bevy_reflect/type_info.rs
1use crate::{
2 ArrayInfo, DynamicArray, DynamicEnum, DynamicList, DynamicMap, DynamicStruct, DynamicTuple,
3 DynamicTupleStruct, EnumInfo, Generics, ListInfo, MapInfo, PartialReflect, Reflect,
4 ReflectKind, SetInfo, StructInfo, TupleInfo, TupleStructInfo, TypePath, TypePathTable,
5};
6use core::{
7 any::{Any, TypeId},
8 fmt::{Debug, Formatter},
9 hash::Hash,
10};
11use derive_more::derive::{Display, Error};
12
13/// A static accessor to compile-time type information.
14///
15/// This trait is automatically implemented by the [`#[derive(Reflect)]`](derive@crate::Reflect) macro
16/// and allows type information to be processed without an instance of that type.
17///
18/// If you need to use this trait as a generic bound along with other reflection traits,
19/// for your convenience, consider using [`Reflectable`] instead.
20///
21/// # Implementing
22///
23/// While it is recommended to leave implementing this trait to the `#[derive(Reflect)]` macro,
24/// it is possible to implement this trait manually. If a manual implementation is needed,
25/// you _must_ ensure that the information you provide is correct, otherwise various systems that
26/// rely on this trait may fail in unexpected ways.
27///
28/// Implementors may have difficulty in generating a reference to [`TypeInfo`] with a static
29/// lifetime. Luckily, this crate comes with some [utility] structs, to make generating these
30/// statics much simpler.
31///
32/// # Example
33///
34/// ```
35/// # use std::any::Any;
36/// # use bevy_reflect::{DynamicTypePath, NamedField, PartialReflect, Reflect, ReflectMut, ReflectOwned, ReflectRef, StructInfo, TypeInfo, TypePath, OpaqueInfo, ApplyError};
37/// # use bevy_reflect::utility::NonGenericTypeInfoCell;
38/// use bevy_reflect::Typed;
39///
40/// struct MyStruct {
41/// foo: usize,
42/// bar: (f32, f32)
43/// }
44///
45/// impl Typed for MyStruct {
46/// fn type_info() -> &'static TypeInfo {
47/// static CELL: NonGenericTypeInfoCell = NonGenericTypeInfoCell::new();
48/// CELL.get_or_set(|| {
49/// let fields = [
50/// NamedField::new::<usize >("foo"),
51/// NamedField::new::<(f32, f32) >("bar"),
52/// ];
53/// let info = StructInfo::new::<Self>(&fields);
54/// TypeInfo::Struct(info)
55/// })
56/// }
57/// }
58///
59/// # impl TypePath for MyStruct {
60/// # fn type_path() -> &'static str { todo!() }
61/// # fn short_type_path() -> &'static str { todo!() }
62/// # }
63/// # impl PartialReflect for MyStruct {
64/// # fn get_represented_type_info(&self) -> Option<&'static TypeInfo> { todo!() }
65/// # fn into_partial_reflect(self: Box<Self>) -> Box<dyn PartialReflect> { todo!() }
66/// # fn as_partial_reflect(&self) -> &dyn PartialReflect { todo!() }
67/// # fn as_partial_reflect_mut(&mut self) -> &mut dyn PartialReflect { todo!() }
68/// # fn try_into_reflect(self: Box<Self>) -> Result<Box<dyn Reflect>, Box<dyn PartialReflect>> { todo!() }
69/// # fn try_as_reflect(&self) -> Option<&dyn Reflect> { todo!() }
70/// # fn try_as_reflect_mut(&mut self) -> Option<&mut dyn Reflect> { todo!() }
71/// # fn try_apply(&mut self, value: &dyn PartialReflect) -> Result<(), ApplyError> { todo!() }
72/// # fn reflect_ref(&self) -> ReflectRef { todo!() }
73/// # fn reflect_mut(&mut self) -> ReflectMut { todo!() }
74/// # fn reflect_owned(self: Box<Self>) -> ReflectOwned { todo!() }
75/// # fn clone_value(&self) -> Box<dyn PartialReflect> { todo!() }
76/// # }
77/// # impl Reflect for MyStruct {
78/// # fn into_any(self: Box<Self>) -> Box<dyn Any> { todo!() }
79/// # fn as_any(&self) -> &dyn Any { todo!() }
80/// # fn as_any_mut(&mut self) -> &mut dyn Any { todo!() }
81/// # fn into_reflect(self: Box<Self>) -> Box<dyn Reflect> { todo!() }
82/// # fn as_reflect(&self) -> &dyn Reflect { todo!() }
83/// # fn as_reflect_mut(&mut self) -> &mut dyn Reflect { todo!() }
84/// # fn set(&mut self, value: Box<dyn Reflect>) -> Result<(), Box<dyn Reflect>> { todo!() }
85/// # }
86/// ```
87///
88/// [`Reflectable`]: crate::Reflectable
89/// [utility]: crate::utility
90#[diagnostic::on_unimplemented(
91 message = "`{Self}` does not implement `Typed` so cannot provide static type information",
92 note = "consider annotating `{Self}` with `#[derive(Reflect)]`"
93)]
94pub trait Typed: Reflect + TypePath {
95 /// Returns the compile-time [info] for the underlying type.
96 ///
97 /// [info]: TypeInfo
98 fn type_info() -> &'static TypeInfo;
99}
100
101/// A wrapper trait around [`Typed`].
102///
103/// This trait is used to provide a way to get compile-time type information for types that
104/// do implement `Typed` while also allowing for types that do not implement `Typed` to be used.
105/// It's used instead of `Typed` directly to avoid making dynamic types also
106/// implement `Typed` in order to be used as active fields.
107///
108/// This trait has a blanket implementation for all types that implement `Typed`
109/// and manual implementations for all dynamic types (which simply return `None`).
110#[doc(hidden)]
111#[diagnostic::on_unimplemented(
112 message = "`{Self}` does not implement `Typed` so cannot provide static type information",
113 note = "consider annotating `{Self}` with `#[derive(Reflect)]`"
114)]
115pub trait MaybeTyped: PartialReflect {
116 /// Returns the compile-time [info] for the underlying type, if it exists.
117 ///
118 /// [info]: TypeInfo
119 fn maybe_type_info() -> Option<&'static TypeInfo> {
120 None
121 }
122}
123
124impl<T: Typed> MaybeTyped for T {
125 fn maybe_type_info() -> Option<&'static TypeInfo> {
126 Some(T::type_info())
127 }
128}
129
130impl MaybeTyped for DynamicEnum {}
131
132impl MaybeTyped for DynamicTupleStruct {}
133
134impl MaybeTyped for DynamicStruct {}
135
136impl MaybeTyped for DynamicMap {}
137
138impl MaybeTyped for DynamicList {}
139
140impl MaybeTyped for DynamicArray {}
141
142impl MaybeTyped for DynamicTuple {}
143
144/// Dynamic dispatch for [`Typed`].
145///
146/// Since this is a supertrait of [`Reflect`] its methods can be called on a `dyn Reflect`.
147///
148/// [`Reflect`]: crate::Reflect
149#[diagnostic::on_unimplemented(
150 message = "`{Self}` can not provide dynamic type information through reflection",
151 note = "consider annotating `{Self}` with `#[derive(Reflect)]`"
152)]
153pub trait DynamicTyped {
154 /// See [`Typed::type_info`].
155 fn reflect_type_info(&self) -> &'static TypeInfo;
156}
157
158impl<T: Typed> DynamicTyped for T {
159 #[inline]
160 fn reflect_type_info(&self) -> &'static TypeInfo {
161 Self::type_info()
162 }
163}
164
165/// A [`TypeInfo`]-specific error.
166#[derive(Debug, Error, Display)]
167pub enum TypeInfoError {
168 /// Caused when a type was expected to be of a certain [kind], but was not.
169 ///
170 /// [kind]: ReflectKind
171 #[display("kind mismatch: expected {expected:?}, received {received:?}")]
172 KindMismatch {
173 expected: ReflectKind,
174 received: ReflectKind,
175 },
176}
177
178/// Compile-time type information for various reflected types.
179///
180/// Generally, for any given type, this value can be retrieved in one of four ways:
181///
182/// 1. [`Typed::type_info`]
183/// 2. [`DynamicTyped::reflect_type_info`]
184/// 3. [`PartialReflect::get_represented_type_info`]
185/// 4. [`TypeRegistry::get_type_info`]
186///
187/// Each return a static reference to [`TypeInfo`], but they all have their own use cases.
188/// For example, if you know the type at compile time, [`Typed::type_info`] is probably
189/// the simplest. If you have a `dyn Reflect` you can use [`DynamicTyped::reflect_type_info`].
190/// If all you have is a `dyn PartialReflect`, you'll probably want [`PartialReflect::get_represented_type_info`].
191/// Lastly, if all you have is a [`TypeId`] or [type path], you will need to go through
192/// [`TypeRegistry::get_type_info`].
193///
194/// You may also opt to use [`TypeRegistry::get_type_info`] in place of the other methods simply because
195/// it can be more performant. This is because those other methods may require attaining a lock on
196/// the static [`TypeInfo`], while the registry simply checks a map.
197///
198/// [`TypeRegistry::get_type_info`]: crate::TypeRegistry::get_type_info
199/// [`PartialReflect::get_represented_type_info`]: crate::PartialReflect::get_represented_type_info
200/// [type path]: TypePath::type_path
201#[derive(Debug, Clone)]
202pub enum TypeInfo {
203 Struct(StructInfo),
204 TupleStruct(TupleStructInfo),
205 Tuple(TupleInfo),
206 List(ListInfo),
207 Array(ArrayInfo),
208 Map(MapInfo),
209 Set(SetInfo),
210 Enum(EnumInfo),
211 Opaque(OpaqueInfo),
212}
213
214impl TypeInfo {
215 /// The underlying Rust [type].
216 ///
217 /// [type]: Type
218 pub fn ty(&self) -> &Type {
219 match self {
220 Self::Struct(info) => info.ty(),
221 Self::TupleStruct(info) => info.ty(),
222 Self::Tuple(info) => info.ty(),
223 Self::List(info) => info.ty(),
224 Self::Array(info) => info.ty(),
225 Self::Map(info) => info.ty(),
226 Self::Set(info) => info.ty(),
227 Self::Enum(info) => info.ty(),
228 Self::Opaque(info) => info.ty(),
229 }
230 }
231
232 /// The [`TypeId`] of the underlying type.
233 #[inline]
234 pub fn type_id(&self) -> TypeId {
235 self.ty().id()
236 }
237
238 /// A representation of the type path of the underlying type.
239 ///
240 /// Provides dynamic access to all methods on [`TypePath`].
241 pub fn type_path_table(&self) -> &TypePathTable {
242 self.ty().type_path_table()
243 }
244
245 /// The [stable, full type path] of the underlying type.
246 ///
247 /// Use [`type_path_table`] if you need access to the other methods on [`TypePath`].
248 ///
249 /// [stable, full type path]: TypePath
250 /// [`type_path_table`]: Self::type_path_table
251 pub fn type_path(&self) -> &'static str {
252 self.ty().path()
253 }
254
255 /// Check if the given type matches this one.
256 ///
257 /// This only compares the [`TypeId`] of the types
258 /// and does not verify they share the same [`TypePath`]
259 /// (though it implies they do).
260 pub fn is<T: Any>(&self) -> bool {
261 self.ty().is::<T>()
262 }
263
264 /// The docstring of the underlying type, if any.
265 #[cfg(feature = "documentation")]
266 pub fn docs(&self) -> Option<&str> {
267 match self {
268 Self::Struct(info) => info.docs(),
269 Self::TupleStruct(info) => info.docs(),
270 Self::Tuple(info) => info.docs(),
271 Self::List(info) => info.docs(),
272 Self::Array(info) => info.docs(),
273 Self::Map(info) => info.docs(),
274 Self::Set(info) => info.docs(),
275 Self::Enum(info) => info.docs(),
276 Self::Opaque(info) => info.docs(),
277 }
278 }
279
280 /// Returns the [kind] of this `TypeInfo`.
281 ///
282 /// [kind]: ReflectKind
283 pub fn kind(&self) -> ReflectKind {
284 match self {
285 Self::Struct(_) => ReflectKind::Struct,
286 Self::TupleStruct(_) => ReflectKind::TupleStruct,
287 Self::Tuple(_) => ReflectKind::Tuple,
288 Self::List(_) => ReflectKind::List,
289 Self::Array(_) => ReflectKind::Array,
290 Self::Map(_) => ReflectKind::Map,
291 Self::Set(_) => ReflectKind::Set,
292 Self::Enum(_) => ReflectKind::Enum,
293 Self::Opaque(_) => ReflectKind::Opaque,
294 }
295 }
296
297 impl_generic_info_methods!(self => {
298 match self {
299 Self::Struct(info) => info.generics(),
300 Self::TupleStruct(info) => info.generics(),
301 Self::Tuple(info) => info.generics(),
302 Self::List(info) => info.generics(),
303 Self::Array(info) => info.generics(),
304 Self::Map(info) => info.generics(),
305 Self::Set(info) => info.generics(),
306 Self::Enum(info) => info.generics(),
307 Self::Opaque(info) => info.generics(),
308 }
309 });
310}
311
312macro_rules! impl_cast_method {
313 ($name:ident : $kind:ident => $info:ident) => {
314 #[doc = concat!("Attempts a cast to [`", stringify!($info), "`].")]
315 #[doc = concat!("\n\nReturns an error if `self` is not [`TypeInfo::", stringify!($kind), "`].")]
316 pub fn $name(&self) -> Result<&$info, TypeInfoError> {
317 match self {
318 Self::$kind(info) => Ok(info),
319 _ => Err(TypeInfoError::KindMismatch {
320 expected: ReflectKind::$kind,
321 received: self.kind(),
322 }),
323 }
324 }
325 };
326}
327
328/// Conversion convenience methods for [`TypeInfo`].
329impl TypeInfo {
330 impl_cast_method!(as_struct: Struct => StructInfo);
331 impl_cast_method!(as_tuple_struct: TupleStruct => TupleStructInfo);
332 impl_cast_method!(as_tuple: Tuple => TupleInfo);
333 impl_cast_method!(as_list: List => ListInfo);
334 impl_cast_method!(as_array: Array => ArrayInfo);
335 impl_cast_method!(as_map: Map => MapInfo);
336 impl_cast_method!(as_enum: Enum => EnumInfo);
337 impl_cast_method!(as_opaque: Opaque => OpaqueInfo);
338}
339
340/// The base representation of a Rust type.
341///
342/// When possible, it is recommended to use [`&'static TypeInfo`] instead of this
343/// as it provides more information as well as being smaller
344/// (since a reference only takes the same number of bytes as a `usize`).
345///
346/// However, where a static reference to [`TypeInfo`] is not possible,
347/// such as with trait objects and other types that can't implement [`Typed`],
348/// this type can be used instead.
349///
350/// It only requires that the type implements [`TypePath`].
351///
352/// And unlike [`TypeInfo`], this type implements [`Copy`], [`Eq`], and [`Hash`],
353/// making it useful as a key type.
354///
355/// It's especially helpful when compared to [`TypeId`] as it can provide the
356/// actual [type path] when debugging, while still having the same performance
357/// as hashing/comparing [`TypeId`] directly—at the cost of a little more memory.
358///
359/// # Examples
360///
361/// ```
362/// use bevy_reflect::{Type, TypePath};
363///
364/// fn assert_char<T: ?Sized + TypePath>(t: &T) -> Result<(), String> {
365/// let ty = Type::of::<T>();
366/// if Type::of::<char>() == ty {
367/// Ok(())
368/// } else {
369/// Err(format!("expected `char`, got `{}`", ty.path()))
370/// }
371/// }
372///
373/// assert_eq!(
374/// assert_char(&'a'),
375/// Ok(())
376/// );
377/// assert_eq!(
378/// assert_char(&String::from("Hello, world!")),
379/// Err(String::from("expected `char`, got `alloc::string::String`"))
380/// );
381/// ```
382///
383/// [`&'static TypeInfo`]: TypeInfo
384#[derive(Copy, Clone)]
385pub struct Type {
386 type_path_table: TypePathTable,
387 type_id: TypeId,
388}
389
390impl Type {
391 /// Create a new [`Type`] from a type that implements [`TypePath`].
392 pub fn of<T: TypePath + ?Sized>() -> Self {
393 Self {
394 type_path_table: TypePathTable::of::<T>(),
395 type_id: TypeId::of::<T>(),
396 }
397 }
398
399 /// Returns the [`TypeId`] of the type.
400 #[inline]
401 pub fn id(&self) -> TypeId {
402 self.type_id
403 }
404
405 /// See [`TypePath::type_path`].
406 pub fn path(&self) -> &'static str {
407 self.type_path_table.path()
408 }
409
410 /// See [`TypePath::short_type_path`].
411 pub fn short_path(&self) -> &'static str {
412 self.type_path_table.short_path()
413 }
414
415 /// See [`TypePath::type_ident`].
416 pub fn ident(&self) -> Option<&'static str> {
417 self.type_path_table.ident()
418 }
419
420 /// See [`TypePath::crate_name`].
421 pub fn crate_name(&self) -> Option<&'static str> {
422 self.type_path_table.crate_name()
423 }
424
425 /// See [`TypePath::module_path`].
426 pub fn module_path(&self) -> Option<&'static str> {
427 self.type_path_table.module_path()
428 }
429
430 /// A representation of the type path of this.
431 ///
432 /// Provides dynamic access to all methods on [`TypePath`].
433 pub fn type_path_table(&self) -> &TypePathTable {
434 &self.type_path_table
435 }
436
437 /// Check if the given type matches this one.
438 ///
439 /// This only compares the [`TypeId`] of the types
440 /// and does not verify they share the same [`TypePath`]
441 /// (though it implies they do).
442 pub fn is<T: Any>(&self) -> bool {
443 TypeId::of::<T>() == self.type_id
444 }
445}
446
447/// This implementation will only output the [type path] of the type.
448///
449/// If you need to include the [`TypeId`] in the output,
450/// you can access it through [`Type::id`].
451///
452/// [type path]: TypePath
453impl Debug for Type {
454 fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
455 write!(f, "{}", self.type_path_table.path())
456 }
457}
458
459impl Eq for Type {}
460
461/// This implementation purely relies on the [`TypeId`] of the type,
462/// and not on the [type path].
463///
464/// [type path]: TypePath
465impl PartialEq for Type {
466 #[inline]
467 fn eq(&self, other: &Self) -> bool {
468 self.type_id == other.type_id
469 }
470}
471
472/// This implementation purely relies on the [`TypeId`] of the type,
473/// and not on the [type path].
474///
475/// [type path]: TypePath
476impl Hash for Type {
477 #[inline]
478 fn hash<H: core::hash::Hasher>(&self, state: &mut H) {
479 self.type_id.hash(state);
480 }
481}
482
483macro_rules! impl_type_methods {
484 // Generates the type methods based off a single field.
485 ($field:ident) => {
486 $crate::type_info::impl_type_methods!(self => {
487 &self.$field
488 });
489 };
490 // Generates the type methods based off a custom expression.
491 ($self:ident => $expr:expr) => {
492 /// The underlying Rust [type].
493 ///
494 /// [type]: crate::type_info::Type
495 pub fn ty(&$self) -> &$crate::type_info::Type {
496 $expr
497 }
498
499 /// The [`TypeId`] of this type.
500 ///
501 /// [`TypeId`]: std::any::TypeId
502 pub fn type_id(&self) -> ::core::any::TypeId {
503 self.ty().id()
504 }
505
506 /// The [stable, full type path] of this type.
507 ///
508 /// Use [`type_path_table`] if you need access to the other methods on [`TypePath`].
509 ///
510 /// [stable, full type path]: TypePath
511 /// [`type_path_table`]: Self::type_path_table
512 pub fn type_path(&self) -> &'static str {
513 self.ty().path()
514 }
515
516 /// A representation of the type path of this type.
517 ///
518 /// Provides dynamic access to all methods on [`TypePath`].
519 ///
520 /// [`TypePath`]: crate::type_path::TypePath
521 pub fn type_path_table(&self) -> &$crate::type_path::TypePathTable {
522 &self.ty().type_path_table()
523 }
524
525 /// Check if the given type matches this one.
526 ///
527 /// This only compares the [`TypeId`] of the types
528 /// and does not verify they share the same [`TypePath`]
529 /// (though it implies they do).
530 ///
531 /// [`TypeId`]: std::any::TypeId
532 /// [`TypePath`]: crate::type_path::TypePath
533 pub fn is<T: ::core::any::Any>(&self) -> bool {
534 self.ty().is::<T>()
535 }
536 };
537}
538
539use crate::generics::impl_generic_info_methods;
540pub(crate) use impl_type_methods;
541
542/// A container for compile-time info related to reflection-opaque types, including primitives.
543///
544/// This typically represents a type which cannot be broken down any further. This is often
545/// due to technical reasons (or by definition), but it can also be a purposeful choice.
546///
547/// For example, [`i32`] cannot be broken down any further, so it is represented by an [`OpaqueInfo`].
548/// And while [`String`] itself is a struct, its fields are private, so we don't really treat
549/// it _as_ a struct. It therefore makes more sense to represent it as an [`OpaqueInfo`].
550#[derive(Debug, Clone)]
551pub struct OpaqueInfo {
552 ty: Type,
553 generics: Generics,
554 #[cfg(feature = "documentation")]
555 docs: Option<&'static str>,
556}
557
558impl OpaqueInfo {
559 pub fn new<T: Reflect + TypePath + ?Sized>() -> Self {
560 Self {
561 ty: Type::of::<T>(),
562 generics: Generics::new(),
563 #[cfg(feature = "documentation")]
564 docs: None,
565 }
566 }
567
568 /// Sets the docstring for this type.
569 #[cfg(feature = "documentation")]
570 pub fn with_docs(self, doc: Option<&'static str>) -> Self {
571 Self { docs: doc, ..self }
572 }
573
574 impl_type_methods!(ty);
575
576 /// The docstring of this dynamic type, if any.
577 #[cfg(feature = "documentation")]
578 pub fn docs(&self) -> Option<&'static str> {
579 self.docs
580 }
581
582 impl_generic_info_methods!(generics);
583}
584
585#[cfg(test)]
586mod tests {
587 use super::*;
588
589 #[test]
590 fn should_return_error_on_invalid_cast() {
591 let info = <Vec<i32> as Typed>::type_info();
592 assert!(matches!(
593 info.as_struct(),
594 Err(TypeInfoError::KindMismatch {
595 expected: ReflectKind::Struct,
596 received: ReflectKind::List
597 })
598 ));
599 }
600}