bevy_reflect/
type_info.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
use crate::{
    ArrayInfo, DynamicArray, DynamicEnum, DynamicList, DynamicMap, DynamicStruct, DynamicTuple,
    DynamicTupleStruct, EnumInfo, Generics, ListInfo, MapInfo, PartialReflect, Reflect,
    ReflectKind, SetInfo, StructInfo, TupleInfo, TupleStructInfo, TypePath, TypePathTable,
};
use core::{
    any::{Any, TypeId},
    fmt::{Debug, Formatter},
    hash::Hash,
};
use derive_more::derive::{Display, Error};

/// A static accessor to compile-time type information.
///
/// This trait is automatically implemented by the [`#[derive(Reflect)]`](derive@crate::Reflect) macro
/// and allows type information to be processed without an instance of that type.
///
/// If you need to use this trait as a generic bound along with other reflection traits,
/// for your convenience, consider using [`Reflectable`] instead.
///
/// # Implementing
///
/// While it is recommended to leave implementing this trait to the `#[derive(Reflect)]` macro,
/// it is possible to implement this trait manually. If a manual implementation is needed,
/// you _must_ ensure that the information you provide is correct, otherwise various systems that
/// rely on this trait may fail in unexpected ways.
///
/// Implementors may have difficulty in generating a reference to [`TypeInfo`] with a static
/// lifetime. Luckily, this crate comes with some [utility] structs, to make generating these
/// statics much simpler.
///
/// # Example
///
/// ```
/// # use std::any::Any;
/// # use bevy_reflect::{DynamicTypePath, NamedField, PartialReflect, Reflect, ReflectMut, ReflectOwned, ReflectRef, StructInfo, TypeInfo, TypePath, OpaqueInfo, ApplyError};
/// # use bevy_reflect::utility::NonGenericTypeInfoCell;
/// use bevy_reflect::Typed;
///
/// struct MyStruct {
///   foo: usize,
///   bar: (f32, f32)
/// }
///
/// impl Typed for MyStruct {
///   fn type_info() -> &'static TypeInfo {
///     static CELL: NonGenericTypeInfoCell = NonGenericTypeInfoCell::new();
///     CELL.get_or_set(|| {
///       let fields = [
///         NamedField::new::<usize >("foo"),
///         NamedField::new::<(f32, f32) >("bar"),
///       ];
///       let info = StructInfo::new::<Self>(&fields);
///       TypeInfo::Struct(info)
///     })
///   }
/// }
///
/// # impl TypePath for MyStruct {
/// #     fn type_path() -> &'static str { todo!() }
/// #     fn short_type_path() -> &'static str { todo!() }
/// # }
/// # impl PartialReflect for MyStruct {
/// #     fn get_represented_type_info(&self) -> Option<&'static TypeInfo> { todo!() }
/// #     fn into_partial_reflect(self: Box<Self>) -> Box<dyn PartialReflect> { todo!() }
/// #     fn as_partial_reflect(&self) -> &dyn PartialReflect { todo!() }
/// #     fn as_partial_reflect_mut(&mut self) -> &mut dyn PartialReflect { todo!() }
/// #     fn try_into_reflect(self: Box<Self>) -> Result<Box<dyn Reflect>, Box<dyn PartialReflect>> { todo!() }
/// #     fn try_as_reflect(&self) -> Option<&dyn Reflect> { todo!() }
/// #     fn try_as_reflect_mut(&mut self) -> Option<&mut dyn Reflect> { todo!() }
/// #     fn try_apply(&mut self, value: &dyn PartialReflect) -> Result<(), ApplyError> { todo!() }
/// #     fn reflect_ref(&self) -> ReflectRef { todo!() }
/// #     fn reflect_mut(&mut self) -> ReflectMut { todo!() }
/// #     fn reflect_owned(self: Box<Self>) -> ReflectOwned { todo!() }
/// #     fn clone_value(&self) -> Box<dyn PartialReflect> { todo!() }
/// # }
/// # impl Reflect for MyStruct {
/// #     fn into_any(self: Box<Self>) -> Box<dyn Any> { todo!() }
/// #     fn as_any(&self) -> &dyn Any { todo!() }
/// #     fn as_any_mut(&mut self) -> &mut dyn Any { todo!() }
/// #     fn into_reflect(self: Box<Self>) -> Box<dyn Reflect> { todo!() }
/// #     fn as_reflect(&self) -> &dyn Reflect { todo!() }
/// #     fn as_reflect_mut(&mut self) -> &mut dyn Reflect { todo!() }
/// #     fn set(&mut self, value: Box<dyn Reflect>) -> Result<(), Box<dyn Reflect>> { todo!() }
/// # }
/// ```
///
/// [`Reflectable`]: crate::Reflectable
/// [utility]: crate::utility
#[diagnostic::on_unimplemented(
    message = "`{Self}` does not implement `Typed` so cannot provide static type information",
    note = "consider annotating `{Self}` with `#[derive(Reflect)]`"
)]
pub trait Typed: Reflect + TypePath {
    /// Returns the compile-time [info] for the underlying type.
    ///
    /// [info]: TypeInfo
    fn type_info() -> &'static TypeInfo;
}

/// A wrapper trait around [`Typed`].
///
/// This trait is used to provide a way to get compile-time type information for types that
/// do implement `Typed` while also allowing for types that do not implement `Typed` to be used.
/// It's used instead of `Typed` directly to avoid making dynamic types also
/// implement `Typed` in order to be used as active fields.
///
/// This trait has a blanket implementation for all types that implement `Typed`
/// and manual implementations for all dynamic types (which simply return `None`).
#[doc(hidden)]
#[diagnostic::on_unimplemented(
    message = "`{Self}` does not implement `Typed` so cannot provide static type information",
    note = "consider annotating `{Self}` with `#[derive(Reflect)]`"
)]
pub trait MaybeTyped: PartialReflect {
    /// Returns the compile-time [info] for the underlying type, if it exists.
    ///
    /// [info]: TypeInfo
    fn maybe_type_info() -> Option<&'static TypeInfo> {
        None
    }
}

impl<T: Typed> MaybeTyped for T {
    fn maybe_type_info() -> Option<&'static TypeInfo> {
        Some(T::type_info())
    }
}

impl MaybeTyped for DynamicEnum {}

impl MaybeTyped for DynamicTupleStruct {}

impl MaybeTyped for DynamicStruct {}

impl MaybeTyped for DynamicMap {}

impl MaybeTyped for DynamicList {}

impl MaybeTyped for DynamicArray {}

impl MaybeTyped for DynamicTuple {}

/// Dynamic dispatch for [`Typed`].
///
/// Since this is a supertrait of [`Reflect`] its methods can be called on a `dyn Reflect`.
///
/// [`Reflect`]: crate::Reflect
#[diagnostic::on_unimplemented(
    message = "`{Self}` can not provide dynamic type information through reflection",
    note = "consider annotating `{Self}` with `#[derive(Reflect)]`"
)]
pub trait DynamicTyped {
    /// See [`Typed::type_info`].
    fn reflect_type_info(&self) -> &'static TypeInfo;
}

impl<T: Typed> DynamicTyped for T {
    #[inline]
    fn reflect_type_info(&self) -> &'static TypeInfo {
        Self::type_info()
    }
}

/// A [`TypeInfo`]-specific error.
#[derive(Debug, Error, Display)]
pub enum TypeInfoError {
    /// Caused when a type was expected to be of a certain [kind], but was not.
    ///
    /// [kind]: ReflectKind
    #[display("kind mismatch: expected {expected:?}, received {received:?}")]
    KindMismatch {
        expected: ReflectKind,
        received: ReflectKind,
    },
}

/// Compile-time type information for various reflected types.
///
/// Generally, for any given type, this value can be retrieved in one of four ways:
///
/// 1. [`Typed::type_info`]
/// 2. [`DynamicTyped::reflect_type_info`]
/// 3. [`PartialReflect::get_represented_type_info`]
/// 4. [`TypeRegistry::get_type_info`]
///
/// Each return a static reference to [`TypeInfo`], but they all have their own use cases.
/// For example, if you know the type at compile time, [`Typed::type_info`] is probably
/// the simplest. If you have a `dyn Reflect` you can use [`DynamicTyped::reflect_type_info`].
/// If all you have is a `dyn PartialReflect`, you'll probably want [`PartialReflect::get_represented_type_info`].
/// Lastly, if all you have is a [`TypeId`] or [type path], you will need to go through
/// [`TypeRegistry::get_type_info`].
///
/// You may also opt to use [`TypeRegistry::get_type_info`] in place of the other methods simply because
/// it can be more performant. This is because those other methods may require attaining a lock on
/// the static [`TypeInfo`], while the registry simply checks a map.
///
/// [`TypeRegistry::get_type_info`]: crate::TypeRegistry::get_type_info
/// [`PartialReflect::get_represented_type_info`]: crate::PartialReflect::get_represented_type_info
/// [type path]: TypePath::type_path
#[derive(Debug, Clone)]
pub enum TypeInfo {
    Struct(StructInfo),
    TupleStruct(TupleStructInfo),
    Tuple(TupleInfo),
    List(ListInfo),
    Array(ArrayInfo),
    Map(MapInfo),
    Set(SetInfo),
    Enum(EnumInfo),
    Opaque(OpaqueInfo),
}

impl TypeInfo {
    /// The underlying Rust [type].
    ///
    /// [type]: Type
    pub fn ty(&self) -> &Type {
        match self {
            Self::Struct(info) => info.ty(),
            Self::TupleStruct(info) => info.ty(),
            Self::Tuple(info) => info.ty(),
            Self::List(info) => info.ty(),
            Self::Array(info) => info.ty(),
            Self::Map(info) => info.ty(),
            Self::Set(info) => info.ty(),
            Self::Enum(info) => info.ty(),
            Self::Opaque(info) => info.ty(),
        }
    }

    /// The [`TypeId`] of the underlying type.
    #[inline]
    pub fn type_id(&self) -> TypeId {
        self.ty().id()
    }

    /// A representation of the type path of the underlying type.
    ///
    /// Provides dynamic access to all methods on [`TypePath`].
    pub fn type_path_table(&self) -> &TypePathTable {
        self.ty().type_path_table()
    }

    /// The [stable, full type path] of the underlying type.
    ///
    /// Use [`type_path_table`] if you need access to the other methods on [`TypePath`].
    ///
    /// [stable, full type path]: TypePath
    /// [`type_path_table`]: Self::type_path_table
    pub fn type_path(&self) -> &'static str {
        self.ty().path()
    }

    /// Check if the given type matches this one.
    ///
    /// This only compares the [`TypeId`] of the types
    /// and does not verify they share the same [`TypePath`]
    /// (though it implies they do).
    pub fn is<T: Any>(&self) -> bool {
        self.ty().is::<T>()
    }

    /// The docstring of the underlying type, if any.
    #[cfg(feature = "documentation")]
    pub fn docs(&self) -> Option<&str> {
        match self {
            Self::Struct(info) => info.docs(),
            Self::TupleStruct(info) => info.docs(),
            Self::Tuple(info) => info.docs(),
            Self::List(info) => info.docs(),
            Self::Array(info) => info.docs(),
            Self::Map(info) => info.docs(),
            Self::Set(info) => info.docs(),
            Self::Enum(info) => info.docs(),
            Self::Opaque(info) => info.docs(),
        }
    }

    /// Returns the [kind] of this `TypeInfo`.
    ///
    /// [kind]: ReflectKind
    pub fn kind(&self) -> ReflectKind {
        match self {
            Self::Struct(_) => ReflectKind::Struct,
            Self::TupleStruct(_) => ReflectKind::TupleStruct,
            Self::Tuple(_) => ReflectKind::Tuple,
            Self::List(_) => ReflectKind::List,
            Self::Array(_) => ReflectKind::Array,
            Self::Map(_) => ReflectKind::Map,
            Self::Set(_) => ReflectKind::Set,
            Self::Enum(_) => ReflectKind::Enum,
            Self::Opaque(_) => ReflectKind::Opaque,
        }
    }

    impl_generic_info_methods!(self => {
        match self {
            Self::Struct(info) => info.generics(),
            Self::TupleStruct(info) => info.generics(),
            Self::Tuple(info) => info.generics(),
            Self::List(info) => info.generics(),
            Self::Array(info) => info.generics(),
            Self::Map(info) => info.generics(),
            Self::Set(info) => info.generics(),
            Self::Enum(info) => info.generics(),
            Self::Opaque(info) => info.generics(),
        }
    });
}

macro_rules! impl_cast_method {
    ($name:ident : $kind:ident => $info:ident) => {
        #[doc = concat!("Attempts a cast to [`", stringify!($info), "`].")]
        #[doc = concat!("\n\nReturns an error if `self` is not [`TypeInfo::", stringify!($kind), "`].")]
        pub fn $name(&self) -> Result<&$info, TypeInfoError> {
            match self {
                Self::$kind(info) => Ok(info),
                _ => Err(TypeInfoError::KindMismatch {
                    expected: ReflectKind::$kind,
                    received: self.kind(),
                }),
            }
        }
    };
}

/// Conversion convenience methods for [`TypeInfo`].
impl TypeInfo {
    impl_cast_method!(as_struct: Struct => StructInfo);
    impl_cast_method!(as_tuple_struct: TupleStruct => TupleStructInfo);
    impl_cast_method!(as_tuple: Tuple => TupleInfo);
    impl_cast_method!(as_list: List => ListInfo);
    impl_cast_method!(as_array: Array => ArrayInfo);
    impl_cast_method!(as_map: Map => MapInfo);
    impl_cast_method!(as_enum: Enum => EnumInfo);
    impl_cast_method!(as_opaque: Opaque => OpaqueInfo);
}

/// The base representation of a Rust type.
///
/// When possible, it is recommended to use [`&'static TypeInfo`] instead of this
/// as it provides more information as well as being smaller
/// (since a reference only takes the same number of bytes as a `usize`).
///
/// However, where a static reference to [`TypeInfo`] is not possible,
/// such as with trait objects and other types that can't implement [`Typed`],
/// this type can be used instead.
///
/// It only requires that the type implements [`TypePath`].
///
/// And unlike [`TypeInfo`], this type implements [`Copy`], [`Eq`], and [`Hash`],
/// making it useful as a key type.
///
/// It's especially helpful when compared to [`TypeId`] as it can provide the
/// actual [type path] when debugging, while still having the same performance
/// as hashing/comparing [`TypeId`] directly—at the cost of a little more memory.
///
/// # Examples
///
/// ```
/// use bevy_reflect::{Type, TypePath};
///
/// fn assert_char<T: ?Sized + TypePath>(t: &T) -> Result<(), String> {
///     let ty = Type::of::<T>();
///     if Type::of::<char>() == ty {
///         Ok(())
///     } else {
///         Err(format!("expected `char`, got `{}`", ty.path()))
///     }
/// }
///
/// assert_eq!(
///     assert_char(&'a'),
///     Ok(())
/// );
/// assert_eq!(
///     assert_char(&String::from("Hello, world!")),
///     Err(String::from("expected `char`, got `alloc::string::String`"))
/// );
/// ```
///
/// [`&'static TypeInfo`]: TypeInfo
#[derive(Copy, Clone)]
pub struct Type {
    type_path_table: TypePathTable,
    type_id: TypeId,
}

impl Type {
    /// Create a new [`Type`] from a type that implements [`TypePath`].
    pub fn of<T: TypePath + ?Sized>() -> Self {
        Self {
            type_path_table: TypePathTable::of::<T>(),
            type_id: TypeId::of::<T>(),
        }
    }

    /// Returns the [`TypeId`] of the type.
    #[inline]
    pub fn id(&self) -> TypeId {
        self.type_id
    }

    /// See [`TypePath::type_path`].
    pub fn path(&self) -> &'static str {
        self.type_path_table.path()
    }

    /// See [`TypePath::short_type_path`].
    pub fn short_path(&self) -> &'static str {
        self.type_path_table.short_path()
    }

    /// See [`TypePath::type_ident`].
    pub fn ident(&self) -> Option<&'static str> {
        self.type_path_table.ident()
    }

    /// See [`TypePath::crate_name`].
    pub fn crate_name(&self) -> Option<&'static str> {
        self.type_path_table.crate_name()
    }

    /// See [`TypePath::module_path`].
    pub fn module_path(&self) -> Option<&'static str> {
        self.type_path_table.module_path()
    }

    /// A representation of the type path of this.
    ///
    /// Provides dynamic access to all methods on [`TypePath`].
    pub fn type_path_table(&self) -> &TypePathTable {
        &self.type_path_table
    }

    /// Check if the given type matches this one.
    ///
    /// This only compares the [`TypeId`] of the types
    /// and does not verify they share the same [`TypePath`]
    /// (though it implies they do).
    pub fn is<T: Any>(&self) -> bool {
        TypeId::of::<T>() == self.type_id
    }
}

/// This implementation will only output the [type path] of the type.
///
/// If you need to include the [`TypeId`] in the output,
/// you can access it through [`Type::id`].
///
/// [type path]: TypePath
impl Debug for Type {
    fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
        write!(f, "{}", self.type_path_table.path())
    }
}

impl Eq for Type {}

/// This implementation purely relies on the [`TypeId`] of the type,
/// and not on the [type path].
///
/// [type path]: TypePath
impl PartialEq for Type {
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        self.type_id == other.type_id
    }
}

/// This implementation purely relies on the [`TypeId`] of the type,
/// and not on the [type path].
///
/// [type path]: TypePath
impl Hash for Type {
    #[inline]
    fn hash<H: core::hash::Hasher>(&self, state: &mut H) {
        self.type_id.hash(state);
    }
}

macro_rules! impl_type_methods {
    // Generates the type methods based off a single field.
    ($field:ident) => {
        $crate::type_info::impl_type_methods!(self => {
            &self.$field
        });
    };
    // Generates the type methods based off a custom expression.
    ($self:ident => $expr:expr) => {
        /// The underlying Rust [type].
        ///
        /// [type]: crate::type_info::Type
        pub fn ty(&$self) -> &$crate::type_info::Type {
            $expr
        }

        /// The [`TypeId`] of this type.
        ///
        /// [`TypeId`]: std::any::TypeId
        pub fn type_id(&self) -> ::core::any::TypeId {
            self.ty().id()
        }

        /// The [stable, full type path] of this type.
        ///
        /// Use [`type_path_table`] if you need access to the other methods on [`TypePath`].
        ///
        /// [stable, full type path]: TypePath
        /// [`type_path_table`]: Self::type_path_table
        pub fn type_path(&self) -> &'static str {
            self.ty().path()
        }

        /// A representation of the type path of this type.
        ///
        /// Provides dynamic access to all methods on [`TypePath`].
        ///
        /// [`TypePath`]: crate::type_path::TypePath
        pub fn type_path_table(&self) -> &$crate::type_path::TypePathTable {
            &self.ty().type_path_table()
        }

        /// Check if the given type matches this one.
        ///
        /// This only compares the [`TypeId`] of the types
        /// and does not verify they share the same [`TypePath`]
        /// (though it implies they do).
        ///
        /// [`TypeId`]: std::any::TypeId
        /// [`TypePath`]: crate::type_path::TypePath
        pub fn is<T: ::core::any::Any>(&self) -> bool {
            self.ty().is::<T>()
        }
    };
}

use crate::generics::impl_generic_info_methods;
pub(crate) use impl_type_methods;

/// A container for compile-time info related to reflection-opaque types, including primitives.
///
/// This typically represents a type which cannot be broken down any further. This is often
/// due to technical reasons (or by definition), but it can also be a purposeful choice.
///
/// For example, [`i32`] cannot be broken down any further, so it is represented by an [`OpaqueInfo`].
/// And while [`String`] itself is a struct, its fields are private, so we don't really treat
/// it _as_ a struct. It therefore makes more sense to represent it as an [`OpaqueInfo`].
#[derive(Debug, Clone)]
pub struct OpaqueInfo {
    ty: Type,
    generics: Generics,
    #[cfg(feature = "documentation")]
    docs: Option<&'static str>,
}

impl OpaqueInfo {
    pub fn new<T: Reflect + TypePath + ?Sized>() -> Self {
        Self {
            ty: Type::of::<T>(),
            generics: Generics::new(),
            #[cfg(feature = "documentation")]
            docs: None,
        }
    }

    /// Sets the docstring for this type.
    #[cfg(feature = "documentation")]
    pub fn with_docs(self, doc: Option<&'static str>) -> Self {
        Self { docs: doc, ..self }
    }

    impl_type_methods!(ty);

    /// The docstring of this dynamic type, if any.
    #[cfg(feature = "documentation")]
    pub fn docs(&self) -> Option<&'static str> {
        self.docs
    }

    impl_generic_info_methods!(generics);
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn should_return_error_on_invalid_cast() {
        let info = <Vec<i32> as Typed>::type_info();
        assert!(matches!(
            info.as_struct(),
            Err(TypeInfoError::KindMismatch {
                expected: ReflectKind::Struct,
                received: ReflectKind::List
            })
        ));
    }
}