bevy_reflect/
generics.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
use crate::type_info::impl_type_methods;
use crate::{Reflect, Type, TypePath};
use alloc::borrow::Cow;
use alloc::sync::Arc;
use core::ops::Deref;
use derive_more::derive::From;

/// The generic parameters of a type.
///
/// This is automatically generated via the [`Reflect` derive macro]
/// and stored on the [`TypeInfo`] returned by [`Typed::type_info`]
/// for types that have generics.
///
/// It supports both type parameters and const parameters
/// so long as they implement [`TypePath`].
///
/// If the type has no generics, this will be empty.
///
/// If the type is marked with `#[reflect(type_path = false)]`,
/// the generics will be empty even if the type has generics.
///
/// [`Reflect` derive macro]: bevy_reflect_derive::Reflect
/// [`TypeInfo`]: crate::type_info::TypeInfo
/// [`Typed::type_info`]: crate::Typed::type_info
#[derive(Clone, Default, Debug)]
pub struct Generics(Box<[GenericInfo]>);

impl Generics {
    /// Creates an empty set of generics.
    pub fn new() -> Self {
        Self(Box::new([]))
    }

    /// Finds the generic parameter with the given name.
    ///
    /// Returns `None` if no such parameter exists.
    pub fn get_named(&self, name: &str) -> Option<&GenericInfo> {
        // For small sets of generics (the most common case),
        // a linear search is often faster using a `HashMap`.
        self.0.iter().find(|info| info.name() == name)
    }

    /// Adds the given generic parameter to the set.
    pub fn with(mut self, info: impl Into<GenericInfo>) -> Self {
        self.0 = IntoIterator::into_iter(self.0)
            .chain(core::iter::once(info.into()))
            .collect();
        self
    }
}

impl<T: Into<GenericInfo>> FromIterator<T> for Generics {
    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
        Self(iter.into_iter().map(Into::into).collect())
    }
}

impl Deref for Generics {
    type Target = [GenericInfo];

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

/// An enum representing a generic parameter.
#[derive(Clone, Debug, From)]
pub enum GenericInfo {
    /// A type parameter.
    ///
    /// An example would be `T` in `struct Foo<T, U>`.
    Type(TypeParamInfo),
    /// A const parameter.
    ///
    /// An example would be `N` in `struct Foo<const N: usize>`.
    Const(ConstParamInfo),
}

impl GenericInfo {
    /// The name of the generic parameter.
    pub fn name(&self) -> &Cow<'static, str> {
        match self {
            Self::Type(info) => info.name(),
            Self::Const(info) => info.name(),
        }
    }

    /// Whether the generic parameter is a const parameter.
    pub fn is_const(&self) -> bool {
        match self {
            Self::Type(_) => false,
            Self::Const(_) => true,
        }
    }

    impl_type_methods!(self => {
        match self {
            Self::Type(info) => info.ty(),
            Self::Const(info) => info.ty(),
        }
    });
}

/// Type information for a generic type parameter.
///
/// An example of a type parameter would be `T` in `struct Foo<T>`.
#[derive(Clone, Debug)]
pub struct TypeParamInfo {
    name: Cow<'static, str>,
    ty: Type,
    default: Option<Type>,
}

impl TypeParamInfo {
    /// Creates a new type parameter with the given name.
    pub fn new<T: TypePath + ?Sized>(name: impl Into<Cow<'static, str>>) -> Self {
        Self {
            name: name.into(),
            ty: Type::of::<T>(),
            default: None,
        }
    }

    /// Sets the default type for the parameter.
    pub fn with_default<T: TypePath + ?Sized>(mut self) -> Self {
        self.default = Some(Type::of::<T>());
        self
    }

    /// The name of the type parameter.
    pub fn name(&self) -> &Cow<'static, str> {
        &self.name
    }

    /// The default type for the parameter, if any.
    ///
    /// # Example
    ///
    /// ```
    /// # use bevy_reflect::{GenericInfo, Reflect, Typed};
    /// #[derive(Reflect)]
    /// struct Foo<T = f32>(T);
    ///
    /// let generics = Foo::<String>::type_info().generics();
    /// let GenericInfo::Type(info) = generics.get_named("T").unwrap() else {
    ///     panic!("expected a type parameter");
    /// };
    ///
    /// let default = info.default().unwrap();
    ///
    /// assert!(default.is::<f32>());
    /// ```
    pub fn default(&self) -> Option<&Type> {
        self.default.as_ref()
    }

    impl_type_methods!(ty);
}

/// Type information for a const generic parameter.
///
/// An example of a const parameter would be `N` in `struct Foo<const N: usize>`.
#[derive(Clone, Debug)]
pub struct ConstParamInfo {
    name: Cow<'static, str>,
    ty: Type,
    // Rust currently only allows certain primitive types in const generic position,
    // meaning that `Reflect` is guaranteed to be implemented for the default value.
    default: Option<Arc<dyn Reflect>>,
}

impl ConstParamInfo {
    /// Creates a new const parameter with the given name.
    pub fn new<T: TypePath + ?Sized>(name: impl Into<Cow<'static, str>>) -> Self {
        Self {
            name: name.into(),
            ty: Type::of::<T>(),
            default: None,
        }
    }

    /// Sets the default value for the parameter.
    pub fn with_default<T: Reflect + 'static>(mut self, default: T) -> Self {
        self.default = Some(Arc::new(default));
        self
    }

    /// The name of the const parameter.
    pub fn name(&self) -> &Cow<'static, str> {
        &self.name
    }

    /// The default value for the parameter, if any.
    ///
    /// # Example
    ///
    /// ```
    /// # use bevy_reflect::{GenericInfo, Reflect, Typed};
    /// #[derive(Reflect)]
    /// struct Foo<const N: usize = 10>([u8; N]);
    ///
    /// let generics = Foo::<5>::type_info().generics();
    /// let GenericInfo::Const(info) = generics.get_named("N").unwrap() else {
    ///    panic!("expected a const parameter");
    /// };
    ///
    /// let default = info.default().unwrap();
    ///
    /// assert_eq!(default.downcast_ref::<usize>().unwrap(), &10);
    /// ```
    pub fn default(&self) -> Option<&dyn Reflect> {
        self.default.as_deref()
    }

    impl_type_methods!(ty);
}

macro_rules! impl_generic_info_methods {
    // Implements both getter and setter methods for the given field.
    ($field:ident) => {
        $crate::generics::impl_generic_info_methods!(self => &self.$field);

        /// Sets the generic parameters for this type.
        pub fn with_generics(mut self, generics: crate::generics::Generics) -> Self {
            self.$field = generics;
            self
        }
    };
    // Implements only a getter method for the given expression.
    ($self:ident => $expr:expr) => {
        /// Gets the generic parameters for this type.
        pub fn generics(&$self) -> &crate::generics::Generics {
            $expr
        }
    };
}

pub(crate) use impl_generic_info_methods;

#[cfg(test)]
mod tests {
    use super::*;
    use crate as bevy_reflect;
    use crate::{Reflect, Typed};
    use core::fmt::Debug;

    #[test]
    fn should_maintain_order() {
        #[derive(Reflect)]
        struct Test<T, U: Debug, const N: usize>([(T, U); N]);

        let generics = <Test<f32, String, 10> as Typed>::type_info()
            .as_tuple_struct()
            .unwrap()
            .generics();

        assert_eq!(generics.len(), 3);

        let mut iter = generics.iter();

        let t = iter.next().unwrap();
        assert_eq!(t.name(), "T");
        assert!(t.ty().is::<f32>());
        assert!(!t.is_const());

        let u = iter.next().unwrap();
        assert_eq!(u.name(), "U");
        assert!(u.ty().is::<String>());
        assert!(!u.is_const());

        let n = iter.next().unwrap();
        assert_eq!(n.name(), "N");
        assert!(n.ty().is::<usize>());
        assert!(n.is_const());

        assert!(iter.next().is_none());
    }

    #[test]
    fn should_get_by_name() {
        #[derive(Reflect)]
        enum Test<T, U: Debug, const N: usize> {
            Array([(T, U); N]),
        }

        let generics = <Test<f32, String, 10> as Typed>::type_info()
            .as_enum()
            .unwrap()
            .generics();

        let t = generics.get_named("T").unwrap();
        assert_eq!(t.name(), "T");
        assert!(t.ty().is::<f32>());
        assert!(!t.is_const());

        let u = generics.get_named("U").unwrap();
        assert_eq!(u.name(), "U");
        assert!(u.ty().is::<String>());
        assert!(!u.is_const());

        let n = generics.get_named("N").unwrap();
        assert_eq!(n.name(), "N");
        assert!(n.ty().is::<usize>());
        assert!(n.is_const());
    }

    #[test]
    fn should_store_defaults() {
        #[derive(Reflect)]
        struct Test<T, U: Debug = String, const N: usize = 10>([(T, U); N]);

        let generics = <Test<f32> as Typed>::type_info()
            .as_tuple_struct()
            .unwrap()
            .generics();

        let GenericInfo::Type(u) = generics.get_named("U").unwrap() else {
            panic!("expected a type parameter");
        };
        assert_eq!(u.default().unwrap(), &Type::of::<String>());

        let GenericInfo::Const(n) = generics.get_named("N").unwrap() else {
            panic!("expected a const parameter");
        };
        assert_eq!(n.default().unwrap().downcast_ref::<usize>().unwrap(), &10);
    }
}