bevy_pbr/
medium.rs

1use alloc::{borrow::Cow, sync::Arc};
2use core::f32::{self, consts::PI};
3
4use bevy_app::{App, Plugin};
5use bevy_asset::{Asset, AssetApp, AssetId};
6use bevy_ecs::{
7    resource::Resource,
8    system::{Commands, Res, SystemParamItem},
9};
10use bevy_math::{ops, Curve, FloatPow, Vec3, Vec4};
11use bevy_reflect::TypePath;
12use bevy_render::{
13    render_asset::{PrepareAssetError, RenderAsset, RenderAssetPlugin},
14    render_resource::{
15        Extent3d, FilterMode, Sampler, SamplerDescriptor, Texture, TextureDataOrder,
16        TextureDescriptor, TextureDimension, TextureFormat, TextureUsages, TextureView,
17        TextureViewDescriptor,
18    },
19    renderer::{RenderDevice, RenderQueue},
20    RenderApp, RenderStartup,
21};
22use smallvec::SmallVec;
23
24#[doc(hidden)]
25pub struct ScatteringMediumPlugin;
26
27impl Plugin for ScatteringMediumPlugin {
28    fn build(&self, app: &mut App) {
29        app.init_asset::<ScatteringMedium>()
30            .add_plugins(RenderAssetPlugin::<GpuScatteringMedium>::default());
31
32        if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
33            render_app.add_systems(RenderStartup, init_scattering_medium_sampler);
34        }
35    }
36}
37
38/// An asset that defines how a material scatters light.
39///
40/// In order to calculate how light passes through a medium,
41/// you need three pieces of information:
42/// - how much light the medium *absorbs* per unit length
43/// - how much light the medium *scatters* per unit length
44/// - what *directions* the medium is likely to scatter light in.
45///
46/// The first two are fairly simple, and are sometimes referred to together
47/// (accurately enough) as the medium's [optical density].
48///
49/// The last, defined by a [phase function], is the most important in creating
50/// the look of a medium. Our brains are very good at noticing (if unconsciously)
51/// that a dust storm scatters light differently than a rain cloud, for example.
52/// See the docs on [`PhaseFunction`] for more info.
53///
54/// In reality, media are often composed of multiple elements that scatter light
55/// independently, for Earth's atmosphere is composed of the gas itself, but also
56/// suspended dust and particulate. These each scatter light differently, and are
57/// distributed in different amounts at different altitudes. In a [`ScatteringMedium`],
58/// these are each represented by a [`ScatteringTerm`]
59///
60/// ## Technical Details
61///
62/// A [`ScatteringMedium`] is represented on the GPU by a set of two LUTs, which
63/// are re-created every time the asset is modified. See the docs on
64/// [`GpuScatteringMedium`] for more info.
65///
66/// [optical density]: https://en.wikipedia.org/wiki/Optical_Density
67/// [phase function]: https://www.pbr-book.org/4ed/Volume_Scattering/Phase_Functions
68#[derive(TypePath, Asset, Clone)]
69pub struct ScatteringMedium {
70    /// An optional label for the medium, used when creating the LUTs on the GPU.
71    pub label: Option<Cow<'static, str>>,
72    /// The resolution at which to sample the falloff distribution of each
73    /// scattering term. Custom or more detailed distributions may benefit
74    /// from a higher value, at the cost of more memory use.
75    pub falloff_resolution: u32,
76    /// The resolution at which to sample the phase function of each scattering
77    /// term. Custom or more detailed phase functions may benefit from a higher
78    /// value, at the cost of more memory use.
79    pub phase_resolution: u32,
80    /// The list of [`ScatteringTerm`]s that compose this [`ScatteringMedium`]
81    pub terms: SmallVec<[ScatteringTerm; 1]>,
82}
83
84impl ScatteringMedium {
85    // Returns a scattering medium with a default label and the
86    // specified scattering terms.
87    pub fn new(
88        falloff_resolution: u32,
89        phase_resolution: u32,
90        terms: impl IntoIterator<Item = ScatteringTerm>,
91    ) -> Self {
92        Self {
93            label: None,
94            falloff_resolution,
95            phase_resolution,
96            terms: terms.into_iter().collect(),
97        }
98    }
99
100    // Consumes and returns this scattering medium with a new label.
101    pub fn with_label(self, label: impl Into<Cow<'static, str>>) -> Self {
102        Self {
103            label: Some(label.into()),
104            ..self
105        }
106    }
107
108    // Consumes and returns this scattering medium with each scattering terms'
109    // densities multiplied by `multiplier`.
110    pub fn with_density_multiplier(mut self, multiplier: f32) -> Self {
111        self.terms.iter_mut().for_each(|term| {
112            term.absorption *= multiplier;
113            term.scattering *= multiplier;
114        });
115
116        self
117    }
118
119    /// Returns a scattering medium representing an earthlike atmosphere.
120    ///
121    /// Uses physically-based scale heights from Earth's atmosphere, assuming
122    /// a 60 km atmosphere height:
123    /// - Rayleigh (molecular) scattering: 8 km scale height
124    /// - Mie (aerosol) scattering: 1.2 km scale height
125    pub fn earthlike(falloff_resolution: u32, phase_resolution: u32) -> Self {
126        Self::new(
127            falloff_resolution,
128            phase_resolution,
129            [
130                // Rayleigh scattering Term
131                ScatteringTerm {
132                    absorption: Vec3::ZERO,
133                    scattering: Vec3::new(5.802e-6, 13.558e-6, 33.100e-6),
134                    falloff: Falloff::Exponential { scale: 8.0 / 60.0 },
135                    phase: PhaseFunction::Rayleigh,
136                },
137                // Mie scattering Term
138                ScatteringTerm {
139                    absorption: Vec3::splat(3.996e-6),
140                    scattering: Vec3::splat(0.444e-6),
141                    falloff: Falloff::Exponential { scale: 1.2 / 60.0 },
142                    phase: PhaseFunction::Mie { asymmetry: 0.8 },
143                },
144                // Ozone scattering Term
145                ScatteringTerm {
146                    absorption: Vec3::new(0.650e-6, 1.881e-6, 0.085e-6),
147                    scattering: Vec3::ZERO,
148                    falloff: Falloff::Tent {
149                        center: 0.75,
150                        width: 0.3,
151                    },
152                    phase: PhaseFunction::Isotropic,
153                },
154            ],
155        )
156        .with_label("earthlike_atmosphere")
157    }
158}
159
160/// An individual element of a [`ScatteringMedium`].
161///
162/// A [`ScatteringMedium`] can be built out of a number of simpler [`ScatteringTerm`]s,
163/// which correspond to an individual element of the medium. For example, Earth's
164/// atmosphere would be (roughly) composed of two [`ScatteringTerm`]s: the atmospheric
165/// gases themselves, which extend to the edge of space, and suspended dust particles,
166/// which are denser but lie closer to the ground.
167#[derive(Default, Clone)]
168pub struct ScatteringTerm {
169    /// This term's optical absorption density, or how much light of each wavelength
170    /// it absorbs per meter.
171    ///
172    /// units: m^-1
173    pub absorption: Vec3,
174    /// This term's optical scattering density, or how much light of each wavelength
175    /// it scatters per meter.
176    ///
177    /// units: m^-1
178    pub scattering: Vec3,
179    /// This term's falloff distribution. See the docs on [`Falloff`] for more info.
180    pub falloff: Falloff,
181    /// This term's [phase function], which determines the character of how it
182    /// scatters light. See the docs on [`PhaseFunction`] for more info.
183    ///
184    /// [phase function]: https://www.pbr-book.org/4ed/Volume_Scattering/Phase_Functions
185    pub phase: PhaseFunction,
186}
187
188/// Describes how the media in a [`ScatteringTerm`] is distributed.
189///
190/// This is closely related to the optical density values [`ScatteringTerm::absorption`] and
191/// [`ScatteringTerm::scattering`]. Most media aren't the same density everywhere;
192/// near the edge of space Earth's atmosphere is much less dense, and it absorbs
193/// and scatters less light.
194///
195/// [`Falloff`] determines how the density of a medium changes as a function of
196/// an abstract "falloff parameter" `p`. `p = 1` denotes where the medium is the
197/// densest, i.e. at the surface of the Earth, `p = 0` denotes where the medium
198/// fades away completely, i.e. at the edge of space, and values between scale
199/// linearly with distance, so `p = 0.5` would be halfway between the surface
200/// and the edge of space.
201///
202/// When processing a [`ScatteringMedium`], the `absorption` and `scattering` values
203/// for each [`ScatteringTerm`] are multiplied by the value of the falloff function, `f(p)`.
204#[derive(Default, Clone)]
205pub enum Falloff {
206    /// A simple linear falloff function, which essentially
207    /// passes the falloff parameter through unchanged.
208    ///
209    /// f(1) = 1
210    /// f(0) = 0
211    /// f(p) = p
212    #[default]
213    Linear,
214    /// An exponential falloff function parametrized by a proportional scale.
215    /// When paired with an absolute "falloff distance" like the distance from
216    /// Earth's surface to the edge of space, this is analogous to the "height
217    /// scale" value common in atmospheric scattering literature, though it will
218    /// diverge from this for large or negative `scale` values.
219    ///
220    /// f(1) = 1
221    /// f(0) = 0
222    /// f(p) = (e^((1-p)/s) - e^(1/s))/(e - e^(1/s))
223    Exponential {
224        /// The "scale" of the exponential falloff. Values closer to zero will
225        /// produce steeper falloff, and values farther from zero will produce
226        /// gentler falloff, approaching linear falloff as scale goes to `+-∞`.
227        ///
228        /// Negative values change the *concavity* of the falloff function:
229        /// rather than an initial narrow region of steep falloff followed by a
230        /// wide region of gentle falloff, there will be an initial wide region
231        /// of gentle falloff followed by a narrow region of steep falloff.
232        ///
233        /// domain: (-∞, ∞)
234        ///
235        /// NOTE, this function is not defined when `scale == 0`.
236        /// In that case, it will fall back to linear falloff.
237        scale: f32,
238    },
239    /// A tent-shaped falloff function, which produces a triangular
240    /// peak at the center and linearly falls off to either side.
241    ///
242    /// f(`center`) = 1
243    /// f(`center` +- `width` / 2) = 0
244    Tent {
245        /// The center of the tent function peak
246        ///
247        /// domain: [0, 1]
248        center: f32,
249        /// The total width of the tent function peak
250        ///
251        /// domain: [0, 1]
252        width: f32,
253    },
254    /// A falloff function defined by a custom curve.
255    ///
256    /// domain: [0, 1],
257    /// range: [0, 1],
258    Curve(Arc<dyn Curve<f32> + Send + Sync>),
259}
260
261impl Falloff {
262    /// Returns a falloff function corresponding to a custom curve.
263    pub fn from_curve(curve: impl Curve<f32> + Send + Sync + 'static) -> Self {
264        Self::Curve(Arc::new(curve))
265    }
266
267    fn sample(&self, p: f32) -> f32 {
268        match self {
269            Falloff::Linear => p,
270            Falloff::Exponential { scale } => {
271                // fill discontinuity at scale == 0,
272                // arbitrarily choose linear falloff
273                if *scale == 0.0 {
274                    p
275                } else {
276                    let s = -1.0 / scale;
277                    let exp_p_s = ops::exp((1.0 - p) * s);
278                    let exp_s = ops::exp(s);
279                    (exp_p_s - exp_s) / (1.0 - exp_s)
280                }
281            }
282            Falloff::Tent { center, width } => (1.0 - (p - center).abs() / (0.5 * width)).max(0.0),
283            Falloff::Curve(curve) => curve.sample(p).unwrap_or(0.0),
284        }
285    }
286}
287
288/// Describes how a [`ScatteringTerm`] scatters light in different directions.
289///
290/// A [phase function] is a function `f: [-1, 1] -> [0, ∞)`, symmetric about `x=0`
291/// whose input is the cosine of the angle between an incoming light direction and
292/// and outgoing light direction, and whose output is the proportion of the incoming
293/// light that is actually scattered in that direction.
294///
295/// The phase function has an important effect on the "look" of a medium in a scene.
296/// Media consisting of particles of a different size or shape scatter light differently,
297/// and our brains are very good at telling the difference. A dust cloud, which might
298/// correspond roughly to `PhaseFunction::Mie { asymmetry: 0.8 }`, looks quite different
299/// from the rest of the sky (atmospheric gases), which correspond to `PhaseFunction::Rayleigh`
300///
301/// [phase function]: https://www.pbr-book.org/4ed/Volume_Scattering/Phase_Functions
302#[derive(Clone)]
303pub enum PhaseFunction {
304    /// A phase function that scatters light evenly in all directions.
305    Isotropic,
306
307    /// A phase function representing [Rayleigh scattering].
308    ///
309    /// Rayleigh scattering occurs naturally for particles much smaller than
310    /// the wavelengths of visible light, such as gas molecules in the atmosphere.
311    /// It's generally wavelength-dependent, where shorter wavelengths are scattered
312    /// more strongly, so [scattering](ScatteringTerm::scattering) should have
313    /// higher values for blue than green and green than red. Particles that
314    /// participate in Rayleigh scattering don't absorb any light, either.
315    ///
316    /// [Rayleigh scattering]: https://en.wikipedia.org/wiki/Rayleigh_scattering
317    Rayleigh,
318
319    /// The [Henyey-Greenstein phase function], which approximates [Mie scattering].
320    ///
321    /// Mie scattering occurs naturally for spherical particles of dust
322    /// and aerosols roughly the same size as the wavelengths of visible light,
323    /// so it's useful for representing dust or sea spray. It's generally
324    /// wavelength-independent, so [absorption](ScatteringTerm::absorption)
325    /// and [scattering](ScatteringTerm::scattering) should be set to a greyscale value.
326    ///
327    /// [Mie scattering]: https://en.wikipedia.org/wiki/Mie_scattering
328    /// [Henyey-Greenstein phase function]: https://www.oceanopticsbook.info/view/scattering/level-2/the-henyey-greenstein-phase-function
329    Mie {
330        /// Whether the Mie scattering function is biased towards scattering
331        /// light forwards (asymmetry > 0) or backwards (asymmetry < 0).
332        ///
333        /// domain: [-1, 1]
334        asymmetry: f32,
335    },
336
337    /// A phase function defined by a custom curve, where the input
338    /// is the cosine of the angle between the incoming light ray
339    /// and the scattered light ray, and the output is the fraction
340    /// of the incoming light scattered in that direction.
341    ///
342    /// Note: it's important for photorealism that the phase function
343    /// be *energy conserving*, meaning that in total no more light can
344    /// be scattered than actually entered the medium. For this to be
345    /// the case, the integral of the phase function over its domain must
346    /// be equal to 1/2π.
347    ///
348    ///   1
349    /// ∫   p(x) dx = 1/2π
350    ///  -1
351    ///
352    /// domain: [-1, 1]
353    /// range: [0, 1]
354    Curve(Arc<dyn Curve<f32> + Send + Sync>),
355}
356
357impl PhaseFunction {
358    /// A phase function defined by a custom curve.
359    pub fn from_curve(curve: impl Curve<f32> + Send + Sync + 'static) -> Self {
360        Self::Curve(Arc::new(curve))
361    }
362
363    fn sample(&self, neg_l_dot_v: f32) -> f32 {
364        const FRAC_4_PI: f32 = 0.25 / PI;
365        const FRAC_3_16_PI: f32 = 0.1875 / PI;
366        match self {
367            PhaseFunction::Isotropic => FRAC_4_PI,
368            PhaseFunction::Rayleigh => FRAC_3_16_PI * (1.0 + neg_l_dot_v * neg_l_dot_v),
369            PhaseFunction::Mie { asymmetry } => {
370                let denom = 1.0 + asymmetry.squared() - 2.0 * asymmetry * neg_l_dot_v;
371                FRAC_4_PI * (1.0 - asymmetry.squared()) / (denom * denom.sqrt())
372            }
373            PhaseFunction::Curve(curve) => curve.sample(neg_l_dot_v).unwrap_or(0.0),
374        }
375    }
376}
377
378impl Default for PhaseFunction {
379    fn default() -> Self {
380        Self::Mie { asymmetry: 0.8 }
381    }
382}
383
384/// The GPU representation of a [`ScatteringMedium`].
385pub struct GpuScatteringMedium {
386    /// The terms of the scattering medium.
387    pub terms: SmallVec<[ScatteringTerm; 1]>,
388    /// The resolution at which to sample the falloff distribution of each
389    /// scattering term.
390    pub falloff_resolution: u32,
391    /// The resolution at which to sample the phase function of each
392    /// scattering term.
393    pub phase_resolution: u32,
394    /// The `density_lut`, a 2D `falloff_resolution x 2` LUT which contains the
395    /// medium's optical density with respect to the atmosphere's "falloff parameter",
396    /// a linear value which is 1.0 at the planet's surface and 0.0 at the edge of
397    /// space. The first and second rows correspond to absorption density and
398    /// scattering density respectively.
399    pub density_lut: Texture,
400    /// The default [`TextureView`] of the `density_lut`
401    pub density_lut_view: TextureView,
402    /// The `scattering_lut`, a 2D `falloff_resolution x phase_resolution` LUT which
403    /// contains the medium's scattering density multiplied by the phase function, with
404    /// the U axis corresponding to the falloff parameter and the V axis corresponding
405    /// to `neg_LdotV * 0.5 + 0.5`, where `neg_LdotV` is the dot product of the light
406    /// direction and the incoming view vector.
407    pub scattering_lut: Texture,
408    /// The default [`TextureView`] of the `scattering_lut`
409    pub scattering_lut_view: TextureView,
410}
411
412impl RenderAsset for GpuScatteringMedium {
413    type SourceAsset = ScatteringMedium;
414
415    type Param = (Res<'static, RenderDevice>, Res<'static, RenderQueue>);
416
417    fn prepare_asset(
418        source_asset: Self::SourceAsset,
419        _asset_id: AssetId<Self::SourceAsset>,
420        (render_device, render_queue): &mut SystemParamItem<Self::Param>,
421        _previous_asset: Option<&Self>,
422    ) -> Result<Self, PrepareAssetError<Self::SourceAsset>> {
423        let mut density: Vec<Vec4> =
424            Vec::with_capacity(2 * source_asset.falloff_resolution as usize);
425
426        density.extend((0..source_asset.falloff_resolution).map(|i| {
427            let falloff = (i as f32 + 0.5) / source_asset.falloff_resolution as f32;
428
429            source_asset
430                .terms
431                .iter()
432                .map(|term| term.absorption.extend(0.0) * term.falloff.sample(falloff))
433                .sum::<Vec4>()
434        }));
435
436        density.extend((0..source_asset.falloff_resolution).map(|i| {
437            let falloff = (i as f32 + 0.5) / source_asset.falloff_resolution as f32;
438
439            source_asset
440                .terms
441                .iter()
442                .map(|term| term.scattering.extend(0.0) * term.falloff.sample(falloff))
443                .sum::<Vec4>()
444        }));
445
446        let mut scattering: Vec<Vec4> = Vec::with_capacity(
447            source_asset.falloff_resolution as usize * source_asset.phase_resolution as usize,
448        );
449
450        scattering.extend(
451            (0..source_asset.falloff_resolution * source_asset.phase_resolution).map(|raw_i| {
452                let i = raw_i % source_asset.phase_resolution;
453                let j = raw_i / source_asset.phase_resolution;
454                let falloff = (i as f32 + 0.5) / source_asset.falloff_resolution as f32;
455                let phase = (j as f32 + 0.5) / source_asset.phase_resolution as f32;
456                let neg_l_dot_v = phase * 2.0 - 1.0;
457
458                source_asset
459                    .terms
460                    .iter()
461                    .map(|term| {
462                        term.scattering.extend(0.0)
463                            * term.falloff.sample(falloff)
464                            * term.phase.sample(neg_l_dot_v)
465                    })
466                    .sum::<Vec4>()
467            }),
468        );
469
470        let density_lut = render_device.create_texture_with_data(
471            render_queue,
472            &TextureDescriptor {
473                label: source_asset
474                    .label
475                    .as_deref()
476                    .map(|label| format!("{}_density_lut", label))
477                    .as_deref()
478                    .or(Some("scattering_medium_density_lut")),
479                size: Extent3d {
480                    width: source_asset.falloff_resolution,
481                    height: 2,
482                    depth_or_array_layers: 1,
483                },
484                mip_level_count: 1,
485                sample_count: 1,
486                dimension: TextureDimension::D2,
487                format: TextureFormat::Rgba32Float,
488                usage: TextureUsages::TEXTURE_BINDING,
489                view_formats: &[],
490            },
491            TextureDataOrder::LayerMajor,
492            bytemuck::cast_slice(density.as_slice()),
493        );
494
495        let density_lut_view = density_lut.create_view(&TextureViewDescriptor {
496            label: source_asset
497                .label
498                .as_deref()
499                .map(|label| format!("{}_density_lut_view", label))
500                .as_deref()
501                .or(Some("scattering_medium_density_lut_view")),
502            ..Default::default()
503        });
504
505        let scattering_lut = render_device.create_texture_with_data(
506            render_queue,
507            &TextureDescriptor {
508                label: source_asset
509                    .label
510                    .as_deref()
511                    .map(|label| format!("{}_scattering_lut", label))
512                    .as_deref()
513                    .or(Some("scattering_medium_scattering_lut")),
514                size: Extent3d {
515                    width: source_asset.falloff_resolution,
516                    height: source_asset.phase_resolution,
517                    depth_or_array_layers: 1,
518                },
519                mip_level_count: 1,
520                sample_count: 1,
521                dimension: TextureDimension::D2,
522                format: TextureFormat::Rgba32Float,
523                usage: TextureUsages::TEXTURE_BINDING,
524                view_formats: &[],
525            },
526            TextureDataOrder::LayerMajor,
527            bytemuck::cast_slice(scattering.as_slice()),
528        );
529
530        let scattering_lut_view = scattering_lut.create_view(&TextureViewDescriptor {
531            label: source_asset
532                .label
533                .as_deref()
534                .map(|label| format!("{}_scattering_lut", label))
535                .as_deref()
536                .or(Some("scattering_medium_scattering_lut_view")),
537            ..Default::default()
538        });
539
540        Ok(Self {
541            terms: source_asset.terms,
542            falloff_resolution: source_asset.falloff_resolution,
543            phase_resolution: source_asset.phase_resolution,
544            density_lut,
545            density_lut_view,
546            scattering_lut,
547            scattering_lut_view,
548        })
549    }
550}
551
552/// The default sampler for all scattering media LUTs.
553///
554/// Just a bilinear clamp-to-edge sampler, nothing fancy.
555#[derive(Resource)]
556pub struct ScatteringMediumSampler(Sampler);
557
558impl ScatteringMediumSampler {
559    pub fn sampler(&self) -> &Sampler {
560        &self.0
561    }
562}
563
564fn init_scattering_medium_sampler(mut commands: Commands, render_device: Res<RenderDevice>) {
565    let sampler = render_device.create_sampler(&SamplerDescriptor {
566        label: Some("scattering_medium_sampler"),
567        mag_filter: FilterMode::Linear,
568        min_filter: FilterMode::Linear,
569        ..Default::default()
570    });
571
572    commands.insert_resource(ScatteringMediumSampler(sampler));
573}