bevy_reflect/path/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
pub mod access;
pub use access::*;

mod error;
pub use error::*;

mod parse;
pub use parse::ParseError;
use parse::PathParser;

use crate::Reflect;
use std::fmt;
use thiserror::Error;

type PathResult<'a, T> = Result<T, ReflectPathError<'a>>;

/// An error returned from a failed path string query.
#[derive(Debug, PartialEq, Eq, Error)]
pub enum ReflectPathError<'a> {
    /// An error caused by trying to access a path that's not able to be accessed,
    /// see [`AccessError`] for details.
    #[error(transparent)]
    InvalidAccess(AccessError<'a>),

    /// An error that occurs when a type cannot downcast to a given type.
    #[error("Can't downcast result of access to the given type")]
    InvalidDowncast,

    /// An error caused by an invalid path string that couldn't be parsed.
    #[error("Encountered an error at offset {offset} while parsing `{path}`: {error}")]
    ParseError {
        /// Position in `path`.
        offset: usize,
        /// The path that the error occurred in.
        path: &'a str,
        /// The underlying error.
        error: ParseError<'a>,
    },
}
impl<'a> From<AccessError<'a>> for ReflectPathError<'a> {
    fn from(value: AccessError<'a>) -> Self {
        Self::InvalidAccess(value)
    }
}

/// Something that can be interpreted as a reflection path in [`GetPath`].
pub trait ReflectPath<'a>: Sized {
    /// Gets a reference to the specified element on the given [`Reflect`] object.
    ///
    /// See [`GetPath::reflect_path`] for more details,
    /// see [`element`](Self::element) if you want a typed return value.
    fn reflect_element(self, root: &dyn Reflect) -> PathResult<'a, &dyn Reflect>;

    /// Gets a mutable reference to the specified element on the given [`Reflect`] object.
    ///
    /// See [`GetPath::reflect_path_mut`] for more details.
    fn reflect_element_mut(self, root: &mut dyn Reflect) -> PathResult<'a, &mut dyn Reflect>;

    /// Gets a `&T` to the specified element on the given [`Reflect`] object.
    ///
    /// See [`GetPath::path`] for more details.
    fn element<T: Reflect>(self, root: &dyn Reflect) -> PathResult<'a, &T> {
        self.reflect_element(root).and_then(|p| {
            p.downcast_ref::<T>()
                .ok_or(ReflectPathError::InvalidDowncast)
        })
    }

    /// Gets a `&mut T` to the specified element on the given [`Reflect`] object.
    ///
    /// See [`GetPath::path_mut`] for more details.
    fn element_mut<T: Reflect>(self, root: &mut dyn Reflect) -> PathResult<'a, &mut T> {
        self.reflect_element_mut(root).and_then(|p| {
            p.downcast_mut::<T>()
                .ok_or(ReflectPathError::InvalidDowncast)
        })
    }
}
impl<'a> ReflectPath<'a> for &'a str {
    fn reflect_element(self, mut root: &dyn Reflect) -> PathResult<'a, &dyn Reflect> {
        for (access, offset) in PathParser::new(self) {
            let a = access?;
            root = a.element(root, Some(offset))?;
        }
        Ok(root)
    }
    fn reflect_element_mut(self, mut root: &mut dyn Reflect) -> PathResult<'a, &mut dyn Reflect> {
        for (access, offset) in PathParser::new(self) {
            root = access?.element_mut(root, Some(offset))?;
        }
        Ok(root)
    }
}
/// A trait which allows nested [`Reflect`] values to be retrieved with path strings.
///
/// Using these functions repeatedly with the same string requires parsing the string every time.
/// To avoid this cost, it's recommended to construct a [`ParsedPath`] instead.
///
/// # Syntax
///
/// ## Structs
///
/// Field paths for [`Struct`] elements use the standard Rust field access syntax of
/// dot and field name: `.field_name`.
///
/// Additionally, struct fields may be accessed by their index within the struct's definition.
/// This is accomplished by using the hash symbol (`#`) in place of the standard dot: `#0`.
///
/// Accessing a struct's field by index can speed up fetches at runtime due to the removed
/// need for string matching.
/// And while this can be more performant, it's best to keep in mind the tradeoffs when
/// utilizing such optimizations.
/// For example, this can result in fairly fragile code as the string paths will need to be
/// kept in sync with the struct definitions since the order of fields could be easily changed.
/// Because of this, storing these kinds of paths in persistent storage (i.e. game assets)
/// is strongly discouraged.
///
/// Note that a leading dot (`.`) or hash (`#`) token is implied for the first item in a path,
/// and may therefore be omitted.
///
/// ### Example
/// ```
/// # use bevy_reflect::{GetPath, Reflect};
/// #[derive(Reflect)]
/// struct MyStruct {
///   value: u32
/// }
///
/// let my_struct = MyStruct { value: 123 };
/// // Access via field name
/// assert_eq!(my_struct.path::<u32>(".value").unwrap(), &123);
/// // Access via field index
/// assert_eq!(my_struct.path::<u32>("#0").unwrap(), &123);
/// ```
///
/// ## Tuples and Tuple Structs
///
/// [`Tuple`] and [`TupleStruct`] elements also follow a conventional Rust syntax.
/// Fields are accessed with a dot and the field index: `.0`.
///
/// Note that a leading dot (`.`) token is implied for the first item in a path,
/// and may therefore be omitted.
///
/// ### Example
/// ```
/// # use bevy_reflect::{GetPath, Reflect};
/// #[derive(Reflect)]
/// struct MyTupleStruct(u32);
///
/// let my_tuple_struct = MyTupleStruct(123);
/// assert_eq!(my_tuple_struct.path::<u32>(".0").unwrap(), &123);
/// ```
///
/// ## Lists and Arrays
///
/// [`List`] and [`Array`] elements are accessed with brackets: `[0]`.
///
/// ### Example
/// ```
/// # use bevy_reflect::{GetPath};
/// let my_list: Vec<u32> = vec![1, 2, 3];
/// assert_eq!(my_list.path::<u32>("[2]").unwrap(), &3);
/// ```
///
/// ## Enums
///
/// Pathing for [`Enum`] elements works a bit differently than in normal Rust.
/// Usually, you would need to pattern match an enum, branching off on the desired variants.
/// Paths used by this trait do not have any pattern matching capabilities;
/// instead, they assume the variant is already known ahead of time.
///
/// The syntax used, therefore, depends on the variant being accessed:
/// - Struct variants use the struct syntax (outlined above)
/// - Tuple variants use the tuple syntax (outlined above)
/// - Unit variants have no fields to access
///
/// If the variant cannot be known ahead of time, the path will need to be split up
/// and proper enum pattern matching will need to be handled manually.
///
/// ### Example
/// ```
/// # use bevy_reflect::{GetPath, Reflect};
/// #[derive(Reflect)]
/// enum MyEnum {
///   Unit,
///   Tuple(bool),
///   Struct {
///     value: u32
///   }
/// }
///
/// let tuple_variant = MyEnum::Tuple(true);
/// assert_eq!(tuple_variant.path::<bool>(".0").unwrap(), &true);
///
/// let struct_variant = MyEnum::Struct { value: 123 };
/// // Access via field name
/// assert_eq!(struct_variant.path::<u32>(".value").unwrap(), &123);
/// // Access via field index
/// assert_eq!(struct_variant.path::<u32>("#0").unwrap(), &123);
///
/// // Error: Expected struct variant
/// assert!(matches!(tuple_variant.path::<u32>(".value"), Err(_)));
/// ```
///
/// # Chaining
///
/// Using the aforementioned syntax, path items may be chained one after another
/// to create a full path to a nested element.
///
/// ## Example
/// ```
/// # use bevy_reflect::{GetPath, Reflect};
/// #[derive(Reflect)]
/// struct MyStruct {
///   value: Vec<Option<u32>>
/// }
///
/// let my_struct = MyStruct {
///   value: vec![None, None, Some(123)],
/// };
/// assert_eq!(
///   my_struct.path::<u32>(".value[2].0").unwrap(),
///   &123,
/// );
/// ```
///
/// [`Struct`]: crate::Struct
/// [`Tuple`]: crate::Tuple
/// [`TupleStruct`]: crate::TupleStruct
/// [`List`]: crate::List
/// [`Array`]: crate::Array
/// [`Enum`]: crate::Enum
#[diagnostic::on_unimplemented(
    message = "`{Self}` does not provide a reflection path",
    note = "consider annotating `{Self}` with `#[derive(Reflect)]`"
)]
pub trait GetPath: Reflect {
    /// Returns a reference to the value specified by `path`.
    ///
    /// To retrieve a statically typed reference, use
    /// [`path`][GetPath::path].
    fn reflect_path<'p>(&self, path: impl ReflectPath<'p>) -> PathResult<'p, &dyn Reflect> {
        path.reflect_element(self.as_reflect())
    }

    /// Returns a mutable reference to the value specified by `path`.
    ///
    /// To retrieve a statically typed mutable reference, use
    /// [`path_mut`][GetPath::path_mut].
    fn reflect_path_mut<'p>(
        &mut self,
        path: impl ReflectPath<'p>,
    ) -> PathResult<'p, &mut dyn Reflect> {
        path.reflect_element_mut(self.as_reflect_mut())
    }

    /// Returns a statically typed reference to the value specified by `path`.
    ///
    /// This will automatically handle downcasting to type `T`.
    /// The downcast will fail if this value is not of type `T`
    /// (which may be the case when using dynamic types like [`DynamicStruct`]).
    ///
    /// [`DynamicStruct`]: crate::DynamicStruct
    fn path<'p, T: Reflect>(&self, path: impl ReflectPath<'p>) -> PathResult<'p, &T> {
        path.element(self.as_reflect())
    }

    /// Returns a statically typed mutable reference to the value specified by `path`.
    ///
    /// This will automatically handle downcasting to type `T`.
    /// The downcast will fail if this value is not of type `T`
    /// (which may be the case when using dynamic types like [`DynamicStruct`]).
    ///
    /// [`DynamicStruct`]: crate::DynamicStruct
    fn path_mut<'p, T: Reflect>(&mut self, path: impl ReflectPath<'p>) -> PathResult<'p, &mut T> {
        path.element_mut(self.as_reflect_mut())
    }
}

// Implement `GetPath` for `dyn Reflect`
impl<T: Reflect + ?Sized> GetPath for T {}

/// An [`Access`] combined with an `offset` for more helpful error reporting.
#[derive(Clone, Debug, PartialEq, PartialOrd, Ord, Eq, Hash)]
pub struct OffsetAccess {
    /// The [`Access`] itself.
    pub access: Access<'static>,
    /// A character offset in the string the path was parsed from.
    pub offset: Option<usize>,
}

impl From<Access<'static>> for OffsetAccess {
    fn from(access: Access<'static>) -> Self {
        OffsetAccess {
            access,
            offset: None,
        }
    }
}

/// A pre-parsed path to an element within a type.
///
/// This struct can be constructed manually from its [`Access`]es or with
/// the [parse](ParsedPath::parse) method.
///
/// This struct may be used like [`GetPath`] but removes the cost of parsing the path
/// string at each element access.
///
/// It's recommended to use this in place of [`GetPath`] when the path string is
/// unlikely to be changed and will be accessed repeatedly.
///
/// ## Examples
///
/// Parsing a [`&'static str`](str):
/// ```
/// # use bevy_reflect::ParsedPath;
/// let my_static_string: &'static str = "bar#0.1[2].0";
/// // Breakdown:
/// //   "bar" - Access struct field named "bar"
/// //   "#0" - Access struct field at index 0
/// //   ".1" - Access tuple struct field at index 1
/// //   "[2]" - Access list element at index 2
/// //   ".0" - Access tuple variant field at index 0
/// let my_path = ParsedPath::parse_static(my_static_string);
/// ```
/// Parsing a non-static [`&str`](str):
/// ```
/// # use bevy_reflect::ParsedPath;
/// let my_string = String::from("bar#0.1[2].0");
/// // Breakdown:
/// //   "bar" - Access struct field named "bar"
/// //   "#0" - Access struct field at index 0
/// //   ".1" - Access tuple struct field at index 1
/// //   "[2]" - Access list element at index 2
/// //   ".0" - Access tuple variant field at index 0
/// let my_path = ParsedPath::parse(&my_string);
/// ```
/// Manually constructing a [`ParsedPath`]:
/// ```
/// # use std::borrow::Cow;
/// # use bevy_reflect::access::Access;
/// # use bevy_reflect::ParsedPath;
/// let path_elements = [
///     Access::Field(Cow::Borrowed("bar")),
///     Access::FieldIndex(0),
///     Access::TupleIndex(1),
///     Access::ListIndex(2),
///     Access::TupleIndex(1),
/// ];
/// let my_path = ParsedPath::from(path_elements);
/// ```
///
#[derive(Clone, Debug, PartialEq, PartialOrd, Ord, Eq, Hash)]
pub struct ParsedPath(
    /// This is a vector of pre-parsed [`OffsetAccess`]es.
    pub Vec<OffsetAccess>,
);

impl ParsedPath {
    /// Parses a [`ParsedPath`] from a string.
    ///
    /// Returns an error if the string does not represent a valid path to an element.
    ///
    /// The exact format for path strings can be found in the documentation for [`GetPath`].
    /// In short, though, a path consists of one or more chained accessor strings.
    /// These are:
    /// - Named field access (`.field`)
    /// - Unnamed field access (`.1`)
    /// - Field index access (`#0`)
    /// - Sequence access (`[2]`)
    ///
    /// # Example
    /// ```
    /// # use bevy_reflect::{ParsedPath, Reflect, ReflectPath};
    /// #[derive(Reflect)]
    /// struct Foo {
    ///   bar: Bar,
    /// }
    ///
    /// #[derive(Reflect)]
    /// struct Bar {
    ///   baz: Baz,
    /// }
    ///
    /// #[derive(Reflect)]
    /// struct Baz(f32, Vec<Option<u32>>);
    ///
    /// let foo = Foo {
    ///   bar: Bar {
    ///     baz: Baz(3.14, vec![None, None, Some(123)])
    ///   },
    /// };
    ///
    /// let parsed_path = ParsedPath::parse("bar#0.1[2].0").unwrap();
    /// // Breakdown:
    /// //   "bar" - Access struct field named "bar"
    /// //   "#0" - Access struct field at index 0
    /// //   ".1" - Access tuple struct field at index 1
    /// //   "[2]" - Access list element at index 2
    /// //   ".0" - Access tuple variant field at index 0
    ///
    /// assert_eq!(parsed_path.element::<u32>(&foo).unwrap(), &123);
    /// ```
    ///
    pub fn parse(string: &str) -> PathResult<Self> {
        let mut parts = Vec::new();
        for (access, offset) in PathParser::new(string) {
            parts.push(OffsetAccess {
                access: access?.into_owned(),
                offset: Some(offset),
            });
        }
        Ok(Self(parts))
    }

    /// Similar to [`Self::parse`] but only works on `&'static str`
    /// and does not allocate per named field.
    pub fn parse_static(string: &'static str) -> PathResult<Self> {
        let mut parts = Vec::new();
        for (access, offset) in PathParser::new(string) {
            parts.push(OffsetAccess {
                access: access?,
                offset: Some(offset),
            });
        }
        Ok(Self(parts))
    }
}
impl<'a> ReflectPath<'a> for &'a ParsedPath {
    fn reflect_element(self, mut root: &dyn Reflect) -> PathResult<'a, &dyn Reflect> {
        for OffsetAccess { access, offset } in &self.0 {
            root = access.element(root, *offset)?;
        }
        Ok(root)
    }
    fn reflect_element_mut(self, mut root: &mut dyn Reflect) -> PathResult<'a, &mut dyn Reflect> {
        for OffsetAccess { access, offset } in &self.0 {
            root = access.element_mut(root, *offset)?;
        }
        Ok(root)
    }
}
impl From<Vec<OffsetAccess>> for ParsedPath {
    fn from(value: Vec<OffsetAccess>) -> Self {
        ParsedPath(value)
    }
}
impl<const N: usize> From<[OffsetAccess; N]> for ParsedPath {
    fn from(value: [OffsetAccess; N]) -> Self {
        ParsedPath(value.to_vec())
    }
}
impl From<Vec<Access<'static>>> for ParsedPath {
    fn from(value: Vec<Access<'static>>) -> Self {
        ParsedPath(
            value
                .into_iter()
                .map(|access| OffsetAccess {
                    access,
                    offset: None,
                })
                .collect(),
        )
    }
}
impl<const N: usize> From<[Access<'static>; N]> for ParsedPath {
    fn from(value: [Access<'static>; N]) -> Self {
        value.to_vec().into()
    }
}

impl fmt::Display for ParsedPath {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        for OffsetAccess { access, .. } in &self.0 {
            write!(f, "{access}")?;
        }
        Ok(())
    }
}
impl std::ops::Index<usize> for ParsedPath {
    type Output = OffsetAccess;
    fn index(&self, index: usize) -> &Self::Output {
        &self.0[index]
    }
}
impl std::ops::IndexMut<usize> for ParsedPath {
    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
        &mut self.0[index]
    }
}

#[cfg(test)]
#[allow(clippy::float_cmp, clippy::approx_constant)]
mod tests {
    use super::*;
    use crate as bevy_reflect;
    use crate::*;

    #[derive(Reflect)]
    struct A {
        w: usize,
        x: B,
        y: Vec<C>,
        z: D,
        unit_variant: F,
        tuple_variant: F,
        struct_variant: F,
        array: [i32; 3],
        tuple: (bool, f32),
    }

    #[derive(Reflect)]
    struct B {
        foo: usize,
        łørđ: C,
    }

    #[derive(Reflect)]
    struct C {
        mосква: f32,
    }

    #[derive(Reflect)]
    struct D(E);

    #[derive(Reflect)]
    struct E(f32, usize);

    #[derive(Reflect, PartialEq, Debug)]
    enum F {
        Unit,
        Tuple(u32, u32),
        Şķràźÿ { 東京: char },
    }

    fn a_sample() -> A {
        A {
            w: 1,
            x: B {
                foo: 10,
                łørđ: C { mосква: 3.14 },
            },
            y: vec![C { mосква: 1.0 }, C { mосква: 2.0 }],
            z: D(E(10.0, 42)),
            unit_variant: F::Unit,
            tuple_variant: F::Tuple(123, 321),
            struct_variant: F::Şķràźÿ { 東京: 'm' },
            array: [86, 75, 309],
            tuple: (true, 1.23),
        }
    }

    fn offset(access: Access<'static>, offset: usize) -> OffsetAccess {
        OffsetAccess {
            access,
            offset: Some(offset),
        }
    }

    fn access_field(field: &'static str) -> Access {
        Access::Field(field.into())
    }

    type StaticError = ReflectPathError<'static>;

    fn invalid_access(
        offset: usize,
        actual: ReflectKind,
        expected: ReflectKind,
        access: &'static str,
    ) -> StaticError {
        ReflectPathError::InvalidAccess(AccessError {
            kind: AccessErrorKind::IncompatibleTypes { actual, expected },
            access: ParsedPath::parse_static(access).unwrap()[1].access.clone(),
            offset: Some(offset),
        })
    }

    #[test]
    fn parsed_path_parse() {
        assert_eq!(
            ParsedPath::parse("w").unwrap().0,
            &[offset(access_field("w"), 1)]
        );
        assert_eq!(
            ParsedPath::parse("x.foo").unwrap().0,
            &[offset(access_field("x"), 1), offset(access_field("foo"), 2)]
        );
        assert_eq!(
            ParsedPath::parse("x.łørđ.mосква").unwrap().0,
            &[
                offset(access_field("x"), 1),
                offset(access_field("łørđ"), 2),
                offset(access_field("mосква"), 10)
            ]
        );
        assert_eq!(
            ParsedPath::parse("y[1].mосква").unwrap().0,
            &[
                offset(access_field("y"), 1),
                offset(Access::ListIndex(1), 2),
                offset(access_field("mосква"), 5)
            ]
        );
        assert_eq!(
            ParsedPath::parse("z.0.1").unwrap().0,
            &[
                offset(access_field("z"), 1),
                offset(Access::TupleIndex(0), 2),
                offset(Access::TupleIndex(1), 4),
            ]
        );
        assert_eq!(
            ParsedPath::parse("x#0").unwrap().0,
            &[
                offset(access_field("x"), 1),
                offset(Access::FieldIndex(0), 2)
            ]
        );
        assert_eq!(
            ParsedPath::parse("x#0#1").unwrap().0,
            &[
                offset(access_field("x"), 1),
                offset(Access::FieldIndex(0), 2),
                offset(Access::FieldIndex(1), 4)
            ]
        );
    }

    #[test]
    fn parsed_path_get_field() {
        let a = a_sample();

        let b = ParsedPath::parse("w").unwrap();
        let c = ParsedPath::parse("x.foo").unwrap();
        let d = ParsedPath::parse("x.łørđ.mосква").unwrap();
        let e = ParsedPath::parse("y[1].mосква").unwrap();
        let f = ParsedPath::parse("z.0.1").unwrap();
        let g = ParsedPath::parse("x#0").unwrap();
        let h = ParsedPath::parse("x#1#0").unwrap();
        let i = ParsedPath::parse("unit_variant").unwrap();
        let j = ParsedPath::parse("tuple_variant.1").unwrap();
        let k = ParsedPath::parse("struct_variant.東京").unwrap();
        let l = ParsedPath::parse("struct_variant#0").unwrap();
        let m = ParsedPath::parse("array[2]").unwrap();
        let n = ParsedPath::parse("tuple.1").unwrap();

        for _ in 0..30 {
            assert_eq!(*b.element::<usize>(&a).unwrap(), 1);
            assert_eq!(*c.element::<usize>(&a).unwrap(), 10);
            assert_eq!(*d.element::<f32>(&a).unwrap(), 3.14);
            assert_eq!(*e.element::<f32>(&a).unwrap(), 2.0);
            assert_eq!(*f.element::<usize>(&a).unwrap(), 42);
            assert_eq!(*g.element::<usize>(&a).unwrap(), 10);
            assert_eq!(*h.element::<f32>(&a).unwrap(), 3.14);
            assert_eq!(*i.element::<F>(&a).unwrap(), F::Unit);
            assert_eq!(*j.element::<u32>(&a).unwrap(), 321);
            assert_eq!(*k.element::<char>(&a).unwrap(), 'm');
            assert_eq!(*l.element::<char>(&a).unwrap(), 'm');
            assert_eq!(*m.element::<i32>(&a).unwrap(), 309);
            assert_eq!(*n.element::<f32>(&a).unwrap(), 1.23);
        }
    }

    #[test]
    fn reflect_array_behaves_like_list() {
        #[derive(Reflect)]
        struct A {
            list: Vec<u8>,
            array: [u8; 10],
        }

        let a = A {
            list: vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
            array: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
        };

        assert_eq!(*a.path::<u8>("list[5]").unwrap(), 5);
        assert_eq!(*a.path::<u8>("array[5]").unwrap(), 5);
        assert_eq!(*a.path::<u8>("list[0]").unwrap(), 0);
        assert_eq!(*a.path::<u8>("array[0]").unwrap(), 0);
    }

    #[test]
    fn reflect_array_behaves_like_list_mut() {
        #[derive(Reflect)]
        struct A {
            list: Vec<u8>,
            array: [u8; 10],
        }

        let mut a = A {
            list: vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
            array: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
        };

        assert_eq!(*a.path_mut::<u8>("list[5]").unwrap(), 5);
        assert_eq!(*a.path_mut::<u8>("array[5]").unwrap(), 5);

        *a.path_mut::<u8>("list[5]").unwrap() = 10;
        *a.path_mut::<u8>("array[5]").unwrap() = 10;

        assert_eq!(*a.path_mut::<u8>("list[5]").unwrap(), 10);
        assert_eq!(*a.path_mut::<u8>("array[5]").unwrap(), 10);
    }

    #[test]
    fn reflect_path() {
        let mut a = a_sample();

        assert_eq!(*a.path::<usize>("w").unwrap(), 1);
        assert_eq!(*a.path::<usize>("x.foo").unwrap(), 10);
        assert_eq!(*a.path::<f32>("x.łørđ.mосква").unwrap(), 3.14);
        assert_eq!(*a.path::<f32>("y[1].mосква").unwrap(), 2.0);
        assert_eq!(*a.path::<usize>("z.0.1").unwrap(), 42);
        assert_eq!(*a.path::<usize>("x#0").unwrap(), 10);
        assert_eq!(*a.path::<f32>("x#1#0").unwrap(), 3.14);

        assert_eq!(*a.path::<F>("unit_variant").unwrap(), F::Unit);
        assert_eq!(*a.path::<u32>("tuple_variant.1").unwrap(), 321);
        assert_eq!(*a.path::<char>("struct_variant.東京").unwrap(), 'm');
        assert_eq!(*a.path::<char>("struct_variant#0").unwrap(), 'm');

        assert_eq!(*a.path::<i32>("array[2]").unwrap(), 309);

        assert_eq!(*a.path::<f32>("tuple.1").unwrap(), 1.23);
        *a.path_mut::<f32>("tuple.1").unwrap() = 3.21;
        assert_eq!(*a.path::<f32>("tuple.1").unwrap(), 3.21);

        *a.path_mut::<f32>("y[1].mосква").unwrap() = 3.0;
        assert_eq!(a.y[1].mосква, 3.0);

        *a.path_mut::<u32>("tuple_variant.0").unwrap() = 1337;
        assert_eq!(a.tuple_variant, F::Tuple(1337, 321));

        assert_eq!(
            a.reflect_path("x.notreal").err().unwrap(),
            ReflectPathError::InvalidAccess(AccessError {
                kind: AccessErrorKind::MissingField(ReflectKind::Struct),
                access: access_field("notreal"),
                offset: Some(2),
            })
        );

        assert_eq!(
            a.reflect_path("unit_variant.0").err().unwrap(),
            ReflectPathError::InvalidAccess(AccessError {
                kind: AccessErrorKind::IncompatibleEnumVariantTypes {
                    actual: VariantType::Unit,
                    expected: VariantType::Tuple,
                },
                access: ParsedPath::parse_static("unit_variant.0").unwrap()[1]
                    .access
                    .clone(),
                offset: Some(13),
            })
        );
        assert_eq!(
            a.reflect_path("x[0]").err().unwrap(),
            invalid_access(2, ReflectKind::Struct, ReflectKind::List, "x[0]")
        );
        assert_eq!(
            a.reflect_path("y.x").err().unwrap(),
            invalid_access(2, ReflectKind::List, ReflectKind::Struct, "y.x")
        );
    }

    #[test]
    fn accept_leading_tokens() {
        assert_eq!(
            ParsedPath::parse(".w").unwrap().0,
            &[offset(access_field("w"), 1)]
        );
        assert_eq!(
            ParsedPath::parse("#0.foo").unwrap().0,
            &[
                offset(Access::FieldIndex(0), 1),
                offset(access_field("foo"), 3)
            ]
        );
        assert_eq!(
            ParsedPath::parse(".5").unwrap().0,
            &[offset(Access::TupleIndex(5), 1)]
        );
        assert_eq!(
            ParsedPath::parse("[0].łørđ").unwrap().0,
            &[
                offset(Access::ListIndex(0), 1),
                offset(access_field("łørđ"), 4)
            ]
        );
    }
}