_profile;
92 self
93 }
94}
95
96impl MeshBuilder for Capsule3dMeshBuilder {
97 fn build(&self) -> Mesh {
98 let Capsule3dMeshBuilder {
100 capsule,
101 rings,
102 longitudes,
103 latitudes,
104 uv_profile,
105 } = *self;
106 let Capsule3d {
107 radius,
108 half_length,
109 } = capsule;
110
111 let calc_middle = rings > 0;
112 let half_lats = latitudes / 2;
113 let half_latsn1 = half_lats - 1;
114 let half_latsn2 = half_lats - 2;
115 let ringsp1 = rings + 1;
116 let lonsp1 = longitudes + 1;
117 let summit = half_length + radius;
118
119 let vert_offset_north_hemi = longitudes;
121 let vert_offset_north_equator = vert_offset_north_hemi + lonsp1 * half_latsn1;
122 let vert_offset_cylinder = vert_offset_north_equator + lonsp1;
123 let vert_offset_south_equator = if calc_middle {
124 vert_offset_cylinder + lonsp1 * rings
125 } else {
126 vert_offset_cylinder
127 };
128 let vert_offset_south_hemi = vert_offset_south_equator + lonsp1;
129 let vert_offset_south_polar = vert_offset_south_hemi + lonsp1 * half_latsn2;
130 let vert_offset_south_cap = vert_offset_south_polar + lonsp1;
131
132 let vert_len = (vert_offset_south_cap + longitudes) as usize;
134
135 let mut vs: Vec<Vec3> = vec![Vec3::ZERO; vert_len];
136 let mut vts: Vec<Vec2> = vec![Vec2::ZERO; vert_len];
137 let mut vns: Vec<Vec3> = vec![Vec3::ZERO; vert_len];
138
139 let to_theta = 2.0 * core::f32::consts::PI / longitudes as f32;
140 let to_phi = core::f32::consts::PI / latitudes as f32;
141 let to_tex_horizontal = 1.0 / longitudes as f32;
142 let to_tex_vertical = 1.0 / half_lats as f32;
143
144 let vt_aspect_ratio = match uv_profile {
145 CapsuleUvProfile::Aspect => radius / (2.0 * half_length + radius + radius),
146 CapsuleUvProfile::Uniform => half_lats as f32 / (ringsp1 + latitudes) as f32,
147 CapsuleUvProfile::Fixed => 1.0 / 3.0,
148 };
149 let vt_aspect_north = 1.0 - vt_aspect_ratio;
150 let vt_aspect_south = vt_aspect_ratio;
151
152 let mut theta_cartesian: Vec<Vec2> = vec![Vec2::ZERO; longitudes as usize];
153 let mut rho_theta_cartesian: Vec<Vec2> = vec![Vec2::ZERO; longitudes as usize];
154 let mut s_texture_cache: Vec<f32> = vec![0.0; lonsp1 as usize];
155
156 for j in 0..longitudes as usize {
157 let jf = j as f32;
158 let s_texture_polar = 1.0 - ((jf + 0.5) * to_tex_horizontal);
159 let theta = jf * to_theta;
160
161 theta_cartesian[j] = Vec2::from_angle(theta);
162 rho_theta_cartesian[j] = radius * theta_cartesian[j];
163
164 vs[j] = Vec3::new(0.0, summit, 0.0);
166 vts[j] = Vec2::new(s_texture_polar, 1.0);
167 vns[j] = Vec3::Y;
168
169 let idx = vert_offset_south_cap as usize + j;
171 vs[idx] = Vec3::new(0.0, -summit, 0.0);
172 vts[idx] = Vec2::new(s_texture_polar, 0.0);
173 vns[idx] = Vec3::new(0.0, -1.0, 0.0);
174 }
175
176 for (j, s_texture_cache_j) in s_texture_cache.iter_mut().enumerate().take(lonsp1 as usize) {
178 let s_texture = 1.0 - j as f32 * to_tex_horizontal;
179 *s_texture_cache_j = s_texture;
180
181 let j_mod = j % longitudes as usize;
183 let tc = theta_cartesian[j_mod];
184 let rtc = rho_theta_cartesian[j_mod];
185
186 let idxn = vert_offset_north_equator as usize + j;
188 vs[idxn] = Vec3::new(rtc.x, half_length, -rtc.y);
189 vts[idxn] = Vec2::new(s_texture, vt_aspect_north);
190 vns[idxn] = Vec3::new(tc.x, 0.0, -tc.y);
191
192 let idxs = vert_offset_south_equator as usize + j;
194 vs[idxs] = Vec3::new(rtc.x, -half_length, -rtc.y);
195 vts[idxs] = Vec2::new(s_texture, vt_aspect_south);
196 vns[idxs] = Vec3::new(tc.x, 0.0, -tc.y);
197 }
198
199 for i in 0..half_latsn1 {
201 let ip1f = i as f32 + 1.0;
202 let phi = ip1f * to_phi;
203
204 let (sin_phi_south, cos_phi_south) = ops::sin_cos(phi);
206
207 let cos_phi_north = sin_phi_south;
210 let sin_phi_north = -cos_phi_south;
211
212 let rho_cos_phi_north = radius * cos_phi_north;
213 let rho_sin_phi_north = radius * sin_phi_north;
214 let z_offset_north = half_length - rho_sin_phi_north;
215
216 let rho_cos_phi_south = radius * cos_phi_south;
217 let rho_sin_phi_south = radius * sin_phi_south;
218 let z_offset_sout = -half_length - rho_sin_phi_south;
219
220 let t_tex_fac = ip1f * to_tex_vertical;
222 let cmpl_tex_fac = 1.0 - t_tex_fac;
223 let t_tex_north = cmpl_tex_fac + vt_aspect_north * t_tex_fac;
224 let t_tex_south = cmpl_tex_fac * vt_aspect_south;
225
226 let i_lonsp1 = i * lonsp1;
227 let vert_curr_lat_north = vert_offset_north_hemi + i_lonsp1;
228 let vert_curr_lat_south = vert_offset_south_hemi + i_lonsp1;
229
230 for (j, s_texture) in s_texture_cache.iter().enumerate().take(lonsp1 as usize) {
231 let j_mod = j % longitudes as usize;
232
233 let tc = theta_cartesian[j_mod];
234
235 let idxn = vert_curr_lat_north as usize + j;
237 vs[idxn] = Vec3::new(
238 rho_cos_phi_north * tc.x,
239 z_offset_north,
240 -rho_cos_phi_north * tc.y,
241 );
242 vts[idxn] = Vec2::new(*s_texture, t_tex_north);
243 vns[idxn] = Vec3::new(cos_phi_north * tc.x, -sin_phi_north, -cos_phi_north * tc.y);
244
245 let idxs = vert_curr_lat_south as usize + j;
247 vs[idxs] = Vec3::new(
248 rho_cos_phi_south * tc.x,
249 z_offset_sout,
250 -rho_cos_phi_south * tc.y,
251 );
252 vts[idxs] = Vec2::new(*s_texture, t_tex_south);
253 vns[idxs] = Vec3::new(cos_phi_south * tc.x, -sin_phi_south, -cos_phi_south * tc.y);
254 }
255 }
256
257 if calc_middle {
259 let to_fac = 1.0 / ringsp1 as f32;
262 let mut idx_cyl_lat = vert_offset_cylinder as usize;
263
264 for h in 1..ringsp1 {
265 let fac = h as f32 * to_fac;
266 let cmpl_fac = 1.0 - fac;
267 let t_texture = cmpl_fac * vt_aspect_north + fac * vt_aspect_south;
268 let z = half_length - 2.0 * half_length * fac;
269
270 for (j, s_texture) in s_texture_cache.iter().enumerate().take(lonsp1 as usize) {
271 let j_mod = j % longitudes as usize;
272 let tc = theta_cartesian[j_mod];
273 let rtc = rho_theta_cartesian[j_mod];
274
275 vs[idx_cyl_lat] = Vec3::new(rtc.x, z, -rtc.y);
276 vts[idx_cyl_lat] = Vec2::new(*s_texture, t_texture);
277 vns[idx_cyl_lat] = Vec3::new(tc.x, 0.0, -tc.y);
278
279 idx_cyl_lat += 1;
280 }
281 }
282 }
283
284 let lons3 = longitudes * 3;
289 let lons6 = longitudes * 6;
290 let hemi_lons = half_latsn1 * lons6;
291
292 let tri_offset_north_hemi = lons3;
293 let tri_offset_cylinder = tri_offset_north_hemi + hemi_lons;
294 let tri_offset_south_hemi = tri_offset_cylinder + ringsp1 * lons6;
295 let tri_offset_south_cap = tri_offset_south_hemi + hemi_lons;
296
297 let fs_len = tri_offset_south_cap + lons3;
298 let mut tris: Vec<u32> = vec![0; fs_len as usize];
299
300 let mut i = 0;
302 let mut k = 0;
303 let mut m = tri_offset_south_cap as usize;
304 while i < longitudes {
305 tris[k] = i;
307 tris[k + 1] = vert_offset_north_hemi + i;
308 tris[k + 2] = vert_offset_north_hemi + i + 1;
309
310 tris[m] = vert_offset_south_cap + i;
312 tris[m + 1] = vert_offset_south_polar + i + 1;
313 tris[m + 2] = vert_offset_south_polar + i;
314
315 i += 1;
316 k += 3;
317 m += 3;
318 }
319
320 let mut i = 0;
323 let mut k = tri_offset_north_hemi as usize;
324 let mut m = tri_offset_south_hemi as usize;
325
326 while i < half_latsn1 {
327 let i_lonsp1 = i * lonsp1;
328
329 let vert_curr_lat_north = vert_offset_north_hemi + i_lonsp1;
330 let vert_next_lat_north = vert_curr_lat_north + lonsp1;
331
332 let vert_curr_lat_south = vert_offset_south_equator + i_lonsp1;
333 let vert_next_lat_south = vert_curr_lat_south + lonsp1;
334
335 let mut j = 0;
336 while j < longitudes {
337 let north00 = vert_curr_lat_north + j;
339 let north01 = vert_next_lat_north + j;
340 let north11 = vert_next_lat_north + j + 1;
341 let north10 = vert_curr_lat_north + j + 1;
342
343 tris[k] = north00;
344 tris[k + 1] = north11;
345 tris[k + 2] = north10;
346
347 tris[k + 3] = north00;
348 tris[k + 4] = north01;
349 tris[k + 5] = north11;
350
351 let south00 = vert_curr_lat_south + j;
353 let south01 = vert_next_lat_south + j;
354 let south11 = vert_next_lat_south + j + 1;
355 let south10 = vert_curr_lat_south + j + 1;
356
357 tris[m] = south00;
358 tris[m + 1] = south11;
359 tris[m + 2] = south10;
360
361 tris[m + 3] = south00;
362 tris[m + 4] = south01;
363 tris[m + 5] = south11;
364
365 j += 1;
366 k += 6;
367 m += 6;
368 }
369
370 i += 1;
371 }
372
373 let mut i = 0;
375 let mut k = tri_offset_cylinder as usize;
376
377 while i < ringsp1 {
378 let vert_curr_lat = vert_offset_north_equator + i * lonsp1;
379 let vert_next_lat = vert_curr_lat + lonsp1;
380
381 let mut j = 0;
382 while j < longitudes {
383 let cy00 = vert_curr_lat + j;
384 let cy01 = vert_next_lat + j;
385 let cy11 = vert_next_lat + j + 1;
386 let cy10 = vert_curr_lat + j + 1;
387
388 tris[k] = cy00;
389 tris[k + 1] = cy11;
390 tris[k + 2] = cy10;
391
392 tris[k + 3] = cy00;
393 tris[k + 4] = cy01;
394 tris[k + 5] = cy11;
395
396 j += 1;
397 k += 6;
398 }
399
400 i += 1;
401 }
402
403 let vs: Vec<[f32; 3]> = vs.into_iter().map(Into::into).collect();
404 let vns: Vec<[f32; 3]> = vns.into_iter().map(Into::into).collect();
405 let vts: Vec<[f32; 2]> = vts.into_iter().map(Into::into).collect();
406
407 assert_eq!(vs.len(), vert_len);
408 assert_eq!(tris.len(), fs_len as usize);
409
410 Mesh::new(
411 PrimitiveTopology::TriangleList,
412 RenderAssetUsages::default(),
413 )
414 .with_inserted_attribute(Mesh::ATTRIBUTE_POSITION, vs)
415 .with_inserted_attribute(Mesh::ATTRIBUTE_NORMAL, vns)
416 .with_inserted_attribute(Mesh::ATTRIBUTE_UV_0, vts)
417 .with_inserted_indices(Indices::U32(tris))
418 }
419}
420
421impl Meshable for Capsule3d {
422 type Output = Capsule3dMeshBuilder;
423
424 fn mesh(&self) -> Self::Output {
425 Capsule3dMeshBuilder {
426 capsule: *self,
427 ..Default::default()
428 }
429 }
430}
431
432impl From<Capsule3d> for Mesh {
433 fn from(capsule: Capsule3d) -> Self {
434 capsule.mesh().build()
435 }
436}