bevy_pbr/pbr_material.rs
1use bevy_asset::Asset;
2use bevy_color::{Alpha, ColorToComponents};
3use bevy_math::{Affine2, Affine3, Mat2, Mat3, Vec2, Vec3, Vec4};
4use bevy_mesh::MeshVertexBufferLayoutRef;
5use bevy_reflect::{std_traits::ReflectDefault, Reflect};
6use bevy_render::{render_asset::RenderAssets, render_resource::*, texture::GpuImage};
7use bitflags::bitflags;
8
9use crate::{deferred::DEFAULT_PBR_DEFERRED_LIGHTING_PASS_ID, *};
10
11/// An enum to define which UV attribute to use for a texture.
12///
13/// It is used for every texture in the [`StandardMaterial`].
14/// It only supports two UV attributes, [`bevy_mesh::Mesh::ATTRIBUTE_UV_0`] and
15/// [`bevy_mesh::Mesh::ATTRIBUTE_UV_1`].
16/// The default is [`UvChannel::Uv0`].
17#[derive(Reflect, Default, Debug, Clone, PartialEq, Eq)]
18#[reflect(Default, Debug, Clone, PartialEq)]
19pub enum UvChannel {
20 #[default]
21 Uv0,
22 Uv1,
23}
24
25/// A material with "standard" properties used in PBR lighting.
26/// Standard property values with pictures here:
27/// <https://google.github.io/filament/notes/material_properties.html>.
28///
29/// May be created directly from a [`Color`] or an [`Image`].
30#[derive(Asset, AsBindGroup, Reflect, Debug, Clone)]
31#[bind_group_data(StandardMaterialKey)]
32#[data(0, StandardMaterialUniform, binding_array(10))]
33#[bindless(index_table(range(0..31)))]
34#[reflect(Default, Debug, Clone)]
35pub struct StandardMaterial {
36 /// The color of the surface of the material before lighting.
37 ///
38 /// Doubles as diffuse albedo for non-metallic, specular for metallic and a mix for everything
39 /// in between. If used together with a `base_color_texture`, this is factored into the final
40 /// base color as `base_color * base_color_texture_value`.
41 ///
42 /// Defaults to [`Color::WHITE`].
43 pub base_color: Color,
44
45 /// The UV channel to use for the [`StandardMaterial::base_color_texture`].
46 ///
47 /// Defaults to [`UvChannel::Uv0`].
48 pub base_color_channel: UvChannel,
49
50 /// The texture component of the material's color before lighting.
51 /// The actual pre-lighting color is `base_color * this_texture`.
52 ///
53 /// See [`base_color`] for details.
54 ///
55 /// You should set `base_color` to [`Color::WHITE`] (the default)
56 /// if you want the texture to show as-is.
57 ///
58 /// Setting `base_color` to something else than white will tint
59 /// the texture. For example, setting `base_color` to pure red will
60 /// tint the texture red.
61 ///
62 /// [`base_color`]: StandardMaterial::base_color
63 #[texture(1)]
64 #[sampler(2)]
65 #[dependency]
66 pub base_color_texture: Option<Handle<Image>>,
67
68 // Use a color for user friendliness even though we technically don't use the alpha channel
69 // Might be used in the future for exposure correction in HDR
70 /// Color the material "emits" to the camera.
71 ///
72 /// This is typically used for monitor screens or LED lights.
73 /// Anything that can be visible even in darkness.
74 ///
75 /// The emissive color is added to what would otherwise be the material's visible color.
76 /// This means that for a light emissive value, in darkness,
77 /// you will mostly see the emissive component.
78 ///
79 /// The default emissive color is [`LinearRgba::BLACK`], which doesn't add anything to the material color.
80 ///
81 /// Emissive strength is controlled by the value of the color channels,
82 /// while the hue is controlled by their relative values.
83 ///
84 /// As a result, channel values for `emissive`
85 /// colors can exceed `1.0`. For instance, a `base_color` of
86 /// `LinearRgba::rgb(1.0, 0.0, 0.0)` represents the brightest
87 /// red for objects that reflect light, but an emissive color
88 /// like `LinearRgba::rgb(1000.0, 0.0, 0.0)` can be used to create
89 /// intensely bright red emissive effects.
90 ///
91 /// This results in a final luminance value when multiplied
92 /// by the value of the greyscale emissive texture (which ranges from 0 for black to 1 for white).
93 /// Luminance is a measure of the amount of light emitted per unit area,
94 /// and can be thought of as the "brightness" of the effect.
95 /// In Bevy, we treat these luminance values as the physical units of cd/m², aka nits.
96 ///
97 /// Increasing the emissive strength of the color will impact visual effects
98 /// like bloom, but it's important to note that **an emissive material won't
99 /// typically light up surrounding areas like a light source**,
100 /// it just adds a value to the color seen on screen.
101 pub emissive: LinearRgba,
102
103 /// The weight in which the camera exposure influences the emissive color.
104 /// A value of `0.0` means the emissive color is not affected by the camera exposure.
105 /// In opposition, a value of `1.0` means the emissive color is multiplied by the camera exposure.
106 ///
107 /// Defaults to `0.0`
108 pub emissive_exposure_weight: f32,
109
110 /// The UV channel to use for the [`StandardMaterial::emissive_texture`].
111 ///
112 /// Defaults to [`UvChannel::Uv0`].
113 pub emissive_channel: UvChannel,
114
115 /// The emissive map, multiplies pixels with [`emissive`]
116 /// to get the final "emitting" color of a surface.
117 ///
118 /// This color is multiplied by [`emissive`] to get the final emitted color.
119 /// Meaning that you should set [`emissive`] to [`Color::WHITE`]
120 /// if you want to use the full range of color of the emissive texture.
121 ///
122 /// [`emissive`]: StandardMaterial::emissive
123 #[texture(3)]
124 #[sampler(4)]
125 #[dependency]
126 pub emissive_texture: Option<Handle<Image>>,
127
128 /// Linear perceptual roughness, clamped to `[0.089, 1.0]` in the shader.
129 ///
130 /// Defaults to `0.5`.
131 ///
132 /// Low values result in a "glossy" material with specular highlights,
133 /// while values close to `1` result in rough materials.
134 ///
135 /// If used together with a roughness/metallic texture, this is factored into the final base
136 /// color as `roughness * roughness_texture_value`.
137 ///
138 /// 0.089 is the minimum floating point value that won't be rounded down to 0 in the
139 /// calculations used.
140 // Technically for 32-bit floats, 0.045 could be used.
141 // See <https://google.github.io/filament/Filament.html#materialsystem/parameterization/>
142 pub perceptual_roughness: f32,
143
144 /// How "metallic" the material appears, within `[0.0, 1.0]`.
145 ///
146 /// This should be set to 0.0 for dielectric materials or 1.0 for metallic materials.
147 /// For a hybrid surface such as corroded metal, you may need to use in-between values.
148 ///
149 /// Defaults to `0.00`, for dielectric.
150 ///
151 /// If used together with a roughness/metallic texture, this is factored into the final base
152 /// color as `metallic * metallic_texture_value`.
153 pub metallic: f32,
154
155 /// The UV channel to use for the [`StandardMaterial::metallic_roughness_texture`].
156 ///
157 /// Defaults to [`UvChannel::Uv0`].
158 pub metallic_roughness_channel: UvChannel,
159
160 /// Metallic and roughness maps, stored as a single texture.
161 ///
162 /// The blue channel contains metallic values,
163 /// and the green channel contains the roughness values.
164 /// Other channels are unused.
165 ///
166 /// Those values are multiplied by the scalar ones of the material,
167 /// see [`metallic`] and [`perceptual_roughness`] for details.
168 ///
169 /// Note that with the default values of [`metallic`] and [`perceptual_roughness`],
170 /// setting this texture has no effect. If you want to exclusively use the
171 /// `metallic_roughness_texture` values for your material, make sure to set [`metallic`]
172 /// and [`perceptual_roughness`] to `1.0`.
173 ///
174 /// [`metallic`]: StandardMaterial::metallic
175 /// [`perceptual_roughness`]: StandardMaterial::perceptual_roughness
176 #[texture(5)]
177 #[sampler(6)]
178 #[dependency]
179 pub metallic_roughness_texture: Option<Handle<Image>>,
180
181 /// Specular intensity for non-metals on a linear scale of `[0.0, 1.0]`.
182 ///
183 /// Use the value as a way to control the intensity of the
184 /// specular highlight of the material, i.e. how reflective is the material,
185 /// rather than the physical property "reflectance."
186 ///
187 /// Set to `0.0`, no specular highlight is visible, the highlight is strongest
188 /// when `reflectance` is set to `1.0`.
189 ///
190 /// Defaults to `0.5` which is mapped to 4% reflectance in the shader.
191 #[doc(alias = "specular_intensity")]
192 pub reflectance: f32,
193
194 /// A color with which to modulate the [`StandardMaterial::reflectance`] for
195 /// non-metals.
196 ///
197 /// The specular highlights and reflection are tinted with this color. Note
198 /// that it has no effect for non-metals.
199 ///
200 /// This feature is currently unsupported in the deferred rendering path, in
201 /// order to reduce the size of the geometry buffers.
202 ///
203 /// Defaults to [`Color::WHITE`].
204 #[doc(alias = "specular_color")]
205 pub specular_tint: Color,
206
207 /// The amount of light transmitted _diffusely_ through the material (i.e. “translucency”).
208 ///
209 /// Implemented as a second, flipped [Lambertian diffuse](https://en.wikipedia.org/wiki/Lambertian_reflectance) lobe,
210 /// which provides an inexpensive but plausible approximation of translucency for thin dielectric objects (e.g. paper,
211 /// leaves, some fabrics) or thicker volumetric materials with short scattering distances (e.g. porcelain, wax).
212 ///
213 /// For specular transmission usecases with refraction (e.g. glass) use the [`StandardMaterial::specular_transmission`] and
214 /// [`StandardMaterial::ior`] properties instead.
215 ///
216 /// - When set to `0.0` (the default) no diffuse light is transmitted;
217 /// - When set to `1.0` all diffuse light is transmitted through the material;
218 /// - Values higher than `0.5` will cause more diffuse light to be transmitted than reflected, resulting in a “darker”
219 /// appearance on the side facing the light than the opposite side. (e.g. plant leaves)
220 ///
221 /// ## Notes
222 ///
223 /// - The material's [`StandardMaterial::base_color`] also modulates the transmitted light;
224 /// - To receive transmitted shadows on the diffuse transmission lobe (i.e. the “backside”) of the material,
225 /// use the [`TransmittedShadowReceiver`](bevy_light::TransmittedShadowReceiver) component.
226 #[doc(alias = "translucency")]
227 pub diffuse_transmission: f32,
228
229 /// The UV channel to use for the [`StandardMaterial::diffuse_transmission_texture`].
230 ///
231 /// Defaults to [`UvChannel::Uv0`].
232 #[cfg(feature = "pbr_transmission_textures")]
233 pub diffuse_transmission_channel: UvChannel,
234
235 /// A map that modulates diffuse transmission via its alpha channel. Multiplied by [`StandardMaterial::diffuse_transmission`]
236 /// to obtain the final result.
237 ///
238 /// **Important:** The [`StandardMaterial::diffuse_transmission`] property must be set to a value higher than 0.0,
239 /// or this texture won't have any effect.
240 #[cfg_attr(feature = "pbr_transmission_textures", texture(19))]
241 #[cfg_attr(feature = "pbr_transmission_textures", sampler(20))]
242 #[cfg(feature = "pbr_transmission_textures")]
243 pub diffuse_transmission_texture: Option<Handle<Image>>,
244
245 /// The amount of light transmitted _specularly_ through the material (i.e. via refraction).
246 ///
247 /// - When set to `0.0` (the default) no light is transmitted.
248 /// - When set to `1.0` all light is transmitted through the material.
249 ///
250 /// The material's [`StandardMaterial::base_color`] also modulates the transmitted light.
251 ///
252 /// **Note:** Typically used in conjunction with [`StandardMaterial::thickness`], [`StandardMaterial::ior`] and [`StandardMaterial::perceptual_roughness`].
253 ///
254 /// ## Performance
255 ///
256 /// Specular transmission is implemented as a relatively expensive screen-space effect that allows occluded objects to be seen through the material,
257 /// with distortion and blur effects.
258 ///
259 /// - [`Camera3d::screen_space_specular_transmission_steps`](bevy_camera::Camera3d::screen_space_specular_transmission_steps) can be used to enable transmissive objects
260 /// to be seen through other transmissive objects, at the cost of additional draw calls and texture copies; (Use with caution!)
261 /// - If a simplified approximation of specular transmission using only environment map lighting is sufficient, consider setting
262 /// [`Camera3d::screen_space_specular_transmission_steps`](bevy_camera::Camera3d::screen_space_specular_transmission_steps) to `0`.
263 /// - If purely diffuse light transmission is needed, (i.e. “translucency”) consider using [`StandardMaterial::diffuse_transmission`] instead,
264 /// for a much less expensive effect.
265 /// - Specular transmission is rendered before alpha blending, so any material with [`AlphaMode::Blend`], [`AlphaMode::Premultiplied`], [`AlphaMode::Add`] or [`AlphaMode::Multiply`]
266 /// won't be visible through specular transmissive materials.
267 #[doc(alias = "refraction")]
268 pub specular_transmission: f32,
269
270 /// The UV channel to use for the [`StandardMaterial::specular_transmission_texture`].
271 ///
272 /// Defaults to [`UvChannel::Uv0`].
273 #[cfg(feature = "pbr_transmission_textures")]
274 pub specular_transmission_channel: UvChannel,
275
276 /// A map that modulates specular transmission via its red channel. Multiplied by [`StandardMaterial::specular_transmission`]
277 /// to obtain the final result.
278 ///
279 /// **Important:** The [`StandardMaterial::specular_transmission`] property must be set to a value higher than 0.0,
280 /// or this texture won't have any effect.
281 #[cfg_attr(feature = "pbr_transmission_textures", texture(15))]
282 #[cfg_attr(feature = "pbr_transmission_textures", sampler(16))]
283 #[cfg(feature = "pbr_transmission_textures")]
284 pub specular_transmission_texture: Option<Handle<Image>>,
285
286 /// Thickness of the volume beneath the material surface.
287 ///
288 /// When set to `0.0` (the default) the material appears as an infinitely-thin film,
289 /// transmitting light without distorting it.
290 ///
291 /// When set to any other value, the material distorts light like a thick lens.
292 ///
293 /// **Note:** Typically used in conjunction with [`StandardMaterial::specular_transmission`] and [`StandardMaterial::ior`], or with
294 /// [`StandardMaterial::diffuse_transmission`].
295 #[doc(alias = "volume")]
296 #[doc(alias = "thin_walled")]
297 pub thickness: f32,
298
299 /// The UV channel to use for the [`StandardMaterial::thickness_texture`].
300 ///
301 /// Defaults to [`UvChannel::Uv0`].
302 #[cfg(feature = "pbr_transmission_textures")]
303 pub thickness_channel: UvChannel,
304
305 /// A map that modulates thickness via its green channel. Multiplied by [`StandardMaterial::thickness`]
306 /// to obtain the final result.
307 ///
308 /// **Important:** The [`StandardMaterial::thickness`] property must be set to a value higher than 0.0,
309 /// or this texture won't have any effect.
310 #[cfg_attr(feature = "pbr_transmission_textures", texture(17))]
311 #[cfg_attr(feature = "pbr_transmission_textures", sampler(18))]
312 #[cfg(feature = "pbr_transmission_textures")]
313 pub thickness_texture: Option<Handle<Image>>,
314
315 /// The [index of refraction](https://en.wikipedia.org/wiki/Refractive_index) of the material.
316 ///
317 /// Defaults to 1.5.
318 ///
319 /// | Material | Index of Refraction |
320 /// |:----------------|:---------------------|
321 /// | Vacuum | 1 |
322 /// | Air | 1.00 |
323 /// | Ice | 1.31 |
324 /// | Water | 1.33 |
325 /// | Eyes | 1.38 |
326 /// | Quartz | 1.46 |
327 /// | Olive Oil | 1.47 |
328 /// | Honey | 1.49 |
329 /// | Acrylic | 1.49 |
330 /// | Window Glass | 1.52 |
331 /// | Polycarbonate | 1.58 |
332 /// | Flint Glass | 1.69 |
333 /// | Ruby | 1.71 |
334 /// | Glycerine | 1.74 |
335 /// | Sapphire | 1.77 |
336 /// | Cubic Zirconia | 2.15 |
337 /// | Diamond | 2.42 |
338 /// | Moissanite | 2.65 |
339 ///
340 /// **Note:** Typically used in conjunction with [`StandardMaterial::specular_transmission`] and [`StandardMaterial::thickness`].
341 #[doc(alias = "index_of_refraction")]
342 #[doc(alias = "refraction_index")]
343 #[doc(alias = "refractive_index")]
344 pub ior: f32,
345
346 /// How far, on average, light travels through the volume beneath the material's
347 /// surface before being absorbed.
348 ///
349 /// Defaults to [`f32::INFINITY`], i.e. light is never absorbed.
350 ///
351 /// **Note:** To have any effect, must be used in conjunction with:
352 /// - [`StandardMaterial::attenuation_color`];
353 /// - [`StandardMaterial::thickness`];
354 /// - [`StandardMaterial::diffuse_transmission`] or [`StandardMaterial::specular_transmission`].
355 #[doc(alias = "absorption_distance")]
356 #[doc(alias = "extinction_distance")]
357 pub attenuation_distance: f32,
358
359 /// The resulting (non-absorbed) color after white light travels through the attenuation distance.
360 ///
361 /// Defaults to [`Color::WHITE`], i.e. no change.
362 ///
363 /// **Note:** To have any effect, must be used in conjunction with:
364 /// - [`StandardMaterial::attenuation_distance`];
365 /// - [`StandardMaterial::thickness`];
366 /// - [`StandardMaterial::diffuse_transmission`] or [`StandardMaterial::specular_transmission`].
367 #[doc(alias = "absorption_color")]
368 #[doc(alias = "extinction_color")]
369 pub attenuation_color: Color,
370
371 /// The UV channel to use for the [`StandardMaterial::normal_map_texture`].
372 ///
373 /// Defaults to [`UvChannel::Uv0`].
374 pub normal_map_channel: UvChannel,
375
376 /// Used to fake the lighting of bumps and dents on a material.
377 ///
378 /// A typical usage would be faking cobblestones on a flat plane mesh in 3D.
379 ///
380 /// # Notes
381 ///
382 /// Normal mapping with `StandardMaterial` and the core bevy PBR shaders requires:
383 /// - A normal map texture
384 /// - Vertex UVs
385 /// - Vertex tangents
386 /// - Vertex normals
387 ///
388 /// Tangents do not have to be stored in your model,
389 /// they can be generated using the [`Mesh::generate_tangents`] or
390 /// [`Mesh::with_generated_tangents`] methods.
391 /// If your material has a normal map, but still renders as a flat surface,
392 /// make sure your meshes have their tangents set.
393 ///
394 /// [`Mesh::generate_tangents`]: bevy_mesh::Mesh::generate_tangents
395 /// [`Mesh::with_generated_tangents`]: bevy_mesh::Mesh::with_generated_tangents
396 ///
397 /// # Usage
398 ///
399 /// ```
400 /// # use bevy_asset::{AssetServer, Handle};
401 /// # use bevy_ecs::change_detection::Res;
402 /// # use bevy_image::{Image, ImageLoaderSettings};
403 /// #
404 /// fn load_normal_map(asset_server: Res<AssetServer>) {
405 /// let normal_handle: Handle<Image> = asset_server.load_with_settings(
406 /// "textures/parallax_example/cube_normal.png",
407 /// // The normal map texture is in linear color space. Lighting won't look correct
408 /// // if `is_srgb` is `true`, which is the default.
409 /// |settings: &mut ImageLoaderSettings| settings.is_srgb = false,
410 /// );
411 /// }
412 /// ```
413 #[texture(9)]
414 #[sampler(10)]
415 #[dependency]
416 pub normal_map_texture: Option<Handle<Image>>,
417
418 /// Normal map textures authored for DirectX have their y-component flipped. Set this to flip
419 /// it to right-handed conventions.
420 pub flip_normal_map_y: bool,
421
422 /// The UV channel to use for the [`StandardMaterial::occlusion_texture`].
423 ///
424 /// Defaults to [`UvChannel::Uv0`].
425 pub occlusion_channel: UvChannel,
426
427 /// Specifies the level of exposure to ambient light.
428 ///
429 /// This is usually generated and stored automatically ("baked") by 3D-modeling software.
430 ///
431 /// Typically, steep concave parts of a model (such as the armpit of a shirt) are darker,
432 /// because they have little exposure to light.
433 /// An occlusion map specifies those parts of the model that light doesn't reach well.
434 ///
435 /// The material will be less lit in places where this texture is dark.
436 /// This is similar to ambient occlusion, but built into the model.
437 #[texture(7)]
438 #[sampler(8)]
439 #[dependency]
440 pub occlusion_texture: Option<Handle<Image>>,
441
442 /// The UV channel to use for the [`StandardMaterial::specular_texture`].
443 ///
444 /// Defaults to [`UvChannel::Uv0`].
445 #[cfg(feature = "pbr_specular_textures")]
446 pub specular_channel: UvChannel,
447
448 /// A map that specifies reflectance for non-metallic materials.
449 ///
450 /// Alpha values from [0.0, 1.0] in this texture are linearly mapped to
451 /// reflectance values of [0.0, 0.5] and multiplied by the constant
452 /// [`StandardMaterial::reflectance`] value. This follows the
453 /// `KHR_materials_specular` specification. The map will have no effect if
454 /// the material is fully metallic.
455 ///
456 /// When using this map, you may wish to set the
457 /// [`StandardMaterial::reflectance`] value to 2.0 so that this map can
458 /// express the full [0.0, 1.0] range of values.
459 ///
460 /// Note that, because the reflectance is stored in the alpha channel, and
461 /// the [`StandardMaterial::specular_tint_texture`] has no alpha value, it
462 /// may be desirable to pack the values together and supply the same
463 /// texture to both fields.
464 #[cfg_attr(feature = "pbr_specular_textures", texture(27))]
465 #[cfg_attr(feature = "pbr_specular_textures", sampler(28))]
466 #[cfg(feature = "pbr_specular_textures")]
467 pub specular_texture: Option<Handle<Image>>,
468
469 /// The UV channel to use for the
470 /// [`StandardMaterial::specular_tint_texture`].
471 ///
472 /// Defaults to [`UvChannel::Uv0`].
473 #[cfg(feature = "pbr_specular_textures")]
474 pub specular_tint_channel: UvChannel,
475
476 /// A map that specifies color adjustment to be applied to the specular
477 /// reflection for non-metallic materials.
478 ///
479 /// The RGB values of this texture modulate the
480 /// [`StandardMaterial::specular_tint`] value. See the documentation for
481 /// that field for more information.
482 ///
483 /// Like the fixed specular tint value, this texture map isn't supported in
484 /// the deferred renderer.
485 #[cfg_attr(feature = "pbr_specular_textures", texture(29))]
486 #[cfg_attr(feature = "pbr_specular_textures", sampler(30))]
487 #[cfg(feature = "pbr_specular_textures")]
488 pub specular_tint_texture: Option<Handle<Image>>,
489
490 /// An extra thin translucent layer on top of the main PBR layer. This is
491 /// typically used for painted surfaces.
492 ///
493 /// This value specifies the strength of the layer, which affects how
494 /// visible the clearcoat layer will be.
495 ///
496 /// Defaults to zero, specifying no clearcoat layer.
497 pub clearcoat: f32,
498
499 /// The UV channel to use for the [`StandardMaterial::clearcoat_texture`].
500 ///
501 /// Defaults to [`UvChannel::Uv0`].
502 #[cfg(feature = "pbr_multi_layer_material_textures")]
503 pub clearcoat_channel: UvChannel,
504
505 /// An image texture that specifies the strength of the clearcoat layer in
506 /// the red channel. Values sampled from this texture are multiplied by the
507 /// main [`StandardMaterial::clearcoat`] factor.
508 ///
509 /// As this is a non-color map, it must not be loaded as sRGB.
510 #[cfg_attr(feature = "pbr_multi_layer_material_textures", texture(21))]
511 #[cfg_attr(feature = "pbr_multi_layer_material_textures", sampler(22))]
512 #[cfg(feature = "pbr_multi_layer_material_textures")]
513 pub clearcoat_texture: Option<Handle<Image>>,
514
515 /// The roughness of the clearcoat material. This is specified in exactly
516 /// the same way as the [`StandardMaterial::perceptual_roughness`].
517 ///
518 /// If the [`StandardMaterial::clearcoat`] value if zero, this has no
519 /// effect.
520 ///
521 /// Defaults to 0.5.
522 pub clearcoat_perceptual_roughness: f32,
523
524 /// The UV channel to use for the [`StandardMaterial::clearcoat_roughness_texture`].
525 ///
526 /// Defaults to [`UvChannel::Uv0`].
527 #[cfg(feature = "pbr_multi_layer_material_textures")]
528 pub clearcoat_roughness_channel: UvChannel,
529
530 /// An image texture that specifies the roughness of the clearcoat level in
531 /// the green channel. Values from this texture are multiplied by the main
532 /// [`StandardMaterial::clearcoat_perceptual_roughness`] factor.
533 ///
534 /// As this is a non-color map, it must not be loaded as sRGB.
535 #[cfg_attr(feature = "pbr_multi_layer_material_textures", texture(23))]
536 #[cfg_attr(feature = "pbr_multi_layer_material_textures", sampler(24))]
537 #[cfg(feature = "pbr_multi_layer_material_textures")]
538 pub clearcoat_roughness_texture: Option<Handle<Image>>,
539
540 /// The UV channel to use for the [`StandardMaterial::clearcoat_normal_texture`].
541 ///
542 /// Defaults to [`UvChannel::Uv0`].
543 #[cfg(feature = "pbr_multi_layer_material_textures")]
544 pub clearcoat_normal_channel: UvChannel,
545
546 /// An image texture that specifies a normal map that is to be applied to
547 /// the clearcoat layer. This can be used to simulate, for example,
548 /// scratches on an outer layer of varnish. Normal maps are in the same
549 /// format as [`StandardMaterial::normal_map_texture`].
550 ///
551 /// Note that, if a clearcoat normal map isn't specified, the main normal
552 /// map, if any, won't be applied to the clearcoat. If you want a normal map
553 /// that applies to both the main material and to the clearcoat, specify it
554 /// in both [`StandardMaterial::normal_map_texture`] and this field.
555 ///
556 /// As this is a non-color map, it must not be loaded as sRGB.
557 #[cfg_attr(feature = "pbr_multi_layer_material_textures", texture(25))]
558 #[cfg_attr(feature = "pbr_multi_layer_material_textures", sampler(26))]
559 #[cfg(feature = "pbr_multi_layer_material_textures")]
560 pub clearcoat_normal_texture: Option<Handle<Image>>,
561
562 /// Increases the roughness along a specific direction, so that the specular
563 /// highlight will be stretched instead of being a circular lobe.
564 ///
565 /// This value ranges from 0 (perfectly circular) to 1 (maximally
566 /// stretched). The default direction (corresponding to a
567 /// [`StandardMaterial::anisotropy_rotation`] of 0) aligns with the
568 /// *tangent* of the mesh; thus mesh tangents must be specified in order for
569 /// this parameter to have any meaning. The direction can be changed using
570 /// the [`StandardMaterial::anisotropy_rotation`] parameter.
571 ///
572 /// This is typically used for modeling surfaces such as brushed metal and
573 /// hair, in which one direction of the surface but not the other is smooth.
574 ///
575 /// See the [`KHR_materials_anisotropy` specification] for more details.
576 ///
577 /// [`KHR_materials_anisotropy` specification]:
578 /// https://github.com/KhronosGroup/glTF/blob/main/extensions/2.0/Khronos/KHR_materials_anisotropy/README.md
579 pub anisotropy_strength: f32,
580
581 /// The direction of increased roughness, in radians relative to the mesh
582 /// tangent.
583 ///
584 /// This parameter causes the roughness to vary according to the
585 /// [`StandardMaterial::anisotropy_strength`]. The rotation is applied in
586 /// tangent-bitangent space; thus, mesh tangents must be present for this
587 /// parameter to have any meaning.
588 ///
589 /// This parameter has no effect if
590 /// [`StandardMaterial::anisotropy_strength`] is zero. Its value can
591 /// optionally be adjusted across the mesh with the
592 /// [`StandardMaterial::anisotropy_texture`].
593 ///
594 /// See the [`KHR_materials_anisotropy` specification] for more details.
595 ///
596 /// [`KHR_materials_anisotropy` specification]:
597 /// https://github.com/KhronosGroup/glTF/blob/main/extensions/2.0/Khronos/KHR_materials_anisotropy/README.md
598 pub anisotropy_rotation: f32,
599
600 /// The UV channel to use for the [`StandardMaterial::anisotropy_texture`].
601 ///
602 /// Defaults to [`UvChannel::Uv0`].
603 #[cfg(feature = "pbr_anisotropy_texture")]
604 pub anisotropy_channel: UvChannel,
605
606 /// An image texture that allows the
607 /// [`StandardMaterial::anisotropy_strength`] and
608 /// [`StandardMaterial::anisotropy_rotation`] to vary across the mesh.
609 ///
610 /// The [`KHR_materials_anisotropy` specification] defines the format that
611 /// this texture must take. To summarize: the direction vector is encoded in
612 /// the red and green channels, while the strength is encoded in the blue
613 /// channels. For the direction vector, the red and green channels map the
614 /// color range [0, 1] to the vector range [-1, 1]. The direction vector
615 /// encoded in this texture modifies the default rotation direction in
616 /// tangent-bitangent space, before the
617 /// [`StandardMaterial::anisotropy_rotation`] parameter is applied. The
618 /// value in the blue channel is multiplied by the
619 /// [`StandardMaterial::anisotropy_strength`] value to produce the final
620 /// anisotropy strength.
621 ///
622 /// As the texel values don't represent colors, this texture must be in
623 /// linear color space, not sRGB.
624 ///
625 /// [`KHR_materials_anisotropy` specification]:
626 /// https://github.com/KhronosGroup/glTF/blob/main/extensions/2.0/Khronos/KHR_materials_anisotropy/README.md
627 #[cfg_attr(feature = "pbr_anisotropy_texture", texture(13))]
628 #[cfg_attr(feature = "pbr_anisotropy_texture", sampler(14))]
629 #[cfg(feature = "pbr_anisotropy_texture")]
630 pub anisotropy_texture: Option<Handle<Image>>,
631
632 /// Support two-sided lighting by automatically flipping the normals for "back" faces
633 /// within the PBR lighting shader.
634 ///
635 /// Defaults to `false`.
636 /// This does not automatically configure backface culling,
637 /// which can be done via `cull_mode`.
638 pub double_sided: bool,
639
640 /// Whether to cull the "front", "back" or neither side of a mesh.
641 /// If set to `None`, the two sides of the mesh are visible.
642 ///
643 /// Defaults to `Some(Face::Back)`.
644 /// In bevy, the order of declaration of a triangle's vertices
645 /// in [`Mesh`] defines the triangle's front face.
646 ///
647 /// When a triangle is in a viewport,
648 /// if its vertices appear counter-clockwise from the viewport's perspective,
649 /// then the viewport is seeing the triangle's front face.
650 /// Conversely, if the vertices appear clockwise, you are seeing the back face.
651 ///
652 /// In short, in bevy, front faces winds counter-clockwise.
653 ///
654 /// Your 3D editing software should manage all of that.
655 ///
656 /// [`Mesh`]: bevy_mesh::Mesh
657 // TODO: include this in reflection somehow (maybe via remote types like serde https://serde.rs/remote-derive.html)
658 #[reflect(ignore, clone)]
659 pub cull_mode: Option<Face>,
660
661 /// Whether to apply only the base color to this material.
662 ///
663 /// Normals, occlusion textures, roughness, metallic, reflectance, emissive,
664 /// shadows, alpha mode and ambient light are ignored if this is set to `true`.
665 pub unlit: bool,
666
667 /// Whether to enable fog for this material.
668 pub fog_enabled: bool,
669
670 /// How to apply the alpha channel of the `base_color_texture`.
671 ///
672 /// See [`AlphaMode`] for details. Defaults to [`AlphaMode::Opaque`].
673 pub alpha_mode: AlphaMode,
674
675 /// Adjust rendered depth.
676 ///
677 /// A material with a positive depth bias will render closer to the
678 /// camera while negative values cause the material to render behind
679 /// other objects. This is independent of the viewport.
680 ///
681 /// `depth_bias` affects render ordering and depth write operations
682 /// using the `wgpu::DepthBiasState::Constant` field.
683 ///
684 /// [z-fighting]: https://en.wikipedia.org/wiki/Z-fighting
685 pub depth_bias: f32,
686
687 /// The depth map used for [parallax mapping].
688 ///
689 /// It is a grayscale image where white represents bottom and black the top.
690 /// If this field is set, bevy will apply [parallax mapping].
691 /// Parallax mapping, unlike simple normal maps, will move the texture
692 /// coordinate according to the current perspective,
693 /// giving actual depth to the texture.
694 ///
695 /// The visual result is similar to a displacement map,
696 /// but does not require additional geometry.
697 ///
698 /// Use the [`parallax_depth_scale`] field to control the depth of the parallax.
699 ///
700 /// ## Limitations
701 ///
702 /// - It will look weird on bent/non-planar surfaces.
703 /// - The depth of the pixel does not reflect its visual position, resulting
704 /// in artifacts for depth-dependent features such as fog or SSAO.
705 /// - For the same reason, the geometry silhouette will always be
706 /// the one of the actual geometry, not the parallaxed version, resulting
707 /// in awkward looks on intersecting parallaxed surfaces.
708 ///
709 /// ## Performance
710 ///
711 /// Parallax mapping requires multiple texture lookups, proportional to
712 /// [`max_parallax_layer_count`], which might be costly.
713 ///
714 /// Use the [`parallax_mapping_method`] and [`max_parallax_layer_count`] fields
715 /// to tweak the shader, trading graphical quality for performance.
716 ///
717 /// To improve performance, set your `depth_map`'s [`Image::sampler`]
718 /// filter mode to `FilterMode::Nearest`, as [this paper] indicates, it improves
719 /// performance a bit.
720 ///
721 /// To reduce artifacts, avoid steep changes in depth, blurring the depth
722 /// map helps with this.
723 ///
724 /// Larger depth maps haves a disproportionate performance impact.
725 ///
726 /// [this paper]: https://www.diva-portal.org/smash/get/diva2:831762/FULLTEXT01.pdf
727 /// [parallax mapping]: https://en.wikipedia.org/wiki/Parallax_mapping
728 /// [`parallax_depth_scale`]: StandardMaterial::parallax_depth_scale
729 /// [`parallax_mapping_method`]: StandardMaterial::parallax_mapping_method
730 /// [`max_parallax_layer_count`]: StandardMaterial::max_parallax_layer_count
731 #[texture(11)]
732 #[sampler(12)]
733 #[dependency]
734 pub depth_map: Option<Handle<Image>>,
735
736 /// How deep the offset introduced by the depth map should be.
737 ///
738 /// Default is `0.1`, anything over that value may look distorted.
739 /// Lower values lessen the effect.
740 ///
741 /// The depth is relative to texture size. This means that if your texture
742 /// occupies a surface of `1` world unit, and `parallax_depth_scale` is `0.1`, then
743 /// the in-world depth will be of `0.1` world units.
744 /// If the texture stretches for `10` world units, then the final depth
745 /// will be of `1` world unit.
746 pub parallax_depth_scale: f32,
747
748 /// Which parallax mapping method to use.
749 ///
750 /// We recommend that all objects use the same [`ParallaxMappingMethod`], to avoid
751 /// duplicating and running two shaders.
752 pub parallax_mapping_method: ParallaxMappingMethod,
753
754 /// In how many layers to split the depth maps for parallax mapping.
755 ///
756 /// If you are seeing jaggy edges, increase this value.
757 /// However, this incurs a performance cost.
758 ///
759 /// Dependent on the situation, switching to [`ParallaxMappingMethod::Relief`]
760 /// and keeping this value low might have better performance than increasing the
761 /// layer count while using [`ParallaxMappingMethod::Occlusion`].
762 ///
763 /// Default is `16.0`.
764 pub max_parallax_layer_count: f32,
765
766 /// The exposure (brightness) level of the lightmap, if present.
767 pub lightmap_exposure: f32,
768
769 /// Render method used for opaque materials. (Where `alpha_mode` is [`AlphaMode::Opaque`] or [`AlphaMode::Mask`])
770 pub opaque_render_method: OpaqueRendererMethod,
771
772 /// Used for selecting the deferred lighting pass for deferred materials.
773 /// Default is [`DEFAULT_PBR_DEFERRED_LIGHTING_PASS_ID`] for default
774 /// PBR deferred lighting pass. Ignored in the case of forward materials.
775 pub deferred_lighting_pass_id: u8,
776
777 /// The transform applied to the UVs corresponding to `ATTRIBUTE_UV_0` on the mesh before sampling. Default is identity.
778 pub uv_transform: Affine2,
779}
780
781impl StandardMaterial {
782 /// Horizontal flipping transform
783 ///
784 /// Multiplying this with another Affine2 returns transformation with horizontally flipped texture coords
785 pub const FLIP_HORIZONTAL: Affine2 = Affine2 {
786 matrix2: Mat2::from_cols(Vec2::new(-1.0, 0.0), Vec2::Y),
787 translation: Vec2::X,
788 };
789
790 /// Vertical flipping transform
791 ///
792 /// Multiplying this with another Affine2 returns transformation with vertically flipped texture coords
793 pub const FLIP_VERTICAL: Affine2 = Affine2 {
794 matrix2: Mat2::from_cols(Vec2::X, Vec2::new(0.0, -1.0)),
795 translation: Vec2::Y,
796 };
797
798 /// Flipping X 3D transform
799 ///
800 /// Multiplying this with another Affine3 returns transformation with flipped X coords
801 pub const FLIP_X: Affine3 = Affine3 {
802 matrix3: Mat3::from_cols(Vec3::new(-1.0, 0.0, 0.0), Vec3::Y, Vec3::Z),
803 translation: Vec3::X,
804 };
805
806 /// Flipping Y 3D transform
807 ///
808 /// Multiplying this with another Affine3 returns transformation with flipped Y coords
809 pub const FLIP_Y: Affine3 = Affine3 {
810 matrix3: Mat3::from_cols(Vec3::X, Vec3::new(0.0, -1.0, 0.0), Vec3::Z),
811 translation: Vec3::Y,
812 };
813
814 /// Flipping Z 3D transform
815 ///
816 /// Multiplying this with another Affine3 returns transformation with flipped Z coords
817 pub const FLIP_Z: Affine3 = Affine3 {
818 matrix3: Mat3::from_cols(Vec3::X, Vec3::Y, Vec3::new(0.0, 0.0, -1.0)),
819 translation: Vec3::Z,
820 };
821
822 /// Flip the texture coordinates of the material.
823 pub fn flip(&mut self, horizontal: bool, vertical: bool) {
824 if horizontal {
825 // Multiplication of `Affine2` is order dependent, which is why
826 // we do not use the `*=` operator.
827 self.uv_transform = Self::FLIP_HORIZONTAL * self.uv_transform;
828 }
829 if vertical {
830 self.uv_transform = Self::FLIP_VERTICAL * self.uv_transform;
831 }
832 }
833
834 /// Consumes the material and returns a material with flipped texture coordinates
835 pub fn flipped(mut self, horizontal: bool, vertical: bool) -> Self {
836 self.flip(horizontal, vertical);
837 self
838 }
839
840 /// Creates a new material from a given color
841 pub fn from_color(color: impl Into<Color>) -> Self {
842 Self::from(color.into())
843 }
844}
845
846impl Default for StandardMaterial {
847 fn default() -> Self {
848 StandardMaterial {
849 // White because it gets multiplied with texture values if someone uses
850 // a texture.
851 base_color: Color::WHITE,
852 base_color_channel: UvChannel::Uv0,
853 base_color_texture: None,
854 emissive: LinearRgba::BLACK,
855 emissive_exposure_weight: 0.0,
856 emissive_channel: UvChannel::Uv0,
857 emissive_texture: None,
858 // Matches Blender's default roughness.
859 perceptual_roughness: 0.5,
860 // Metallic should generally be set to 0.0 or 1.0.
861 metallic: 0.0,
862 metallic_roughness_channel: UvChannel::Uv0,
863 metallic_roughness_texture: None,
864 // Minimum real-world reflectance is 2%, most materials between 2-5%
865 // Expressed in a linear scale and equivalent to 4% reflectance see
866 // <https://google.github.io/filament/Material%20Properties.pdf>
867 reflectance: 0.5,
868 diffuse_transmission: 0.0,
869 #[cfg(feature = "pbr_transmission_textures")]
870 diffuse_transmission_channel: UvChannel::Uv0,
871 #[cfg(feature = "pbr_transmission_textures")]
872 diffuse_transmission_texture: None,
873 specular_transmission: 0.0,
874 #[cfg(feature = "pbr_transmission_textures")]
875 specular_transmission_channel: UvChannel::Uv0,
876 #[cfg(feature = "pbr_transmission_textures")]
877 specular_transmission_texture: None,
878 thickness: 0.0,
879 #[cfg(feature = "pbr_transmission_textures")]
880 thickness_channel: UvChannel::Uv0,
881 #[cfg(feature = "pbr_transmission_textures")]
882 thickness_texture: None,
883 ior: 1.5,
884 attenuation_color: Color::WHITE,
885 attenuation_distance: f32::INFINITY,
886 occlusion_channel: UvChannel::Uv0,
887 occlusion_texture: None,
888 normal_map_channel: UvChannel::Uv0,
889 normal_map_texture: None,
890 #[cfg(feature = "pbr_specular_textures")]
891 specular_channel: UvChannel::Uv0,
892 #[cfg(feature = "pbr_specular_textures")]
893 specular_texture: None,
894 specular_tint: Color::WHITE,
895 #[cfg(feature = "pbr_specular_textures")]
896 specular_tint_channel: UvChannel::Uv0,
897 #[cfg(feature = "pbr_specular_textures")]
898 specular_tint_texture: None,
899 clearcoat: 0.0,
900 clearcoat_perceptual_roughness: 0.5,
901 #[cfg(feature = "pbr_multi_layer_material_textures")]
902 clearcoat_channel: UvChannel::Uv0,
903 #[cfg(feature = "pbr_multi_layer_material_textures")]
904 clearcoat_texture: None,
905 #[cfg(feature = "pbr_multi_layer_material_textures")]
906 clearcoat_roughness_channel: UvChannel::Uv0,
907 #[cfg(feature = "pbr_multi_layer_material_textures")]
908 clearcoat_roughness_texture: None,
909 #[cfg(feature = "pbr_multi_layer_material_textures")]
910 clearcoat_normal_channel: UvChannel::Uv0,
911 #[cfg(feature = "pbr_multi_layer_material_textures")]
912 clearcoat_normal_texture: None,
913 anisotropy_strength: 0.0,
914 anisotropy_rotation: 0.0,
915 #[cfg(feature = "pbr_anisotropy_texture")]
916 anisotropy_channel: UvChannel::Uv0,
917 #[cfg(feature = "pbr_anisotropy_texture")]
918 anisotropy_texture: None,
919 flip_normal_map_y: false,
920 double_sided: false,
921 cull_mode: Some(Face::Back),
922 unlit: false,
923 fog_enabled: true,
924 alpha_mode: AlphaMode::Opaque,
925 depth_bias: 0.0,
926 depth_map: None,
927 parallax_depth_scale: 0.1,
928 max_parallax_layer_count: 16.0,
929 lightmap_exposure: 1.0,
930 parallax_mapping_method: ParallaxMappingMethod::Occlusion,
931 opaque_render_method: OpaqueRendererMethod::Auto,
932 deferred_lighting_pass_id: DEFAULT_PBR_DEFERRED_LIGHTING_PASS_ID,
933 uv_transform: Affine2::IDENTITY,
934 }
935 }
936}
937
938impl From<Color> for StandardMaterial {
939 fn from(color: Color) -> Self {
940 StandardMaterial {
941 base_color: color,
942 alpha_mode: if color.alpha() < 1.0 {
943 AlphaMode::Blend
944 } else {
945 AlphaMode::Opaque
946 },
947 ..Default::default()
948 }
949 }
950}
951
952impl From<Handle<Image>> for StandardMaterial {
953 fn from(texture: Handle<Image>) -> Self {
954 StandardMaterial {
955 base_color_texture: Some(texture),
956 ..Default::default()
957 }
958 }
959}
960
961// NOTE: These must match the bit flags in bevy_pbr/src/render/pbr_types.wgsl!
962bitflags::bitflags! {
963 /// Bitflags info about the material a shader is currently rendering.
964 /// This is accessible in the shader in the [`StandardMaterialUniform`]
965 #[repr(transparent)]
966 pub struct StandardMaterialFlags: u32 {
967 const BASE_COLOR_TEXTURE = 1 << 0;
968 const EMISSIVE_TEXTURE = 1 << 1;
969 const METALLIC_ROUGHNESS_TEXTURE = 1 << 2;
970 const OCCLUSION_TEXTURE = 1 << 3;
971 const DOUBLE_SIDED = 1 << 4;
972 const UNLIT = 1 << 5;
973 const TWO_COMPONENT_NORMAL_MAP = 1 << 6;
974 const FLIP_NORMAL_MAP_Y = 1 << 7;
975 const FOG_ENABLED = 1 << 8;
976 const DEPTH_MAP = 1 << 9; // Used for parallax mapping
977 const SPECULAR_TRANSMISSION_TEXTURE = 1 << 10;
978 const THICKNESS_TEXTURE = 1 << 11;
979 const DIFFUSE_TRANSMISSION_TEXTURE = 1 << 12;
980 const ATTENUATION_ENABLED = 1 << 13;
981 const CLEARCOAT_TEXTURE = 1 << 14;
982 const CLEARCOAT_ROUGHNESS_TEXTURE = 1 << 15;
983 const CLEARCOAT_NORMAL_TEXTURE = 1 << 16;
984 const ANISOTROPY_TEXTURE = 1 << 17;
985 const SPECULAR_TEXTURE = 1 << 18;
986 const SPECULAR_TINT_TEXTURE = 1 << 19;
987 const ALPHA_MODE_RESERVED_BITS = Self::ALPHA_MODE_MASK_BITS << Self::ALPHA_MODE_SHIFT_BITS; // ← Bitmask reserving bits for the `AlphaMode`
988 const ALPHA_MODE_OPAQUE = 0 << Self::ALPHA_MODE_SHIFT_BITS; // ← Values are just sequential values bitshifted into
989 const ALPHA_MODE_MASK = 1 << Self::ALPHA_MODE_SHIFT_BITS; // the bitmask, and can range from 0 to 7.
990 const ALPHA_MODE_BLEND = 2 << Self::ALPHA_MODE_SHIFT_BITS; //
991 const ALPHA_MODE_PREMULTIPLIED = 3 << Self::ALPHA_MODE_SHIFT_BITS; //
992 const ALPHA_MODE_ADD = 4 << Self::ALPHA_MODE_SHIFT_BITS; // Right now only values 0–5 are used, which still gives
993 const ALPHA_MODE_MULTIPLY = 5 << Self::ALPHA_MODE_SHIFT_BITS; // ← us "room" for two more modes without adding more bits
994 const ALPHA_MODE_ALPHA_TO_COVERAGE = 6 << Self::ALPHA_MODE_SHIFT_BITS;
995 const NONE = 0;
996 const UNINITIALIZED = 0xFFFF;
997 }
998}
999
1000impl StandardMaterialFlags {
1001 const ALPHA_MODE_MASK_BITS: u32 = 0b111;
1002 const ALPHA_MODE_SHIFT_BITS: u32 = 32 - Self::ALPHA_MODE_MASK_BITS.count_ones();
1003}
1004
1005/// The GPU representation of the uniform data of a [`StandardMaterial`].
1006#[derive(Clone, Default, ShaderType)]
1007pub struct StandardMaterialUniform {
1008 /// Doubles as diffuse albedo for non-metallic, specular for metallic and a mix for everything
1009 /// in between.
1010 pub base_color: Vec4,
1011 // Use a color for user-friendliness even though we technically don't use the alpha channel
1012 // Might be used in the future for exposure correction in HDR
1013 pub emissive: Vec4,
1014 /// Color white light takes after traveling through the attenuation distance underneath the material surface
1015 pub attenuation_color: Vec4,
1016 /// The transform applied to the UVs corresponding to `ATTRIBUTE_UV_0` on the mesh before sampling. Default is identity.
1017 pub uv_transform: Mat3,
1018 /// Specular intensity for non-metals on a linear scale of [0.0, 1.0]
1019 /// defaults to 0.5 which is mapped to 4% reflectance in the shader
1020 pub reflectance: Vec3,
1021 /// Linear perceptual roughness, clamped to [0.089, 1.0] in the shader
1022 /// Defaults to minimum of 0.089
1023 pub roughness: f32,
1024 /// From [0.0, 1.0], dielectric to pure metallic
1025 pub metallic: f32,
1026 /// Amount of diffuse light transmitted through the material
1027 pub diffuse_transmission: f32,
1028 /// Amount of specular light transmitted through the material
1029 pub specular_transmission: f32,
1030 /// Thickness of the volume underneath the material surface
1031 pub thickness: f32,
1032 /// Index of Refraction
1033 pub ior: f32,
1034 /// How far light travels through the volume underneath the material surface before being absorbed
1035 pub attenuation_distance: f32,
1036 pub clearcoat: f32,
1037 pub clearcoat_perceptual_roughness: f32,
1038 pub anisotropy_strength: f32,
1039 pub anisotropy_rotation: Vec2,
1040 /// The [`StandardMaterialFlags`] accessible in the `wgsl` shader.
1041 pub flags: u32,
1042 /// When the alpha mode mask flag is set, any base color alpha above this cutoff means fully opaque,
1043 /// and any below means fully transparent.
1044 pub alpha_cutoff: f32,
1045 /// The depth of the [`StandardMaterial::depth_map`] to apply.
1046 pub parallax_depth_scale: f32,
1047 /// In how many layers to split the depth maps for Steep parallax mapping.
1048 ///
1049 /// If your `parallax_depth_scale` is >0.1 and you are seeing jaggy edges,
1050 /// increase this value. However, this incurs a performance cost.
1051 pub max_parallax_layer_count: f32,
1052 /// The exposure (brightness) level of the lightmap, if present.
1053 pub lightmap_exposure: f32,
1054 /// Using [`ParallaxMappingMethod::Relief`], how many additional
1055 /// steps to use at most to find the depth value.
1056 pub max_relief_mapping_search_steps: u32,
1057 /// ID for specifying which deferred lighting pass should be used for rendering this material, if any.
1058 pub deferred_lighting_pass_id: u32,
1059}
1060
1061impl AsBindGroupShaderType<StandardMaterialUniform> for StandardMaterial {
1062 fn as_bind_group_shader_type(
1063 &self,
1064 images: &RenderAssets<GpuImage>,
1065 ) -> StandardMaterialUniform {
1066 let mut flags = StandardMaterialFlags::NONE;
1067 if self.base_color_texture.is_some() {
1068 flags |= StandardMaterialFlags::BASE_COLOR_TEXTURE;
1069 }
1070 if self.emissive_texture.is_some() {
1071 flags |= StandardMaterialFlags::EMISSIVE_TEXTURE;
1072 }
1073 if self.metallic_roughness_texture.is_some() {
1074 flags |= StandardMaterialFlags::METALLIC_ROUGHNESS_TEXTURE;
1075 }
1076 if self.occlusion_texture.is_some() {
1077 flags |= StandardMaterialFlags::OCCLUSION_TEXTURE;
1078 }
1079 if self.double_sided {
1080 flags |= StandardMaterialFlags::DOUBLE_SIDED;
1081 }
1082 if self.unlit {
1083 flags |= StandardMaterialFlags::UNLIT;
1084 }
1085 if self.fog_enabled {
1086 flags |= StandardMaterialFlags::FOG_ENABLED;
1087 }
1088 if self.depth_map.is_some() {
1089 flags |= StandardMaterialFlags::DEPTH_MAP;
1090 }
1091 #[cfg(feature = "pbr_transmission_textures")]
1092 {
1093 if self.specular_transmission_texture.is_some() {
1094 flags |= StandardMaterialFlags::SPECULAR_TRANSMISSION_TEXTURE;
1095 }
1096 if self.thickness_texture.is_some() {
1097 flags |= StandardMaterialFlags::THICKNESS_TEXTURE;
1098 }
1099 if self.diffuse_transmission_texture.is_some() {
1100 flags |= StandardMaterialFlags::DIFFUSE_TRANSMISSION_TEXTURE;
1101 }
1102 }
1103
1104 #[cfg(feature = "pbr_anisotropy_texture")]
1105 {
1106 if self.anisotropy_texture.is_some() {
1107 flags |= StandardMaterialFlags::ANISOTROPY_TEXTURE;
1108 }
1109 }
1110
1111 #[cfg(feature = "pbr_specular_textures")]
1112 {
1113 if self.specular_texture.is_some() {
1114 flags |= StandardMaterialFlags::SPECULAR_TEXTURE;
1115 }
1116 if self.specular_tint_texture.is_some() {
1117 flags |= StandardMaterialFlags::SPECULAR_TINT_TEXTURE;
1118 }
1119 }
1120
1121 #[cfg(feature = "pbr_multi_layer_material_textures")]
1122 {
1123 if self.clearcoat_texture.is_some() {
1124 flags |= StandardMaterialFlags::CLEARCOAT_TEXTURE;
1125 }
1126 if self.clearcoat_roughness_texture.is_some() {
1127 flags |= StandardMaterialFlags::CLEARCOAT_ROUGHNESS_TEXTURE;
1128 }
1129 if self.clearcoat_normal_texture.is_some() {
1130 flags |= StandardMaterialFlags::CLEARCOAT_NORMAL_TEXTURE;
1131 }
1132 }
1133
1134 let has_normal_map = self.normal_map_texture.is_some();
1135 if has_normal_map {
1136 let normal_map_id = self.normal_map_texture.as_ref().map(Handle::id).unwrap();
1137 if let Some(texture) = images.get(normal_map_id) {
1138 match texture.texture_format {
1139 // All 2-component unorm formats
1140 TextureFormat::Rg8Unorm
1141 | TextureFormat::Rg16Unorm
1142 | TextureFormat::Bc5RgUnorm
1143 | TextureFormat::EacRg11Unorm => {
1144 flags |= StandardMaterialFlags::TWO_COMPONENT_NORMAL_MAP;
1145 }
1146 _ => {}
1147 }
1148 }
1149 if self.flip_normal_map_y {
1150 flags |= StandardMaterialFlags::FLIP_NORMAL_MAP_Y;
1151 }
1152 }
1153 // NOTE: 0.5 is from the glTF default - do we want this?
1154 let mut alpha_cutoff = 0.5;
1155 match self.alpha_mode {
1156 AlphaMode::Opaque => flags |= StandardMaterialFlags::ALPHA_MODE_OPAQUE,
1157 AlphaMode::Mask(c) => {
1158 alpha_cutoff = c;
1159 flags |= StandardMaterialFlags::ALPHA_MODE_MASK;
1160 }
1161 AlphaMode::Blend => flags |= StandardMaterialFlags::ALPHA_MODE_BLEND,
1162 AlphaMode::Premultiplied => flags |= StandardMaterialFlags::ALPHA_MODE_PREMULTIPLIED,
1163 AlphaMode::Add => flags |= StandardMaterialFlags::ALPHA_MODE_ADD,
1164 AlphaMode::Multiply => flags |= StandardMaterialFlags::ALPHA_MODE_MULTIPLY,
1165 AlphaMode::AlphaToCoverage => {
1166 flags |= StandardMaterialFlags::ALPHA_MODE_ALPHA_TO_COVERAGE;
1167 }
1168 };
1169
1170 if self.attenuation_distance.is_finite() {
1171 flags |= StandardMaterialFlags::ATTENUATION_ENABLED;
1172 }
1173
1174 let mut emissive = self.emissive.to_vec4();
1175 emissive[3] = self.emissive_exposure_weight;
1176
1177 // Doing this up front saves having to do this repeatedly in the fragment shader.
1178 let anisotropy_rotation = Vec2::from_angle(self.anisotropy_rotation);
1179
1180 StandardMaterialUniform {
1181 base_color: LinearRgba::from(self.base_color).to_vec4(),
1182 emissive,
1183 roughness: self.perceptual_roughness,
1184 metallic: self.metallic,
1185 reflectance: LinearRgba::from(self.specular_tint).to_vec3() * self.reflectance,
1186 clearcoat: self.clearcoat,
1187 clearcoat_perceptual_roughness: self.clearcoat_perceptual_roughness,
1188 anisotropy_strength: self.anisotropy_strength,
1189 anisotropy_rotation,
1190 diffuse_transmission: self.diffuse_transmission,
1191 specular_transmission: self.specular_transmission,
1192 thickness: self.thickness,
1193 ior: self.ior,
1194 attenuation_distance: self.attenuation_distance,
1195 attenuation_color: LinearRgba::from(self.attenuation_color)
1196 .to_f32_array()
1197 .into(),
1198 flags: flags.bits(),
1199 alpha_cutoff,
1200 parallax_depth_scale: self.parallax_depth_scale,
1201 max_parallax_layer_count: self.max_parallax_layer_count,
1202 lightmap_exposure: self.lightmap_exposure,
1203 max_relief_mapping_search_steps: self.parallax_mapping_method.max_steps(),
1204 deferred_lighting_pass_id: self.deferred_lighting_pass_id as u32,
1205 uv_transform: self.uv_transform.into(),
1206 }
1207 }
1208}
1209
1210bitflags! {
1211 /// The pipeline key for `StandardMaterial`, packed into 64 bits.
1212 #[repr(C)]
1213 #[derive(Clone, Copy, PartialEq, Eq, Hash)]
1214 pub struct StandardMaterialKey: u64 {
1215 const CULL_FRONT = 0x000001;
1216 const CULL_BACK = 0x000002;
1217 const NORMAL_MAP = 0x000004;
1218 const RELIEF_MAPPING = 0x000008;
1219 const DIFFUSE_TRANSMISSION = 0x000010;
1220 const SPECULAR_TRANSMISSION = 0x000020;
1221 const CLEARCOAT = 0x000040;
1222 const CLEARCOAT_NORMAL_MAP = 0x000080;
1223 const ANISOTROPY = 0x000100;
1224 const BASE_COLOR_UV = 0x000200;
1225 const EMISSIVE_UV = 0x000400;
1226 const METALLIC_ROUGHNESS_UV = 0x000800;
1227 const OCCLUSION_UV = 0x001000;
1228 const SPECULAR_TRANSMISSION_UV = 0x002000;
1229 const THICKNESS_UV = 0x004000;
1230 const DIFFUSE_TRANSMISSION_UV = 0x008000;
1231 const NORMAL_MAP_UV = 0x010000;
1232 const ANISOTROPY_UV = 0x020000;
1233 const CLEARCOAT_UV = 0x040000;
1234 const CLEARCOAT_ROUGHNESS_UV = 0x080000;
1235 const CLEARCOAT_NORMAL_UV = 0x100000;
1236 const SPECULAR_UV = 0x200000;
1237 const SPECULAR_TINT_UV = 0x400000;
1238 const DEPTH_BIAS = 0xffffffff_00000000;
1239 }
1240}
1241
1242const STANDARD_MATERIAL_KEY_DEPTH_BIAS_SHIFT: u64 = 32;
1243
1244impl From<&StandardMaterial> for StandardMaterialKey {
1245 fn from(material: &StandardMaterial) -> Self {
1246 let mut key = StandardMaterialKey::empty();
1247 key.set(
1248 StandardMaterialKey::CULL_FRONT,
1249 material.cull_mode == Some(Face::Front),
1250 );
1251 key.set(
1252 StandardMaterialKey::CULL_BACK,
1253 material.cull_mode == Some(Face::Back),
1254 );
1255 key.set(
1256 StandardMaterialKey::NORMAL_MAP,
1257 material.normal_map_texture.is_some(),
1258 );
1259 key.set(
1260 StandardMaterialKey::RELIEF_MAPPING,
1261 matches!(
1262 material.parallax_mapping_method,
1263 ParallaxMappingMethod::Relief { .. }
1264 ),
1265 );
1266 key.set(
1267 StandardMaterialKey::DIFFUSE_TRANSMISSION,
1268 material.diffuse_transmission > 0.0,
1269 );
1270 key.set(
1271 StandardMaterialKey::SPECULAR_TRANSMISSION,
1272 material.specular_transmission > 0.0,
1273 );
1274
1275 key.set(StandardMaterialKey::CLEARCOAT, material.clearcoat > 0.0);
1276
1277 #[cfg(feature = "pbr_multi_layer_material_textures")]
1278 key.set(
1279 StandardMaterialKey::CLEARCOAT_NORMAL_MAP,
1280 material.clearcoat > 0.0 && material.clearcoat_normal_texture.is_some(),
1281 );
1282
1283 key.set(
1284 StandardMaterialKey::ANISOTROPY,
1285 material.anisotropy_strength > 0.0,
1286 );
1287
1288 key.set(
1289 StandardMaterialKey::BASE_COLOR_UV,
1290 material.base_color_channel != UvChannel::Uv0,
1291 );
1292
1293 key.set(
1294 StandardMaterialKey::EMISSIVE_UV,
1295 material.emissive_channel != UvChannel::Uv0,
1296 );
1297 key.set(
1298 StandardMaterialKey::METALLIC_ROUGHNESS_UV,
1299 material.metallic_roughness_channel != UvChannel::Uv0,
1300 );
1301 key.set(
1302 StandardMaterialKey::OCCLUSION_UV,
1303 material.occlusion_channel != UvChannel::Uv0,
1304 );
1305 #[cfg(feature = "pbr_transmission_textures")]
1306 {
1307 key.set(
1308 StandardMaterialKey::SPECULAR_TRANSMISSION_UV,
1309 material.specular_transmission_channel != UvChannel::Uv0,
1310 );
1311 key.set(
1312 StandardMaterialKey::THICKNESS_UV,
1313 material.thickness_channel != UvChannel::Uv0,
1314 );
1315 key.set(
1316 StandardMaterialKey::DIFFUSE_TRANSMISSION_UV,
1317 material.diffuse_transmission_channel != UvChannel::Uv0,
1318 );
1319 }
1320
1321 key.set(
1322 StandardMaterialKey::NORMAL_MAP_UV,
1323 material.normal_map_channel != UvChannel::Uv0,
1324 );
1325
1326 #[cfg(feature = "pbr_anisotropy_texture")]
1327 {
1328 key.set(
1329 StandardMaterialKey::ANISOTROPY_UV,
1330 material.anisotropy_channel != UvChannel::Uv0,
1331 );
1332 }
1333
1334 #[cfg(feature = "pbr_specular_textures")]
1335 {
1336 key.set(
1337 StandardMaterialKey::SPECULAR_UV,
1338 material.specular_channel != UvChannel::Uv0,
1339 );
1340 key.set(
1341 StandardMaterialKey::SPECULAR_TINT_UV,
1342 material.specular_tint_channel != UvChannel::Uv0,
1343 );
1344 }
1345
1346 #[cfg(feature = "pbr_multi_layer_material_textures")]
1347 {
1348 key.set(
1349 StandardMaterialKey::CLEARCOAT_UV,
1350 material.clearcoat_channel != UvChannel::Uv0,
1351 );
1352 key.set(
1353 StandardMaterialKey::CLEARCOAT_ROUGHNESS_UV,
1354 material.clearcoat_roughness_channel != UvChannel::Uv0,
1355 );
1356 key.set(
1357 StandardMaterialKey::CLEARCOAT_NORMAL_UV,
1358 material.clearcoat_normal_channel != UvChannel::Uv0,
1359 );
1360 }
1361
1362 key.insert(StandardMaterialKey::from_bits_retain(
1363 // Casting to i32 first to ensure the full i32 range is preserved.
1364 // (wgpu expects the depth_bias as an i32 when this is extracted in a later step)
1365 (material.depth_bias as i32 as u64) << STANDARD_MATERIAL_KEY_DEPTH_BIAS_SHIFT,
1366 ));
1367 key
1368 }
1369}
1370
1371impl Material for StandardMaterial {
1372 fn fragment_shader() -> ShaderRef {
1373 shader_ref(bevy_asset::embedded_path!("render/pbr.wgsl"))
1374 }
1375
1376 #[inline]
1377 fn alpha_mode(&self) -> AlphaMode {
1378 self.alpha_mode
1379 }
1380
1381 #[inline]
1382 fn opaque_render_method(&self) -> OpaqueRendererMethod {
1383 match self.opaque_render_method {
1384 // For now, diffuse transmission doesn't work under deferred rendering as we don't pack
1385 // the required data into the GBuffer. If this material is set to `Auto`, we report it as
1386 // `Forward` so that it's rendered correctly, even when the `DefaultOpaqueRendererMethod`
1387 // is set to `Deferred`.
1388 //
1389 // If the developer explicitly sets the `OpaqueRendererMethod` to `Deferred`, we assume
1390 // they know what they're doing and don't override it.
1391 OpaqueRendererMethod::Auto if self.diffuse_transmission > 0.0 => {
1392 OpaqueRendererMethod::Forward
1393 }
1394 other => other,
1395 }
1396 }
1397
1398 #[inline]
1399 fn depth_bias(&self) -> f32 {
1400 self.depth_bias
1401 }
1402
1403 #[inline]
1404 fn reads_view_transmission_texture(&self) -> bool {
1405 self.specular_transmission > 0.0
1406 }
1407
1408 fn prepass_fragment_shader() -> ShaderRef {
1409 shader_ref(bevy_asset::embedded_path!("render/pbr_prepass.wgsl"))
1410 }
1411
1412 fn deferred_fragment_shader() -> ShaderRef {
1413 shader_ref(bevy_asset::embedded_path!("render/pbr.wgsl"))
1414 }
1415
1416 #[cfg(feature = "meshlet")]
1417 fn meshlet_mesh_fragment_shader() -> ShaderRef {
1418 Self::fragment_shader()
1419 }
1420
1421 #[cfg(feature = "meshlet")]
1422 fn meshlet_mesh_prepass_fragment_shader() -> ShaderRef {
1423 Self::prepass_fragment_shader()
1424 }
1425
1426 #[cfg(feature = "meshlet")]
1427 fn meshlet_mesh_deferred_fragment_shader() -> ShaderRef {
1428 Self::deferred_fragment_shader()
1429 }
1430
1431 fn specialize(
1432 _pipeline: &MaterialPipeline,
1433 descriptor: &mut RenderPipelineDescriptor,
1434 _layout: &MeshVertexBufferLayoutRef,
1435 key: MaterialPipelineKey<Self>,
1436 ) -> Result<(), SpecializedMeshPipelineError> {
1437 if let Some(fragment) = descriptor.fragment.as_mut() {
1438 let shader_defs = &mut fragment.shader_defs;
1439
1440 for (flags, shader_def) in [
1441 (
1442 StandardMaterialKey::NORMAL_MAP,
1443 "STANDARD_MATERIAL_NORMAL_MAP",
1444 ),
1445 (StandardMaterialKey::RELIEF_MAPPING, "RELIEF_MAPPING"),
1446 (
1447 StandardMaterialKey::DIFFUSE_TRANSMISSION,
1448 "STANDARD_MATERIAL_DIFFUSE_TRANSMISSION",
1449 ),
1450 (
1451 StandardMaterialKey::SPECULAR_TRANSMISSION,
1452 "STANDARD_MATERIAL_SPECULAR_TRANSMISSION",
1453 ),
1454 (
1455 StandardMaterialKey::DIFFUSE_TRANSMISSION
1456 | StandardMaterialKey::SPECULAR_TRANSMISSION,
1457 "STANDARD_MATERIAL_DIFFUSE_OR_SPECULAR_TRANSMISSION",
1458 ),
1459 (
1460 StandardMaterialKey::CLEARCOAT,
1461 "STANDARD_MATERIAL_CLEARCOAT",
1462 ),
1463 (
1464 StandardMaterialKey::CLEARCOAT_NORMAL_MAP,
1465 "STANDARD_MATERIAL_CLEARCOAT_NORMAL_MAP",
1466 ),
1467 (
1468 StandardMaterialKey::ANISOTROPY,
1469 "STANDARD_MATERIAL_ANISOTROPY",
1470 ),
1471 (
1472 StandardMaterialKey::BASE_COLOR_UV,
1473 "STANDARD_MATERIAL_BASE_COLOR_UV_B",
1474 ),
1475 (
1476 StandardMaterialKey::EMISSIVE_UV,
1477 "STANDARD_MATERIAL_EMISSIVE_UV_B",
1478 ),
1479 (
1480 StandardMaterialKey::METALLIC_ROUGHNESS_UV,
1481 "STANDARD_MATERIAL_METALLIC_ROUGHNESS_UV_B",
1482 ),
1483 (
1484 StandardMaterialKey::OCCLUSION_UV,
1485 "STANDARD_MATERIAL_OCCLUSION_UV_B",
1486 ),
1487 (
1488 StandardMaterialKey::SPECULAR_TRANSMISSION_UV,
1489 "STANDARD_MATERIAL_SPECULAR_TRANSMISSION_UV_B",
1490 ),
1491 (
1492 StandardMaterialKey::THICKNESS_UV,
1493 "STANDARD_MATERIAL_THICKNESS_UV_B",
1494 ),
1495 (
1496 StandardMaterialKey::DIFFUSE_TRANSMISSION_UV,
1497 "STANDARD_MATERIAL_DIFFUSE_TRANSMISSION_UV_B",
1498 ),
1499 (
1500 StandardMaterialKey::NORMAL_MAP_UV,
1501 "STANDARD_MATERIAL_NORMAL_MAP_UV_B",
1502 ),
1503 (
1504 StandardMaterialKey::CLEARCOAT_UV,
1505 "STANDARD_MATERIAL_CLEARCOAT_UV_B",
1506 ),
1507 (
1508 StandardMaterialKey::CLEARCOAT_ROUGHNESS_UV,
1509 "STANDARD_MATERIAL_CLEARCOAT_ROUGHNESS_UV_B",
1510 ),
1511 (
1512 StandardMaterialKey::CLEARCOAT_NORMAL_UV,
1513 "STANDARD_MATERIAL_CLEARCOAT_NORMAL_UV_B",
1514 ),
1515 (
1516 StandardMaterialKey::ANISOTROPY_UV,
1517 "STANDARD_MATERIAL_ANISOTROPY_UV_B",
1518 ),
1519 (
1520 StandardMaterialKey::SPECULAR_UV,
1521 "STANDARD_MATERIAL_SPECULAR_UV_B",
1522 ),
1523 (
1524 StandardMaterialKey::SPECULAR_TINT_UV,
1525 "STANDARD_MATERIAL_SPECULAR_TINT_UV_B",
1526 ),
1527 ] {
1528 if key.bind_group_data.intersects(flags) {
1529 shader_defs.push(shader_def.into());
1530 }
1531 }
1532 }
1533
1534 descriptor.primitive.cull_mode = if key
1535 .bind_group_data
1536 .contains(StandardMaterialKey::CULL_FRONT)
1537 {
1538 Some(Face::Front)
1539 } else if key.bind_group_data.contains(StandardMaterialKey::CULL_BACK) {
1540 Some(Face::Back)
1541 } else {
1542 None
1543 };
1544
1545 if let Some(label) = &mut descriptor.label {
1546 *label = format!("pbr_{}", *label).into();
1547 }
1548 if let Some(depth_stencil) = descriptor.depth_stencil.as_mut() {
1549 depth_stencil.bias.constant =
1550 (key.bind_group_data.bits() >> STANDARD_MATERIAL_KEY_DEPTH_BIAS_SHIFT) as i32;
1551 }
1552 Ok(())
1553 }
1554}