bevy_reflect/utility.rs
1//! Helpers for working with Bevy reflection.
2
3use crate::TypeInfo;
4use bevy_utils::{FixedState, NoOpHash, TypeIdMap};
5use core::{
6 any::{Any, TypeId},
7 hash::BuildHasher,
8};
9use std::sync::{OnceLock, PoisonError, RwLock};
10
11/// A type that can be stored in a ([`Non`])[`GenericTypeCell`].
12///
13/// [`Non`]: NonGenericTypeCell
14pub trait TypedProperty: sealed::Sealed {
15 type Stored: 'static;
16}
17
18/// Used to store a [`String`] in a [`GenericTypePathCell`] as part of a [`TypePath`] implementation.
19///
20/// [`TypePath`]: crate::TypePath
21pub struct TypePathComponent;
22
23mod sealed {
24 use super::{TypeInfo, TypePathComponent, TypedProperty};
25
26 pub trait Sealed {}
27
28 impl Sealed for TypeInfo {}
29 impl Sealed for TypePathComponent {}
30
31 impl TypedProperty for TypeInfo {
32 type Stored = Self;
33 }
34
35 impl TypedProperty for TypePathComponent {
36 type Stored = String;
37 }
38}
39
40/// A container for [`TypeInfo`] over non-generic types, allowing instances to be stored statically.
41///
42/// This is specifically meant for use with _non_-generic types. If your type _is_ generic,
43/// then use [`GenericTypeCell`] instead. Otherwise, it will not take into account all
44/// monomorphizations of your type.
45///
46/// Non-generic [`TypePath`]s should be trivially generated with string literals and [`concat!`].
47///
48/// ## Example
49///
50/// ```
51/// # use std::any::Any;
52/// # use bevy_reflect::{DynamicTypePath, NamedField, PartialReflect, Reflect, ReflectMut, ReflectOwned, ReflectRef, StructInfo, Typed, TypeInfo, TypePath, ApplyError};
53/// use bevy_reflect::utility::NonGenericTypeInfoCell;
54///
55/// struct Foo {
56/// bar: i32
57/// }
58///
59/// impl Typed for Foo {
60/// fn type_info() -> &'static TypeInfo {
61/// static CELL: NonGenericTypeInfoCell = NonGenericTypeInfoCell::new();
62/// CELL.get_or_set(|| {
63/// let fields = [NamedField::new::<i32>("bar")];
64/// let info = StructInfo::new::<Self>(&fields);
65/// TypeInfo::Struct(info)
66/// })
67/// }
68/// }
69/// # impl TypePath for Foo {
70/// # fn type_path() -> &'static str { todo!() }
71/// # fn short_type_path() -> &'static str { todo!() }
72/// # }
73/// # impl PartialReflect for Foo {
74/// # fn get_represented_type_info(&self) -> Option<&'static TypeInfo> { todo!() }
75/// # fn into_partial_reflect(self: Box<Self>) -> Box<dyn PartialReflect> { todo!() }
76/// # fn as_partial_reflect(&self) -> &dyn PartialReflect { todo!() }
77/// # fn as_partial_reflect_mut(&mut self) -> &mut dyn PartialReflect { todo!() }
78/// # fn try_into_reflect(self: Box<Self>) -> Result<Box<dyn Reflect>, Box<dyn PartialReflect>> { todo!() }
79/// # fn try_as_reflect(&self) -> Option<&dyn Reflect> { todo!() }
80/// # fn try_as_reflect_mut(&mut self) -> Option<&mut dyn Reflect> { todo!() }
81/// # fn try_apply(&mut self, value: &dyn PartialReflect) -> Result<(), ApplyError> { todo!() }
82/// # fn reflect_ref(&self) -> ReflectRef { todo!() }
83/// # fn reflect_mut(&mut self) -> ReflectMut { todo!() }
84/// # fn reflect_owned(self: Box<Self>) -> ReflectOwned { todo!() }
85/// # fn clone_value(&self) -> Box<dyn PartialReflect> { todo!() }
86/// # }
87/// # impl Reflect for Foo {
88/// # fn into_any(self: Box<Self>) -> Box<dyn Any> { todo!() }
89/// # fn as_any(&self) -> &dyn Any { todo!() }
90/// # fn as_any_mut(&mut self) -> &mut dyn Any { todo!() }
91/// # fn into_reflect(self: Box<Self>) -> Box<dyn Reflect> { todo!() }
92/// # fn as_reflect(&self) -> &dyn Reflect { todo!() }
93/// # fn as_reflect_mut(&mut self) -> &mut dyn Reflect { todo!() }
94/// # fn set(&mut self, value: Box<dyn Reflect>) -> Result<(), Box<dyn Reflect>> { todo!() }
95/// # }
96/// ```
97///
98/// [`TypePath`]: crate::TypePath
99pub struct NonGenericTypeCell<T: TypedProperty>(OnceLock<T::Stored>);
100
101/// See [`NonGenericTypeCell`].
102pub type NonGenericTypeInfoCell = NonGenericTypeCell<TypeInfo>;
103
104impl<T: TypedProperty> NonGenericTypeCell<T> {
105 /// Initialize a [`NonGenericTypeCell`] for non-generic types.
106 pub const fn new() -> Self {
107 Self(OnceLock::new())
108 }
109
110 /// Returns a reference to the [`TypedProperty`] stored in the cell.
111 ///
112 /// If there is no entry found, a new one will be generated from the given function.
113 pub fn get_or_set<F>(&self, f: F) -> &T::Stored
114 where
115 F: FnOnce() -> T::Stored,
116 {
117 self.0.get_or_init(f)
118 }
119}
120
121impl<T: TypedProperty> Default for NonGenericTypeCell<T> {
122 fn default() -> Self {
123 Self::new()
124 }
125}
126
127/// A container for [`TypedProperty`] over generic types, allowing instances to be stored statically.
128///
129/// This is specifically meant for use with generic types. If your type isn't generic,
130/// then use [`NonGenericTypeCell`] instead as it should be much more performant.
131///
132/// `#[derive(TypePath)]` and [`impl_type_path`] should always be used over [`GenericTypePathCell`]
133/// where possible.
134///
135/// ## Examples
136///
137/// Implementing [`TypeInfo`] with generics.
138///
139/// ```
140/// # use std::any::Any;
141/// # use bevy_reflect::{DynamicTypePath, PartialReflect, Reflect, ReflectMut, ReflectOwned, ReflectRef, TupleStructInfo, Typed, TypeInfo, TypePath, UnnamedField, ApplyError, Generics, TypeParamInfo};
142/// use bevy_reflect::utility::GenericTypeInfoCell;
143///
144/// struct Foo<T>(T);
145///
146/// impl<T: Reflect + Typed + TypePath> Typed for Foo<T> {
147/// fn type_info() -> &'static TypeInfo {
148/// static CELL: GenericTypeInfoCell = GenericTypeInfoCell::new();
149/// CELL.get_or_insert::<Self, _>(|| {
150/// let fields = [UnnamedField::new::<T>(0)];
151/// let info = TupleStructInfo::new::<Self>(&fields)
152/// .with_generics(Generics::from_iter([TypeParamInfo::new::<T>("T")]));
153/// TypeInfo::TupleStruct(info)
154/// })
155/// }
156/// }
157/// # impl<T: TypePath> TypePath for Foo<T> {
158/// # fn type_path() -> &'static str { todo!() }
159/// # fn short_type_path() -> &'static str { todo!() }
160/// # }
161/// # impl<T: PartialReflect + TypePath> PartialReflect for Foo<T> {
162/// # fn get_represented_type_info(&self) -> Option<&'static TypeInfo> { todo!() }
163/// # fn into_partial_reflect(self: Box<Self>) -> Box<dyn PartialReflect> { todo!() }
164/// # fn as_partial_reflect(&self) -> &dyn PartialReflect { todo!() }
165/// # fn as_partial_reflect_mut(&mut self) -> &mut dyn PartialReflect { todo!() }
166/// # fn try_into_reflect(self: Box<Self>) -> Result<Box<dyn Reflect>, Box<dyn PartialReflect>> { todo!() }
167/// # fn try_as_reflect(&self) -> Option<&dyn Reflect> { todo!() }
168/// # fn try_as_reflect_mut(&mut self) -> Option<&mut dyn Reflect> { todo!() }
169/// # fn try_apply(&mut self, value: &dyn PartialReflect) -> Result<(), ApplyError> { todo!() }
170/// # fn reflect_ref(&self) -> ReflectRef { todo!() }
171/// # fn reflect_mut(&mut self) -> ReflectMut { todo!() }
172/// # fn reflect_owned(self: Box<Self>) -> ReflectOwned { todo!() }
173/// # fn clone_value(&self) -> Box<dyn PartialReflect> { todo!() }
174/// # }
175/// # impl<T: Reflect + Typed + TypePath> Reflect for Foo<T> {
176/// # fn into_any(self: Box<Self>) -> Box<dyn Any> { todo!() }
177/// # fn as_any(&self) -> &dyn Any { todo!() }
178/// # fn as_any_mut(&mut self) -> &mut dyn Any { todo!() }
179/// # fn into_reflect(self: Box<Self>) -> Box<dyn Reflect> { todo!() }
180/// # fn as_reflect(&self) -> &dyn Reflect { todo!() }
181/// # fn as_reflect_mut(&mut self) -> &mut dyn Reflect { todo!() }
182/// # fn set(&mut self, value: Box<dyn Reflect>) -> Result<(), Box<dyn Reflect>> { todo!() }
183/// # }
184/// ```
185///
186/// Implementing [`TypePath`] with generics.
187///
188/// ```
189/// # use std::any::Any;
190/// # use bevy_reflect::TypePath;
191/// use bevy_reflect::utility::GenericTypePathCell;
192///
193/// struct Foo<T>(T);
194///
195/// impl<T: TypePath> TypePath for Foo<T> {
196/// fn type_path() -> &'static str {
197/// static CELL: GenericTypePathCell = GenericTypePathCell::new();
198/// CELL.get_or_insert::<Self, _>(|| format!("my_crate::foo::Foo<{}>", T::type_path()))
199/// }
200///
201/// fn short_type_path() -> &'static str {
202/// static CELL: GenericTypePathCell = GenericTypePathCell::new();
203/// CELL.get_or_insert::<Self, _>(|| format!("Foo<{}>", T::short_type_path()))
204/// }
205///
206/// fn type_ident() -> Option<&'static str> {
207/// Some("Foo")
208/// }
209///
210/// fn module_path() -> Option<&'static str> {
211/// Some("my_crate::foo")
212/// }
213///
214/// fn crate_name() -> Option<&'static str> {
215/// Some("my_crate")
216/// }
217/// }
218/// ```
219/// [`impl_type_path`]: crate::impl_type_path
220/// [`TypePath`]: crate::TypePath
221pub struct GenericTypeCell<T: TypedProperty>(RwLock<TypeIdMap<&'static T::Stored>>);
222
223/// See [`GenericTypeCell`].
224pub type GenericTypeInfoCell = GenericTypeCell<TypeInfo>;
225/// See [`GenericTypeCell`].
226pub type GenericTypePathCell = GenericTypeCell<TypePathComponent>;
227
228impl<T: TypedProperty> GenericTypeCell<T> {
229 /// Initialize a [`GenericTypeCell`] for generic types.
230 pub const fn new() -> Self {
231 Self(RwLock::new(TypeIdMap::with_hasher(NoOpHash)))
232 }
233
234 /// Returns a reference to the [`TypedProperty`] stored in the cell.
235 ///
236 /// This method will then return the correct [`TypedProperty`] reference for the given type `T`.
237 /// If there is no entry found, a new one will be generated from the given function.
238 pub fn get_or_insert<G, F>(&self, f: F) -> &T::Stored
239 where
240 G: Any + ?Sized,
241 F: FnOnce() -> T::Stored,
242 {
243 self.get_or_insert_by_type_id(TypeId::of::<G>(), f)
244 }
245
246 /// Returns a reference to the [`TypedProperty`] stored in the cell, if any.
247 ///
248 /// This method will then return the correct [`TypedProperty`] reference for the given type `T`.
249 fn get_by_type_id(&self, type_id: TypeId) -> Option<&T::Stored> {
250 self.0
251 .read()
252 .unwrap_or_else(PoisonError::into_inner)
253 .get(&type_id)
254 .copied()
255 }
256
257 /// Returns a reference to the [`TypedProperty`] stored in the cell.
258 ///
259 /// This method will then return the correct [`TypedProperty`] reference for the given type `T`.
260 /// If there is no entry found, a new one will be generated from the given function.
261 fn get_or_insert_by_type_id<F>(&self, type_id: TypeId, f: F) -> &T::Stored
262 where
263 F: FnOnce() -> T::Stored,
264 {
265 match self.get_by_type_id(type_id) {
266 Some(info) => info,
267 None => self.insert_by_type_id(type_id, f()),
268 }
269 }
270
271 fn insert_by_type_id(&self, type_id: TypeId, value: T::Stored) -> &T::Stored {
272 self.0
273 .write()
274 .unwrap_or_else(PoisonError::into_inner)
275 .entry(type_id)
276 .insert({
277 // We leak here in order to obtain a `&'static` reference.
278 // Otherwise, we won't be able to return a reference due to the `RwLock`.
279 // This should be okay, though, since we expect it to remain statically
280 // available over the course of the application.
281 Box::leak(Box::new(value))
282 })
283 .get()
284 }
285}
286
287impl<T: TypedProperty> Default for GenericTypeCell<T> {
288 fn default() -> Self {
289 Self::new()
290 }
291}
292
293/// Deterministic fixed state hasher to be used by implementors of [`Reflect::reflect_hash`].
294///
295/// Hashes should be deterministic across processes so hashes can be used as
296/// checksums for saved scenes, rollback snapshots etc. This function returns
297/// such a hasher.
298///
299/// [`Reflect::reflect_hash`]: crate::Reflect
300#[inline]
301pub fn reflect_hasher() -> bevy_utils::AHasher {
302 FixedState.build_hasher()
303}