bevy_reflect/enums/
enum_trait.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
use crate::generics::impl_generic_info_methods;
use crate::{
    attributes::{impl_custom_attribute_methods, CustomAttributes},
    type_info::impl_type_methods,
    DynamicEnum, Generics, PartialReflect, Type, TypePath, VariantInfo, VariantType,
};
use alloc::sync::Arc;
use bevy_utils::HashMap;
use core::slice::Iter;

/// A trait used to power [enum-like] operations via [reflection].
///
/// This allows enums to be processed and modified dynamically at runtime without
/// necessarily knowing the actual type.
/// Enums are much more complex than their struct counterparts.
/// As a result, users will need to be mindful of conventions, considerations,
/// and complications when working with this trait.
///
/// # Variants
///
/// An enum is a set of choices called _variants_.
/// An instance of an enum can only exist as one of these choices at any given time.
/// Consider Rust's [`Option<T>`]. It's an enum with two variants: [`None`] and [`Some`].
/// If you're `None`, you can't be `Some` and vice versa.
///
/// > ⚠️ __This is very important:__
/// > The [`Enum`] trait represents an enum _as one of its variants_.
/// > It does not represent the entire enum since that's not true to how enums work.
///
/// Variants come in a few [flavors](VariantType):
///
/// | Variant Type | Syntax                         |
/// | ------------ | ------------------------------ |
/// | Unit         | `MyEnum::Foo`                  |
/// | Tuple        | `MyEnum::Foo( i32, i32 )`      |
/// | Struct       | `MyEnum::Foo{ value: String }` |
///
/// As you can see, a unit variant contains no fields, while tuple and struct variants
/// can contain one or more fields.
/// The fields in a tuple variant is defined by their _order_ within the variant.
/// Index `0` represents the first field in the variant and so on.
/// Fields in struct variants (excluding tuple structs), on the other hand, are
/// represented by a _name_.
///
/// # Implementation
///
/// > 💡 This trait can be automatically implemented using [`#[derive(Reflect)]`](derive@crate::Reflect)
/// > on an enum definition.
///
/// Despite the fact that enums can represent multiple states, traits only exist in one state
/// and must be applied to the entire enum rather than a particular variant.
/// Because of this limitation, the [`Enum`] trait must not only _represent_ any of the
/// three variant types, but also define the _methods_ for all three as well.
///
/// What does this mean? It means that even though a unit variant contains no fields, a
/// representation of that variant using the [`Enum`] trait will still contain methods for
/// accessing fields!
/// Again, this is to account for _all three_ variant types.
///
/// We recommend using the built-in [`#[derive(Reflect)]`](derive@crate::Reflect) macro to automatically handle all the
/// implementation details for you.
/// However, if you _must_ implement this trait manually, there are a few things to keep in mind...
///
/// ## Field Order
///
/// While tuple variants identify their fields by the order in which they are defined, struct
/// variants identify fields by their name.
/// However, both should allow access to fields by their defined order.
///
/// The reason all fields, regardless of variant type, need to be accessible by their order is
/// due to field iteration.
/// We need a way to iterate through each field in a variant, and the easiest way of achieving
/// that is through the use of field order.
///
/// The derive macro adds proper struct variant handling for [`Enum::index_of`], [`Enum::name_at`]
/// and [`Enum::field_at[_mut]`](Enum::field_at) methods.
/// The first two methods are __required__ for all struct variant types.
/// By convention, implementors should also handle the last method as well, but this is not
/// a strict requirement.
///
/// ## Field Names
///
/// Implementors may choose to handle [`Enum::index_of`], [`Enum::name_at`], and
/// [`Enum::field[_mut]`](Enum::field) for tuple variants by considering stringified `usize`s to be
/// valid names (such as `"3"`).
/// This isn't wrong to do, but the convention set by the derive macro is that it isn't supported.
/// It's preferred that these strings be converted to their proper `usize` representations and
/// the [`Enum::field_at[_mut]`](Enum::field_at) methods be used instead.
///
/// [enum-like]: https://doc.rust-lang.org/book/ch06-01-defining-an-enum.html
/// [reflection]: crate
/// [`None`]: Option<T>::None
/// [`Some`]: Option<T>::Some
/// [`Reflect`]: bevy_reflect_derive::Reflect
pub trait Enum: PartialReflect {
    /// Returns a reference to the value of the field (in the current variant) with the given name.
    ///
    /// For non-[`VariantType::Struct`] variants, this should return `None`.
    fn field(&self, name: &str) -> Option<&dyn PartialReflect>;
    /// Returns a reference to the value of the field (in the current variant) at the given index.
    fn field_at(&self, index: usize) -> Option<&dyn PartialReflect>;
    /// Returns a mutable reference to the value of the field (in the current variant) with the given name.
    ///
    /// For non-[`VariantType::Struct`] variants, this should return `None`.
    fn field_mut(&mut self, name: &str) -> Option<&mut dyn PartialReflect>;
    /// Returns a mutable reference to the value of the field (in the current variant) at the given index.
    fn field_at_mut(&mut self, index: usize) -> Option<&mut dyn PartialReflect>;
    /// Returns the index of the field (in the current variant) with the given name.
    ///
    /// For non-[`VariantType::Struct`] variants, this should return `None`.
    fn index_of(&self, name: &str) -> Option<usize>;
    /// Returns the name of the field (in the current variant) with the given index.
    ///
    /// For non-[`VariantType::Struct`] variants, this should return `None`.
    fn name_at(&self, index: usize) -> Option<&str>;
    /// Returns an iterator over the values of the current variant's fields.
    fn iter_fields(&self) -> VariantFieldIter;
    /// Returns the number of fields in the current variant.
    fn field_len(&self) -> usize;
    /// The name of the current variant.
    fn variant_name(&self) -> &str;
    /// The index of the current variant.
    fn variant_index(&self) -> usize;
    /// The type of the current variant.
    fn variant_type(&self) -> VariantType;
    // Clones the enum into a [`DynamicEnum`].
    fn clone_dynamic(&self) -> DynamicEnum;
    /// Returns true if the current variant's type matches the given one.
    fn is_variant(&self, variant_type: VariantType) -> bool {
        self.variant_type() == variant_type
    }
    /// Returns the full path to the current variant.
    fn variant_path(&self) -> String {
        format!("{}::{}", self.reflect_type_path(), self.variant_name())
    }

    /// Will return `None` if [`TypeInfo`] is not available.
    ///
    /// [`TypeInfo`]: crate::TypeInfo
    fn get_represented_enum_info(&self) -> Option<&'static EnumInfo> {
        self.get_represented_type_info()?.as_enum().ok()
    }
}

/// A container for compile-time enum info, used by [`TypeInfo`](crate::TypeInfo).
#[derive(Clone, Debug)]
pub struct EnumInfo {
    ty: Type,
    generics: Generics,
    variants: Box<[VariantInfo]>,
    variant_names: Box<[&'static str]>,
    variant_indices: HashMap<&'static str, usize>,
    custom_attributes: Arc<CustomAttributes>,
    #[cfg(feature = "documentation")]
    docs: Option<&'static str>,
}

impl EnumInfo {
    /// Create a new [`EnumInfo`].
    ///
    /// # Arguments
    ///
    /// * `variants`: The variants of this enum in the order they are defined
    pub fn new<TEnum: Enum + TypePath>(variants: &[VariantInfo]) -> Self {
        let variant_indices = variants
            .iter()
            .enumerate()
            .map(|(index, variant)| (variant.name(), index))
            .collect::<HashMap<_, _>>();

        let variant_names = variants.iter().map(VariantInfo::name).collect();

        Self {
            ty: Type::of::<TEnum>(),
            generics: Generics::new(),
            variants: variants.to_vec().into_boxed_slice(),
            variant_names,
            variant_indices,
            custom_attributes: Arc::new(CustomAttributes::default()),
            #[cfg(feature = "documentation")]
            docs: None,
        }
    }

    /// Sets the docstring for this enum.
    #[cfg(feature = "documentation")]
    pub fn with_docs(self, docs: Option<&'static str>) -> Self {
        Self { docs, ..self }
    }

    /// Sets the custom attributes for this enum.
    pub fn with_custom_attributes(self, custom_attributes: CustomAttributes) -> Self {
        Self {
            custom_attributes: Arc::new(custom_attributes),
            ..self
        }
    }

    /// A slice containing the names of all variants in order.
    pub fn variant_names(&self) -> &[&'static str] {
        &self.variant_names
    }

    /// Get a variant with the given name.
    pub fn variant(&self, name: &str) -> Option<&VariantInfo> {
        self.variant_indices
            .get(name)
            .map(|index| &self.variants[*index])
    }

    /// Get a variant at the given index.
    pub fn variant_at(&self, index: usize) -> Option<&VariantInfo> {
        self.variants.get(index)
    }

    /// Get the index of the variant with the given name.
    pub fn index_of(&self, name: &str) -> Option<usize> {
        self.variant_indices.get(name).copied()
    }

    /// Returns the full path to the given variant.
    ///
    /// This does _not_ check if the given variant exists.
    pub fn variant_path(&self, name: &str) -> String {
        format!("{}::{name}", self.type_path())
    }

    /// Checks if a variant with the given name exists within this enum.
    pub fn contains_variant(&self, name: &str) -> bool {
        self.variant_indices.contains_key(name)
    }

    /// Iterate over the variants of this enum.
    pub fn iter(&self) -> Iter<'_, VariantInfo> {
        self.variants.iter()
    }

    /// The number of variants in this enum.
    pub fn variant_len(&self) -> usize {
        self.variants.len()
    }

    impl_type_methods!(ty);

    /// The docstring of this enum, if any.
    #[cfg(feature = "documentation")]
    pub fn docs(&self) -> Option<&'static str> {
        self.docs
    }

    impl_custom_attribute_methods!(self.custom_attributes, "enum");

    impl_generic_info_methods!(generics);
}

/// An iterator over the fields in the current enum variant.
pub struct VariantFieldIter<'a> {
    container: &'a dyn Enum,
    index: usize,
}

impl<'a> VariantFieldIter<'a> {
    pub fn new(container: &'a dyn Enum) -> Self {
        Self {
            container,
            index: 0,
        }
    }
}

impl<'a> Iterator for VariantFieldIter<'a> {
    type Item = VariantField<'a>;

    fn next(&mut self) -> Option<Self::Item> {
        let value = match self.container.variant_type() {
            VariantType::Unit => None,
            VariantType::Tuple => Some(VariantField::Tuple(self.container.field_at(self.index)?)),
            VariantType::Struct => {
                let name = self.container.name_at(self.index)?;
                Some(VariantField::Struct(name, self.container.field(name)?))
            }
        };
        self.index += value.is_some() as usize;
        value
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let size = self.container.field_len();
        (size, Some(size))
    }
}

impl<'a> ExactSizeIterator for VariantFieldIter<'a> {}

pub enum VariantField<'a> {
    Struct(&'a str, &'a dyn PartialReflect),
    Tuple(&'a dyn PartialReflect),
}

impl<'a> VariantField<'a> {
    pub fn name(&self) -> Option<&'a str> {
        if let Self::Struct(name, ..) = self {
            Some(*name)
        } else {
            None
        }
    }

    pub fn value(&self) -> &'a dyn PartialReflect {
        match *self {
            Self::Struct(_, value) | Self::Tuple(value) => value,
        }
    }
}

// Tests that need access to internal fields have to go here rather than in mod.rs
#[cfg(test)]
mod tests {
    use crate as bevy_reflect;
    use crate::*;

    #[derive(Reflect, Debug, PartialEq)]
    enum MyEnum {
        A,
        B(usize, i32),
        C { foo: f32, bar: bool },
    }
    #[test]
    fn next_index_increment() {
        // unit enums always return none, so index should stay at 0
        let unit_enum = MyEnum::A;
        let mut iter = unit_enum.iter_fields();
        let size = iter.len();
        for _ in 0..2 {
            assert!(iter.next().is_none());
            assert_eq!(size, iter.index);
        }
        // tuple enums we iter over each value (unnamed fields), stop after that
        let tuple_enum = MyEnum::B(0, 1);
        let mut iter = tuple_enum.iter_fields();
        let size = iter.len();
        for _ in 0..2 {
            let prev_index = iter.index;
            assert!(iter.next().is_some());
            assert_eq!(prev_index, iter.index - 1);
        }
        for _ in 0..2 {
            assert!(iter.next().is_none());
            assert_eq!(size, iter.index);
        }

        // struct enums, we iterate over each field in the struct
        let struct_enum = MyEnum::C {
            foo: 0.,
            bar: false,
        };
        let mut iter = struct_enum.iter_fields();
        let size = iter.len();
        for _ in 0..2 {
            let prev_index = iter.index;
            assert!(iter.next().is_some());
            assert_eq!(prev_index, iter.index - 1);
        }
        for _ in 0..2 {
            assert!(iter.next().is_none());
            assert_eq!(size, iter.index);
        }
    }
}