bevy_reflect/path/mod.rs
1pub mod access;
2pub use access::*;
3
4mod error;
5pub use error::*;
6
7mod parse;
8pub use parse::ParseError;
9use parse::PathParser;
10
11use crate::{PartialReflect, Reflect};
12use core::fmt;
13use derive_more::derive::{Display, From};
14
15type PathResult<'a, T> = Result<T, ReflectPathError<'a>>;
16
17/// An error returned from a failed path string query.
18#[derive(Debug, PartialEq, Eq, Display, From)]
19pub enum ReflectPathError<'a> {
20 /// An error caused by trying to access a path that's not able to be accessed,
21 /// see [`AccessError`] for details.
22 InvalidAccess(AccessError<'a>),
23
24 /// An error that occurs when a type cannot downcast to a given type.
25 #[display("Can't downcast result of access to the given type")]
26 InvalidDowncast,
27
28 /// An error caused by an invalid path string that couldn't be parsed.
29 #[display("Encountered an error at offset {offset} while parsing `{path}`: {error}")]
30 ParseError {
31 /// Position in `path`.
32 offset: usize,
33 /// The path that the error occurred in.
34 path: &'a str,
35 /// The underlying error.
36 error: ParseError<'a>,
37 },
38}
39
40impl<'a> core::error::Error for ReflectPathError<'a> {}
41
42/// Something that can be interpreted as a reflection path in [`GetPath`].
43pub trait ReflectPath<'a>: Sized {
44 /// Gets a reference to the specified element on the given [`Reflect`] object.
45 ///
46 /// See [`GetPath::reflect_path`] for more details,
47 /// see [`element`](Self::element) if you want a typed return value.
48 fn reflect_element(self, root: &dyn PartialReflect) -> PathResult<'a, &dyn PartialReflect>;
49
50 /// Gets a mutable reference to the specified element on the given [`Reflect`] object.
51 ///
52 /// See [`GetPath::reflect_path_mut`] for more details.
53 fn reflect_element_mut(
54 self,
55 root: &mut dyn PartialReflect,
56 ) -> PathResult<'a, &mut dyn PartialReflect>;
57
58 /// Gets a `&T` to the specified element on the given [`Reflect`] object.
59 ///
60 /// See [`GetPath::path`] for more details.
61 fn element<T: Reflect>(self, root: &dyn PartialReflect) -> PathResult<'a, &T> {
62 self.reflect_element(root).and_then(|p| {
63 p.try_downcast_ref::<T>()
64 .ok_or(ReflectPathError::InvalidDowncast)
65 })
66 }
67
68 /// Gets a `&mut T` to the specified element on the given [`Reflect`] object.
69 ///
70 /// See [`GetPath::path_mut`] for more details.
71 fn element_mut<T: Reflect>(self, root: &mut dyn PartialReflect) -> PathResult<'a, &mut T> {
72 self.reflect_element_mut(root).and_then(|p| {
73 p.try_downcast_mut::<T>()
74 .ok_or(ReflectPathError::InvalidDowncast)
75 })
76 }
77}
78impl<'a> ReflectPath<'a> for &'a str {
79 fn reflect_element(self, mut root: &dyn PartialReflect) -> PathResult<'a, &dyn PartialReflect> {
80 for (access, offset) in PathParser::new(self) {
81 let a = access?;
82 root = a.element(root, Some(offset))?;
83 }
84 Ok(root)
85 }
86 fn reflect_element_mut(
87 self,
88 mut root: &mut dyn PartialReflect,
89 ) -> PathResult<'a, &mut dyn PartialReflect> {
90 for (access, offset) in PathParser::new(self) {
91 root = access?.element_mut(root, Some(offset))?;
92 }
93 Ok(root)
94 }
95}
96/// A trait which allows nested [`Reflect`] values to be retrieved with path strings.
97///
98/// Using these functions repeatedly with the same string requires parsing the string every time.
99/// To avoid this cost, it's recommended to construct a [`ParsedPath`] instead.
100///
101/// # Syntax
102///
103/// ## Structs
104///
105/// Field paths for [`Struct`] elements use the standard Rust field access syntax of
106/// dot and field name: `.field_name`.
107///
108/// Additionally, struct fields may be accessed by their index within the struct's definition.
109/// This is accomplished by using the hash symbol (`#`) in place of the standard dot: `#0`.
110///
111/// Accessing a struct's field by index can speed up fetches at runtime due to the removed
112/// need for string matching.
113/// And while this can be more performant, it's best to keep in mind the tradeoffs when
114/// utilizing such optimizations.
115/// For example, this can result in fairly fragile code as the string paths will need to be
116/// kept in sync with the struct definitions since the order of fields could be easily changed.
117/// Because of this, storing these kinds of paths in persistent storage (i.e. game assets)
118/// is strongly discouraged.
119///
120/// Note that a leading dot (`.`) or hash (`#`) token is implied for the first item in a path,
121/// and may therefore be omitted.
122///
123/// ### Example
124/// ```
125/// # use bevy_reflect::{GetPath, Reflect};
126/// #[derive(Reflect)]
127/// struct MyStruct {
128/// value: u32
129/// }
130///
131/// let my_struct = MyStruct { value: 123 };
132/// // Access via field name
133/// assert_eq!(my_struct.path::<u32>(".value").unwrap(), &123);
134/// // Access via field index
135/// assert_eq!(my_struct.path::<u32>("#0").unwrap(), &123);
136/// ```
137///
138/// ## Tuples and Tuple Structs
139///
140/// [`Tuple`] and [`TupleStruct`] elements also follow a conventional Rust syntax.
141/// Fields are accessed with a dot and the field index: `.0`.
142///
143/// Note that a leading dot (`.`) token is implied for the first item in a path,
144/// and may therefore be omitted.
145///
146/// ### Example
147/// ```
148/// # use bevy_reflect::{GetPath, Reflect};
149/// #[derive(Reflect)]
150/// struct MyTupleStruct(u32);
151///
152/// let my_tuple_struct = MyTupleStruct(123);
153/// assert_eq!(my_tuple_struct.path::<u32>(".0").unwrap(), &123);
154/// ```
155///
156/// ## Lists and Arrays
157///
158/// [`List`] and [`Array`] elements are accessed with brackets: `[0]`.
159///
160/// ### Example
161/// ```
162/// # use bevy_reflect::{GetPath};
163/// let my_list: Vec<u32> = vec![1, 2, 3];
164/// assert_eq!(my_list.path::<u32>("[2]").unwrap(), &3);
165/// ```
166///
167/// ## Enums
168///
169/// Pathing for [`Enum`] elements works a bit differently than in normal Rust.
170/// Usually, you would need to pattern match an enum, branching off on the desired variants.
171/// Paths used by this trait do not have any pattern matching capabilities;
172/// instead, they assume the variant is already known ahead of time.
173///
174/// The syntax used, therefore, depends on the variant being accessed:
175/// - Struct variants use the struct syntax (outlined above)
176/// - Tuple variants use the tuple syntax (outlined above)
177/// - Unit variants have no fields to access
178///
179/// If the variant cannot be known ahead of time, the path will need to be split up
180/// and proper enum pattern matching will need to be handled manually.
181///
182/// ### Example
183/// ```
184/// # use bevy_reflect::{GetPath, Reflect};
185/// #[derive(Reflect)]
186/// enum MyEnum {
187/// Unit,
188/// Tuple(bool),
189/// Struct {
190/// value: u32
191/// }
192/// }
193///
194/// let tuple_variant = MyEnum::Tuple(true);
195/// assert_eq!(tuple_variant.path::<bool>(".0").unwrap(), &true);
196///
197/// let struct_variant = MyEnum::Struct { value: 123 };
198/// // Access via field name
199/// assert_eq!(struct_variant.path::<u32>(".value").unwrap(), &123);
200/// // Access via field index
201/// assert_eq!(struct_variant.path::<u32>("#0").unwrap(), &123);
202///
203/// // Error: Expected struct variant
204/// assert!(matches!(tuple_variant.path::<u32>(".value"), Err(_)));
205/// ```
206///
207/// # Chaining
208///
209/// Using the aforementioned syntax, path items may be chained one after another
210/// to create a full path to a nested element.
211///
212/// ## Example
213/// ```
214/// # use bevy_reflect::{GetPath, Reflect};
215/// #[derive(Reflect)]
216/// struct MyStruct {
217/// value: Vec<Option<u32>>
218/// }
219///
220/// let my_struct = MyStruct {
221/// value: vec![None, None, Some(123)],
222/// };
223/// assert_eq!(
224/// my_struct.path::<u32>(".value[2].0").unwrap(),
225/// &123,
226/// );
227/// ```
228///
229/// [`Struct`]: crate::Struct
230/// [`Tuple`]: crate::Tuple
231/// [`TupleStruct`]: crate::TupleStruct
232/// [`List`]: crate::List
233/// [`Array`]: crate::Array
234/// [`Enum`]: crate::Enum
235#[diagnostic::on_unimplemented(
236 message = "`{Self}` does not implement `GetPath` so cannot be accessed by reflection path",
237 note = "consider annotating `{Self}` with `#[derive(Reflect)]`"
238)]
239pub trait GetPath: PartialReflect {
240 /// Returns a reference to the value specified by `path`.
241 ///
242 /// To retrieve a statically typed reference, use
243 /// [`path`][GetPath::path].
244 fn reflect_path<'p>(&self, path: impl ReflectPath<'p>) -> PathResult<'p, &dyn PartialReflect> {
245 path.reflect_element(self.as_partial_reflect())
246 }
247
248 /// Returns a mutable reference to the value specified by `path`.
249 ///
250 /// To retrieve a statically typed mutable reference, use
251 /// [`path_mut`][GetPath::path_mut].
252 fn reflect_path_mut<'p>(
253 &mut self,
254 path: impl ReflectPath<'p>,
255 ) -> PathResult<'p, &mut dyn PartialReflect> {
256 path.reflect_element_mut(self.as_partial_reflect_mut())
257 }
258
259 /// Returns a statically typed reference to the value specified by `path`.
260 ///
261 /// This will automatically handle downcasting to type `T`.
262 /// The downcast will fail if this value is not of type `T`
263 /// (which may be the case when using dynamic types like [`DynamicStruct`]).
264 ///
265 /// [`DynamicStruct`]: crate::DynamicStruct
266 fn path<'p, T: Reflect>(&self, path: impl ReflectPath<'p>) -> PathResult<'p, &T> {
267 path.element(self.as_partial_reflect())
268 }
269
270 /// Returns a statically typed mutable reference to the value specified by `path`.
271 ///
272 /// This will automatically handle downcasting to type `T`.
273 /// The downcast will fail if this value is not of type `T`
274 /// (which may be the case when using dynamic types like [`DynamicStruct`]).
275 ///
276 /// [`DynamicStruct`]: crate::DynamicStruct
277 fn path_mut<'p, T: Reflect>(&mut self, path: impl ReflectPath<'p>) -> PathResult<'p, &mut T> {
278 path.element_mut(self.as_partial_reflect_mut())
279 }
280}
281
282// Implement `GetPath` for `dyn Reflect`
283impl<T: Reflect + ?Sized> GetPath for T {}
284
285/// An [`Access`] combined with an `offset` for more helpful error reporting.
286#[derive(Clone, Debug, PartialEq, PartialOrd, Ord, Eq, Hash)]
287pub struct OffsetAccess {
288 /// The [`Access`] itself.
289 pub access: Access<'static>,
290 /// A character offset in the string the path was parsed from.
291 pub offset: Option<usize>,
292}
293
294impl From<Access<'static>> for OffsetAccess {
295 fn from(access: Access<'static>) -> Self {
296 OffsetAccess {
297 access,
298 offset: None,
299 }
300 }
301}
302
303/// A pre-parsed path to an element within a type.
304///
305/// This struct can be constructed manually from its [`Access`]es or with
306/// the [parse](ParsedPath::parse) method.
307///
308/// This struct may be used like [`GetPath`] but removes the cost of parsing the path
309/// string at each element access.
310///
311/// It's recommended to use this in place of [`GetPath`] when the path string is
312/// unlikely to be changed and will be accessed repeatedly.
313///
314/// ## Examples
315///
316/// Parsing a [`&'static str`](str):
317/// ```
318/// # use bevy_reflect::ParsedPath;
319/// let my_static_string: &'static str = "bar#0.1[2].0";
320/// // Breakdown:
321/// // "bar" - Access struct field named "bar"
322/// // "#0" - Access struct field at index 0
323/// // ".1" - Access tuple struct field at index 1
324/// // "[2]" - Access list element at index 2
325/// // ".0" - Access tuple variant field at index 0
326/// let my_path = ParsedPath::parse_static(my_static_string);
327/// ```
328/// Parsing a non-static [`&str`](str):
329/// ```
330/// # use bevy_reflect::ParsedPath;
331/// let my_string = String::from("bar#0.1[2].0");
332/// // Breakdown:
333/// // "bar" - Access struct field named "bar"
334/// // "#0" - Access struct field at index 0
335/// // ".1" - Access tuple struct field at index 1
336/// // "[2]" - Access list element at index 2
337/// // ".0" - Access tuple variant field at index 0
338/// let my_path = ParsedPath::parse(&my_string);
339/// ```
340/// Manually constructing a [`ParsedPath`]:
341/// ```
342/// # use std::borrow::Cow;
343/// # use bevy_reflect::access::Access;
344/// # use bevy_reflect::ParsedPath;
345/// let path_elements = [
346/// Access::Field(Cow::Borrowed("bar")),
347/// Access::FieldIndex(0),
348/// Access::TupleIndex(1),
349/// Access::ListIndex(2),
350/// Access::TupleIndex(1),
351/// ];
352/// let my_path = ParsedPath::from(path_elements);
353/// ```
354#[derive(Clone, Debug, PartialEq, PartialOrd, Ord, Eq, Hash, From)]
355pub struct ParsedPath(
356 /// This is a vector of pre-parsed [`OffsetAccess`]es.
357 pub Vec<OffsetAccess>,
358);
359
360impl ParsedPath {
361 /// Parses a [`ParsedPath`] from a string.
362 ///
363 /// Returns an error if the string does not represent a valid path to an element.
364 ///
365 /// The exact format for path strings can be found in the documentation for [`GetPath`].
366 /// In short, though, a path consists of one or more chained accessor strings.
367 /// These are:
368 /// - Named field access (`.field`)
369 /// - Unnamed field access (`.1`)
370 /// - Field index access (`#0`)
371 /// - Sequence access (`[2]`)
372 ///
373 /// # Example
374 /// ```
375 /// # use bevy_reflect::{ParsedPath, Reflect, ReflectPath};
376 /// #[derive(Reflect)]
377 /// struct Foo {
378 /// bar: Bar,
379 /// }
380 ///
381 /// #[derive(Reflect)]
382 /// struct Bar {
383 /// baz: Baz,
384 /// }
385 ///
386 /// #[derive(Reflect)]
387 /// struct Baz(f32, Vec<Option<u32>>);
388 ///
389 /// let foo = Foo {
390 /// bar: Bar {
391 /// baz: Baz(3.14, vec![None, None, Some(123)])
392 /// },
393 /// };
394 ///
395 /// let parsed_path = ParsedPath::parse("bar#0.1[2].0").unwrap();
396 /// // Breakdown:
397 /// // "bar" - Access struct field named "bar"
398 /// // "#0" - Access struct field at index 0
399 /// // ".1" - Access tuple struct field at index 1
400 /// // "[2]" - Access list element at index 2
401 /// // ".0" - Access tuple variant field at index 0
402 ///
403 /// assert_eq!(parsed_path.element::<u32>(&foo).unwrap(), &123);
404 /// ```
405 pub fn parse(string: &str) -> PathResult<Self> {
406 let mut parts = Vec::new();
407 for (access, offset) in PathParser::new(string) {
408 parts.push(OffsetAccess {
409 access: access?.into_owned(),
410 offset: Some(offset),
411 });
412 }
413 Ok(Self(parts))
414 }
415
416 /// Similar to [`Self::parse`] but only works on `&'static str`
417 /// and does not allocate per named field.
418 pub fn parse_static(string: &'static str) -> PathResult<'static, Self> {
419 let mut parts = Vec::new();
420 for (access, offset) in PathParser::new(string) {
421 parts.push(OffsetAccess {
422 access: access?,
423 offset: Some(offset),
424 });
425 }
426 Ok(Self(parts))
427 }
428}
429impl<'a> ReflectPath<'a> for &'a ParsedPath {
430 fn reflect_element(self, mut root: &dyn PartialReflect) -> PathResult<'a, &dyn PartialReflect> {
431 for OffsetAccess { access, offset } in &self.0 {
432 root = access.element(root, *offset)?;
433 }
434 Ok(root)
435 }
436 fn reflect_element_mut(
437 self,
438 mut root: &mut dyn PartialReflect,
439 ) -> PathResult<'a, &mut dyn PartialReflect> {
440 for OffsetAccess { access, offset } in &self.0 {
441 root = access.element_mut(root, *offset)?;
442 }
443 Ok(root)
444 }
445}
446impl<const N: usize> From<[OffsetAccess; N]> for ParsedPath {
447 fn from(value: [OffsetAccess; N]) -> Self {
448 ParsedPath(value.to_vec())
449 }
450}
451impl From<Vec<Access<'static>>> for ParsedPath {
452 fn from(value: Vec<Access<'static>>) -> Self {
453 ParsedPath(
454 value
455 .into_iter()
456 .map(|access| OffsetAccess {
457 access,
458 offset: None,
459 })
460 .collect(),
461 )
462 }
463}
464impl<const N: usize> From<[Access<'static>; N]> for ParsedPath {
465 fn from(value: [Access<'static>; N]) -> Self {
466 value.to_vec().into()
467 }
468}
469
470impl<'a> TryFrom<&'a str> for ParsedPath {
471 type Error = ReflectPathError<'a>;
472 fn try_from(value: &'a str) -> Result<Self, Self::Error> {
473 ParsedPath::parse(value)
474 }
475}
476
477impl fmt::Display for ParsedPath {
478 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
479 for OffsetAccess { access, .. } in &self.0 {
480 write!(f, "{access}")?;
481 }
482 Ok(())
483 }
484}
485impl core::ops::Index<usize> for ParsedPath {
486 type Output = OffsetAccess;
487 fn index(&self, index: usize) -> &Self::Output {
488 &self.0[index]
489 }
490}
491impl core::ops::IndexMut<usize> for ParsedPath {
492 fn index_mut(&mut self, index: usize) -> &mut Self::Output {
493 &mut self.0[index]
494 }
495}
496
497#[cfg(test)]
498#[allow(clippy::float_cmp, clippy::approx_constant)]
499mod tests {
500 use super::*;
501 use crate as bevy_reflect;
502 use crate::*;
503
504 #[derive(Reflect)]
505 struct A {
506 w: usize,
507 x: B,
508 y: Vec<C>,
509 z: D,
510 unit_variant: F,
511 tuple_variant: F,
512 struct_variant: F,
513 array: [i32; 3],
514 tuple: (bool, f32),
515 }
516
517 #[derive(Reflect)]
518 struct B {
519 foo: usize,
520 łørđ: C,
521 }
522
523 #[derive(Reflect)]
524 struct C {
525 mосква: f32,
526 }
527
528 #[derive(Reflect)]
529 struct D(E);
530
531 #[derive(Reflect)]
532 struct E(f32, usize);
533
534 #[derive(Reflect, PartialEq, Debug)]
535 enum F {
536 Unit,
537 Tuple(u32, u32),
538 Şķràźÿ { 東京: char },
539 }
540
541 fn a_sample() -> A {
542 A {
543 w: 1,
544 x: B {
545 foo: 10,
546 łørđ: C { mосква: 3.14 },
547 },
548 y: vec![C { mосква: 1.0 }, C { mосква: 2.0 }],
549 z: D(E(10.0, 42)),
550 unit_variant: F::Unit,
551 tuple_variant: F::Tuple(123, 321),
552 struct_variant: F::Şķràźÿ { 東京: 'm' },
553 array: [86, 75, 309],
554 tuple: (true, 1.23),
555 }
556 }
557
558 fn offset(access: Access<'static>, offset: usize) -> OffsetAccess {
559 OffsetAccess {
560 access,
561 offset: Some(offset),
562 }
563 }
564
565 fn access_field(field: &'static str) -> Access<'static> {
566 Access::Field(field.into())
567 }
568
569 type StaticError = ReflectPathError<'static>;
570
571 fn invalid_access(
572 offset: usize,
573 actual: ReflectKind,
574 expected: ReflectKind,
575 access: &'static str,
576 ) -> StaticError {
577 ReflectPathError::InvalidAccess(AccessError {
578 kind: AccessErrorKind::IncompatibleTypes { actual, expected },
579 access: ParsedPath::parse_static(access).unwrap()[1].access.clone(),
580 offset: Some(offset),
581 })
582 }
583
584 #[test]
585 fn try_from() {
586 assert_eq!(
587 ParsedPath::try_from("w").unwrap().0,
588 &[offset(access_field("w"), 1)]
589 );
590
591 let r = ParsedPath::try_from("w[");
592 let matches = matches!(r, Err(ReflectPathError::ParseError { .. }));
593 assert!(
594 matches,
595 "ParsedPath::try_from did not return a ParseError for \"w[\""
596 );
597 }
598
599 #[test]
600 fn parsed_path_parse() {
601 assert_eq!(
602 ParsedPath::parse("w").unwrap().0,
603 &[offset(access_field("w"), 1)]
604 );
605 assert_eq!(
606 ParsedPath::parse("x.foo").unwrap().0,
607 &[offset(access_field("x"), 1), offset(access_field("foo"), 2)]
608 );
609 assert_eq!(
610 ParsedPath::parse("x.łørđ.mосква").unwrap().0,
611 &[
612 offset(access_field("x"), 1),
613 offset(access_field("łørđ"), 2),
614 offset(access_field("mосква"), 10)
615 ]
616 );
617 assert_eq!(
618 ParsedPath::parse("y[1].mосква").unwrap().0,
619 &[
620 offset(access_field("y"), 1),
621 offset(Access::ListIndex(1), 2),
622 offset(access_field("mосква"), 5)
623 ]
624 );
625 assert_eq!(
626 ParsedPath::parse("z.0.1").unwrap().0,
627 &[
628 offset(access_field("z"), 1),
629 offset(Access::TupleIndex(0), 2),
630 offset(Access::TupleIndex(1), 4),
631 ]
632 );
633 assert_eq!(
634 ParsedPath::parse("x#0").unwrap().0,
635 &[
636 offset(access_field("x"), 1),
637 offset(Access::FieldIndex(0), 2)
638 ]
639 );
640 assert_eq!(
641 ParsedPath::parse("x#0#1").unwrap().0,
642 &[
643 offset(access_field("x"), 1),
644 offset(Access::FieldIndex(0), 2),
645 offset(Access::FieldIndex(1), 4)
646 ]
647 );
648 }
649
650 #[test]
651 fn parsed_path_get_field() {
652 let a = a_sample();
653
654 let b = ParsedPath::parse("w").unwrap();
655 let c = ParsedPath::parse("x.foo").unwrap();
656 let d = ParsedPath::parse("x.łørđ.mосква").unwrap();
657 let e = ParsedPath::parse("y[1].mосква").unwrap();
658 let f = ParsedPath::parse("z.0.1").unwrap();
659 let g = ParsedPath::parse("x#0").unwrap();
660 let h = ParsedPath::parse("x#1#0").unwrap();
661 let i = ParsedPath::parse("unit_variant").unwrap();
662 let j = ParsedPath::parse("tuple_variant.1").unwrap();
663 let k = ParsedPath::parse("struct_variant.東京").unwrap();
664 let l = ParsedPath::parse("struct_variant#0").unwrap();
665 let m = ParsedPath::parse("array[2]").unwrap();
666 let n = ParsedPath::parse("tuple.1").unwrap();
667
668 for _ in 0..30 {
669 assert_eq!(*b.element::<usize>(&a).unwrap(), 1);
670 assert_eq!(*c.element::<usize>(&a).unwrap(), 10);
671 assert_eq!(*d.element::<f32>(&a).unwrap(), 3.14);
672 assert_eq!(*e.element::<f32>(&a).unwrap(), 2.0);
673 assert_eq!(*f.element::<usize>(&a).unwrap(), 42);
674 assert_eq!(*g.element::<usize>(&a).unwrap(), 10);
675 assert_eq!(*h.element::<f32>(&a).unwrap(), 3.14);
676 assert_eq!(*i.element::<F>(&a).unwrap(), F::Unit);
677 assert_eq!(*j.element::<u32>(&a).unwrap(), 321);
678 assert_eq!(*k.element::<char>(&a).unwrap(), 'm');
679 assert_eq!(*l.element::<char>(&a).unwrap(), 'm');
680 assert_eq!(*m.element::<i32>(&a).unwrap(), 309);
681 assert_eq!(*n.element::<f32>(&a).unwrap(), 1.23);
682 }
683 }
684
685 #[test]
686 fn reflect_array_behaves_like_list() {
687 #[derive(Reflect)]
688 struct A {
689 list: Vec<u8>,
690 array: [u8; 10],
691 }
692
693 let a = A {
694 list: vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
695 array: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
696 };
697
698 assert_eq!(*a.path::<u8>("list[5]").unwrap(), 5);
699 assert_eq!(*a.path::<u8>("array[5]").unwrap(), 5);
700 assert_eq!(*a.path::<u8>("list[0]").unwrap(), 0);
701 assert_eq!(*a.path::<u8>("array[0]").unwrap(), 0);
702 }
703
704 #[test]
705 fn reflect_array_behaves_like_list_mut() {
706 #[derive(Reflect)]
707 struct A {
708 list: Vec<u8>,
709 array: [u8; 10],
710 }
711
712 let mut a = A {
713 list: vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
714 array: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
715 };
716
717 assert_eq!(*a.path_mut::<u8>("list[5]").unwrap(), 5);
718 assert_eq!(*a.path_mut::<u8>("array[5]").unwrap(), 5);
719
720 *a.path_mut::<u8>("list[5]").unwrap() = 10;
721 *a.path_mut::<u8>("array[5]").unwrap() = 10;
722
723 assert_eq!(*a.path_mut::<u8>("list[5]").unwrap(), 10);
724 assert_eq!(*a.path_mut::<u8>("array[5]").unwrap(), 10);
725 }
726
727 #[test]
728 fn reflect_path() {
729 let mut a = a_sample();
730
731 assert_eq!(*a.path::<usize>("w").unwrap(), 1);
732 assert_eq!(*a.path::<usize>("x.foo").unwrap(), 10);
733 assert_eq!(*a.path::<f32>("x.łørđ.mосква").unwrap(), 3.14);
734 assert_eq!(*a.path::<f32>("y[1].mосква").unwrap(), 2.0);
735 assert_eq!(*a.path::<usize>("z.0.1").unwrap(), 42);
736 assert_eq!(*a.path::<usize>("x#0").unwrap(), 10);
737 assert_eq!(*a.path::<f32>("x#1#0").unwrap(), 3.14);
738
739 assert_eq!(*a.path::<F>("unit_variant").unwrap(), F::Unit);
740 assert_eq!(*a.path::<u32>("tuple_variant.1").unwrap(), 321);
741 assert_eq!(*a.path::<char>("struct_variant.東京").unwrap(), 'm');
742 assert_eq!(*a.path::<char>("struct_variant#0").unwrap(), 'm');
743
744 assert_eq!(*a.path::<i32>("array[2]").unwrap(), 309);
745
746 assert_eq!(*a.path::<f32>("tuple.1").unwrap(), 1.23);
747 *a.path_mut::<f32>("tuple.1").unwrap() = 3.21;
748 assert_eq!(*a.path::<f32>("tuple.1").unwrap(), 3.21);
749
750 *a.path_mut::<f32>("y[1].mосква").unwrap() = 3.0;
751 assert_eq!(a.y[1].mосква, 3.0);
752
753 *a.path_mut::<u32>("tuple_variant.0").unwrap() = 1337;
754 assert_eq!(a.tuple_variant, F::Tuple(1337, 321));
755
756 assert_eq!(
757 a.reflect_path("x.notreal").err().unwrap(),
758 ReflectPathError::InvalidAccess(AccessError {
759 kind: AccessErrorKind::MissingField(ReflectKind::Struct),
760 access: access_field("notreal"),
761 offset: Some(2),
762 })
763 );
764
765 assert_eq!(
766 a.reflect_path("unit_variant.0").err().unwrap(),
767 ReflectPathError::InvalidAccess(AccessError {
768 kind: AccessErrorKind::IncompatibleEnumVariantTypes {
769 actual: VariantType::Unit,
770 expected: VariantType::Tuple,
771 },
772 access: ParsedPath::parse_static("unit_variant.0").unwrap()[1]
773 .access
774 .clone(),
775 offset: Some(13),
776 })
777 );
778 assert_eq!(
779 a.reflect_path("x[0]").err().unwrap(),
780 invalid_access(2, ReflectKind::Struct, ReflectKind::List, "x[0]")
781 );
782 assert_eq!(
783 a.reflect_path("y.x").err().unwrap(),
784 invalid_access(2, ReflectKind::List, ReflectKind::Struct, "y.x")
785 );
786 }
787
788 #[test]
789 fn accept_leading_tokens() {
790 assert_eq!(
791 ParsedPath::parse(".w").unwrap().0,
792 &[offset(access_field("w"), 1)]
793 );
794 assert_eq!(
795 ParsedPath::parse("#0.foo").unwrap().0,
796 &[
797 offset(Access::FieldIndex(0), 1),
798 offset(access_field("foo"), 3)
799 ]
800 );
801 assert_eq!(
802 ParsedPath::parse(".5").unwrap().0,
803 &[offset(Access::TupleIndex(5), 1)]
804 );
805 assert_eq!(
806 ParsedPath::parse("[0].łørđ").unwrap().0,
807 &[
808 offset(Access::ListIndex(0), 1),
809 offset(access_field("łørđ"), 4)
810 ]
811 );
812 }
813}