bevy_reflect_derive/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
#![cfg_attr(docsrs, feature(doc_auto_cfg))]

//! This crate contains macros used by Bevy's `Reflect` API.
//!
//! The main export of this crate is the derive macro for [`Reflect`]. This allows
//! types to easily implement `Reflect` along with other `bevy_reflect` traits,
//! such as `Struct`, `GetTypeRegistration`, and more— all with a single derive!
//!
//! Some other noteworthy exports include the derive macros for [`FromReflect`] and
//! [`TypePath`], as well as the [`reflect_trait`] attribute macro.
//!
//! [`Reflect`]: crate::derive_reflect
//! [`FromReflect`]: crate::derive_from_reflect
//! [`TypePath`]: crate::derive_type_path
//! [`reflect_trait`]: macro@reflect_trait

extern crate proc_macro;

mod attribute_parser;
mod container_attributes;
mod custom_attributes;
mod derive_data;
#[cfg(feature = "documentation")]
mod documentation;
mod enum_utility;
mod field_attributes;
mod from_reflect;
mod generics;
mod ident;
mod impls;
mod meta;
mod reflect_opaque;
mod registration;
mod remote;
mod result_sifter;
mod serialization;
mod string_expr;
mod struct_utility;
mod trait_reflection;
mod type_path;
mod where_clause_options;

use crate::derive_data::{ReflectDerive, ReflectMeta, ReflectStruct};
use container_attributes::ContainerAttributes;
use derive_data::{ReflectImplSource, ReflectProvenance, ReflectTraitToImpl, ReflectTypePath};
use proc_macro::TokenStream;
use quote::quote;
use reflect_opaque::ReflectOpaqueDef;
use syn::{parse_macro_input, DeriveInput};
use type_path::NamedTypePathDef;

pub(crate) static REFLECT_ATTRIBUTE_NAME: &str = "reflect";
pub(crate) static TYPE_PATH_ATTRIBUTE_NAME: &str = "type_path";
pub(crate) static TYPE_NAME_ATTRIBUTE_NAME: &str = "type_name";

/// Used both for [`impl_reflect`] and [`derive_reflect`].
///
/// [`impl_reflect`]: macro@impl_reflect
/// [`derive_reflect`]: derive_reflect()
fn match_reflect_impls(ast: DeriveInput, source: ReflectImplSource) -> TokenStream {
    let derive_data = match ReflectDerive::from_input(
        &ast,
        ReflectProvenance {
            source,
            trait_: ReflectTraitToImpl::Reflect,
        },
    ) {
        Ok(data) => data,
        Err(err) => return err.into_compile_error().into(),
    };

    let assertions = impls::impl_assertions(&derive_data);

    let (reflect_impls, from_reflect_impl) = match derive_data {
        ReflectDerive::Struct(struct_data) | ReflectDerive::UnitStruct(struct_data) => (
            impls::impl_struct(&struct_data),
            if struct_data.meta().from_reflect().should_auto_derive() {
                Some(from_reflect::impl_struct(&struct_data))
            } else {
                None
            },
        ),
        ReflectDerive::TupleStruct(struct_data) => (
            impls::impl_tuple_struct(&struct_data),
            if struct_data.meta().from_reflect().should_auto_derive() {
                Some(from_reflect::impl_tuple_struct(&struct_data))
            } else {
                None
            },
        ),
        ReflectDerive::Enum(enum_data) => (
            impls::impl_enum(&enum_data),
            if enum_data.meta().from_reflect().should_auto_derive() {
                Some(from_reflect::impl_enum(&enum_data))
            } else {
                None
            },
        ),
        ReflectDerive::Opaque(meta) => (
            impls::impl_opaque(&meta),
            if meta.from_reflect().should_auto_derive() {
                Some(from_reflect::impl_opaque(&meta))
            } else {
                None
            },
        ),
    };

    TokenStream::from(quote! {
        const _: () = {
            #reflect_impls

            #from_reflect_impl

            #assertions
        };
    })
}

/// The main derive macro used by `bevy_reflect` for deriving its `Reflect` trait.
///
/// This macro can be used on all structs and enums (unions are not supported).
/// It will automatically generate implementations for `Reflect`, `Typed`, `GetTypeRegistration`, and `FromReflect`.
/// And, depending on the item's structure, will either implement `Struct`, `TupleStruct`, or `Enum`.
///
/// See the [`FromReflect`] derive macro for more information on how to customize the `FromReflect` implementation.
///
/// # Container Attributes
///
/// This macro comes with some helper attributes that can be added to the container item
/// in order to provide additional functionality or alter the generated implementations.
///
/// In addition to those listed, this macro can also use the attributes for [`TypePath`] derives.
///
/// ## `#[reflect(Ident)]`
///
/// The `#[reflect(Ident)]` attribute is used to add type data registrations to the `GetTypeRegistration`
/// implementation corresponding to the given identifier, prepended by `Reflect`.
///
/// For example, `#[reflect(Foo, Bar)]` would add two registrations:
/// one for `ReflectFoo` and another for `ReflectBar`.
/// This assumes these types are indeed in-scope wherever this macro is called.
///
/// This is often used with traits that have been marked by the [`#[reflect_trait]`](macro@reflect_trait)
/// macro in order to register the type's implementation of that trait.
///
/// ### Default Registrations
///
/// The following types are automatically registered when deriving `Reflect`:
///
/// * `ReflectFromReflect` (unless opting out of `FromReflect`)
/// * `SerializationData`
/// * `ReflectFromPtr`
///
/// ### Special Identifiers
///
/// There are a few "special" identifiers that work a bit differently:
///
/// * `#[reflect(Debug)]` will force the implementation of `Reflect::reflect_debug` to rely on
///   the type's [`Debug`] implementation.
///   A custom implementation may be provided using `#[reflect(Debug(my_debug_func))]` where
///   `my_debug_func` is the path to a function matching the signature:
///   `(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result`.
/// * `#[reflect(PartialEq)]` will force the implementation of `Reflect::reflect_partial_eq` to rely on
///   the type's [`PartialEq`] implementation.
///   A custom implementation may be provided using `#[reflect(PartialEq(my_partial_eq_func))]` where
///   `my_partial_eq_func` is the path to a function matching the signature:
///   `(&self, value: &dyn #bevy_reflect_path::Reflect) -> bool`.
/// * `#[reflect(Hash)]` will force the implementation of `Reflect::reflect_hash` to rely on
///   the type's [`Hash`] implementation.
///   A custom implementation may be provided using `#[reflect(Hash(my_hash_func))]` where
///   `my_hash_func` is the path to a function matching the signature: `(&self) -> u64`.
/// * `#[reflect(Default)]` will register the `ReflectDefault` type data as normal.
///   However, it will also affect how certain other operations are performed in order
///   to improve performance and/or robustness.
///   An example of where this is used is in the [`FromReflect`] derive macro,
///   where adding this attribute will cause the `FromReflect` implementation to create
///   a base value using its [`Default`] implementation avoiding issues with ignored fields
///   (for structs and tuple structs only).
///
/// ## `#[reflect(opaque)]`
///
/// The `#[reflect(opaque)]` attribute denotes that the item should implement `Reflect` as an opaque type,
/// hiding its structure and fields from the reflection API.
/// This means that it will forgo implementing `Struct`, `TupleStruct`, or `Enum`.
///
/// Furthermore, it requires that the type implements [`Clone`].
/// If planning to serialize this type using the reflection serializers,
/// then the `Serialize` and `Deserialize` traits will need to be implemented and registered as well.
///
/// ## `#[reflect(from_reflect = false)]`
///
/// This attribute will opt-out of the default `FromReflect` implementation.
///
/// This is useful for when a type can't or shouldn't implement `FromReflect`,
/// or if a manual implementation is desired.
///
/// Note that in the latter case, `ReflectFromReflect` will no longer be automatically registered.
///
/// ## `#[reflect(type_path = false)]`
///
/// This attribute will opt-out of the default `TypePath` implementation.
///
/// This is useful for when a type can't or shouldn't implement `TypePath`,
/// or if a manual implementation is desired.
///
/// ## `#[reflect(no_field_bounds)]`
///
/// This attribute will opt-out of the default trait bounds added to all field types
/// for the generated reflection trait impls.
///
/// Normally, all fields will have the bounds `TypePath`, and either `FromReflect` or `Reflect`
/// depending on if `#[reflect(from_reflect = false)]` is used.
/// However, this might not always be desirable, and so this attribute may be used to remove those bounds.
///
/// ### Example
///
/// If a type is recursive the default bounds will cause an overflow error when building:
///
/// ```ignore (bevy_reflect is not accessible from this crate)
/// #[derive(Reflect)] // ERROR: overflow evaluating the requirement `Foo: FromReflect`
/// struct Foo {
///   foo: Vec<Foo>,
/// }
///
/// // Generates a where clause like:
/// // impl bevy_reflect::Reflect for Foo
/// // where
/// //   Self: Any + Send + Sync,
/// //   Vec<Foo>: FromReflect + TypePath,
/// ```
///
/// In this case, `Foo` is given the bounds `Vec<Foo>: FromReflect + TypePath`,
/// which requires that `Foo` implements `FromReflect`,
/// which requires that `Vec<Foo>` implements `FromReflect`,
/// and so on, resulting in the error.
///
/// To fix this, we can add `#[reflect(no_field_bounds)]` to `Foo` to remove the bounds on `Vec<Foo>`:
///
/// ```ignore (bevy_reflect is not accessible from this crate)
/// #[derive(Reflect)]
/// #[reflect(no_field_bounds)]
/// struct Foo {
///   foo: Vec<Foo>,
/// }
///
/// // Generates a where clause like:
/// // impl bevy_reflect::Reflect for Foo
/// // where
/// //   Self: Any + Send + Sync,
/// ```
///
/// ## `#[reflect(where T: Trait, U::Assoc: Trait, ...)]`
///
/// This attribute can be used to add additional bounds to the generated reflection trait impls.
///
/// This is useful for when a type needs certain bounds only applied to the reflection impls
/// that are not otherwise automatically added by the derive macro.
///
/// ### Example
///
/// In the example below, we want to enforce that `T::Assoc: List` is required in order for
/// `Foo<T>` to be reflectable, but we don't want it to prevent `Foo<T>` from being used
/// in places where `T::Assoc: List` is not required.
///
/// ```ignore
/// trait Trait {
///   type Assoc;
/// }
///
/// #[derive(Reflect)]
/// #[reflect(where T::Assoc: List)]
/// struct Foo<T: Trait> where T::Assoc: Default {
///   value: T::Assoc,
/// }
///
/// // Generates a where clause like:
/// //
/// // impl<T: Trait> bevy_reflect::Reflect for Foo<T>
/// // where
/// //   Self: Any + Send + Sync,
/// //   T::Assoc: Default,
/// //   T: TypePath,
/// //   T::Assoc: FromReflect + TypePath,
/// //   T::Assoc: List,
/// // {/* ... */}
/// ```
///
/// ## `#[reflect(@...)]`
///
/// This attribute can be used to register custom attributes to the type's `TypeInfo`.
///
/// It accepts any expression after the `@` symbol that resolves to a value which implements `Reflect`.
///
/// Any number of custom attributes may be registered, however, each the type of each attribute must be unique.
/// If two attributes of the same type are registered, the last one will overwrite the first.
///
/// ### Example
///
/// ```ignore
/// #[derive(Reflect)]
/// struct Required;
///
/// #[derive(Reflect)]
/// struct EditorTooltip(String);
///
/// impl EditorTooltip {
///   fn new(text: &str) -> Self {
///     Self(text.to_string())
///   }
/// }
///
/// #[derive(Reflect)]
/// // Specify a "required" status and tooltip:
/// #[reflect(@Required, @EditorTooltip::new("An ID is required!"))]
/// struct Id(u8);
/// ```
///
/// # Field Attributes
///
/// Along with the container attributes, this macro comes with some attributes that may be applied
/// to the contained fields themselves.
///
/// ## `#[reflect(ignore)]`
///
/// This attribute simply marks a field to be ignored by the reflection API.
///
/// This allows fields to completely opt-out of reflection,
/// which may be useful for maintaining invariants, keeping certain data private,
/// or allowing the use of types that do not implement `Reflect` within the container.
///
/// ## `#[reflect(skip_serializing)]`
///
/// This works similar to `#[reflect(ignore)]`, but rather than opting out of _all_ of reflection,
/// it simply opts the field out of both serialization and deserialization.
/// This can be useful when a field should be accessible via reflection, but may not make
/// sense in a serialized form, such as computed data.
///
/// What this does is register the `SerializationData` type within the `GetTypeRegistration` implementation,
/// which will be used by the reflection serializers to determine whether or not the field is serializable.
///
/// ## `#[reflect(@...)]`
///
/// This attribute can be used to register custom attributes to the field's `TypeInfo`.
///
/// It accepts any expression after the `@` symbol that resolves to a value which implements `Reflect`.
///
/// Any number of custom attributes may be registered, however, each the type of each attribute must be unique.
/// If two attributes of the same type are registered, the last one will overwrite the first.
///
/// ### Example
///
/// ```ignore
/// #[derive(Reflect)]
/// struct EditorTooltip(String);
///
/// impl EditorTooltip {
///   fn new(text: &str) -> Self {
///     Self(text.to_string())
///   }
/// }
///
/// #[derive(Reflect)]
/// struct Slider {
///   // Specify a custom range and tooltip:
///   #[reflect(@0.0..=1.0, @EditorTooltip::new("Must be between 0 and 1"))]
///   value: f32,
/// }
/// ```
///
/// [`reflect_trait`]: macro@reflect_trait
#[proc_macro_derive(Reflect, attributes(reflect, type_path, type_name))]
pub fn derive_reflect(input: TokenStream) -> TokenStream {
    let ast = parse_macro_input!(input as DeriveInput);
    match_reflect_impls(ast, ReflectImplSource::DeriveLocalType)
}

/// Derives the `FromReflect` trait.
///
/// # Field Attributes
///
/// ## `#[reflect(ignore)]`
///
/// The `#[reflect(ignore)]` attribute is shared with the [`#[derive(Reflect)]`](Reflect) macro and has much of the same
/// functionality in that it denotes that a field will be ignored by the reflection API.
///
/// The only major difference is that using it with this derive requires that the field implements [`Default`].
/// Without this requirement, there would be no way for `FromReflect` to automatically construct missing fields
/// that have been ignored.
///
/// ## `#[reflect(default)]`
///
/// If a field cannot be read, this attribute specifies a default value to be used in its place.
///
/// By default, this attribute denotes that the field's type implements [`Default`].
/// However, it can also take in a path string to a user-defined function that will return the default value.
/// This takes the form: `#[reflect(default = "path::to::my_function")]` where `my_function` is a parameterless
/// function that must return some default value for the type.
///
/// Specifying a custom default can be used to give different fields their own specialized defaults,
/// or to remove the `Default` requirement on fields marked with `#[reflect(ignore)]`.
/// Additionally, either form of this attribute can be used to fill in fields that are simply missing,
/// such as when converting a partially-constructed dynamic type to a concrete one.
#[proc_macro_derive(FromReflect, attributes(reflect))]
pub fn derive_from_reflect(input: TokenStream) -> TokenStream {
    let ast = parse_macro_input!(input as DeriveInput);

    let derive_data = match ReflectDerive::from_input(
        &ast,
        ReflectProvenance {
            source: ReflectImplSource::DeriveLocalType,
            trait_: ReflectTraitToImpl::FromReflect,
        },
    ) {
        Ok(data) => data,
        Err(err) => return err.into_compile_error().into(),
    };

    let from_reflect_impl = match derive_data {
        ReflectDerive::Struct(struct_data) | ReflectDerive::UnitStruct(struct_data) => {
            from_reflect::impl_struct(&struct_data)
        }
        ReflectDerive::TupleStruct(struct_data) => from_reflect::impl_tuple_struct(&struct_data),
        ReflectDerive::Enum(meta) => from_reflect::impl_enum(&meta),
        ReflectDerive::Opaque(meta) => from_reflect::impl_opaque(&meta),
    };

    TokenStream::from(quote! {
        const _: () = {
            #from_reflect_impl
        };
    })
}

/// Derives the `TypePath` trait, providing a stable alternative to [`std::any::type_name`].
///
/// # Container Attributes
///
/// ## `#[type_path = "my_crate::foo"]`
///
/// Optionally specifies a custom module path to use instead of [`module_path`].
///
/// This path does not include the final identifier.
///
/// ## `#[type_name = "RenamedType"]`
///
/// Optionally specifies a new terminating identifier for `TypePath`.
///
/// To use this attribute, `#[type_path = "..."]` must also be specified.
#[proc_macro_derive(TypePath, attributes(type_path, type_name))]
pub fn derive_type_path(input: TokenStream) -> TokenStream {
    let ast = parse_macro_input!(input as DeriveInput);
    let derive_data = match ReflectDerive::from_input(
        &ast,
        ReflectProvenance {
            source: ReflectImplSource::DeriveLocalType,
            trait_: ReflectTraitToImpl::TypePath,
        },
    ) {
        Ok(data) => data,
        Err(err) => return err.into_compile_error().into(),
    };

    let type_path_impl = impls::impl_type_path(derive_data.meta());

    TokenStream::from(quote! {
        const _: () = {
            #type_path_impl
        };
    })
}

/// A macro that automatically generates type data for traits, which their implementors can then register.
///
/// The output of this macro is a struct that takes reflected instances of the implementor's type
/// and returns the value as a trait object.
/// Because of this, **it can only be used on [object-safe] traits.**
///
/// For a trait named `MyTrait`, this will generate the struct `ReflectMyTrait`.
/// The generated struct can be created using `FromType` with any type that implements the trait.
/// The creation and registration of this generated struct as type data can be automatically handled
/// by [`#[derive(Reflect)]`](Reflect).
///
/// # Example
///
/// ```ignore (bevy_reflect is not accessible from this crate)
/// # use std::any::TypeId;
/// # use bevy_reflect_derive::{Reflect, reflect_trait};
/// #[reflect_trait] // Generates `ReflectMyTrait`
/// trait MyTrait {
///   fn print(&self) -> &str;
/// }
///
/// #[derive(Reflect)]
/// #[reflect(MyTrait)] // Automatically registers `ReflectMyTrait`
/// struct SomeStruct;
///
/// impl MyTrait for SomeStruct {
///   fn print(&self) -> &str {
///     "Hello, World!"
///   }
/// }
///
/// // We can create the type data manually if we wanted:
/// let my_trait: ReflectMyTrait = FromType::<SomeStruct>::from_type();
///
/// // Or we can simply get it from the registry:
/// let mut registry = TypeRegistry::default();
/// registry.register::<SomeStruct>();
/// let my_trait = registry
///   .get_type_data::<ReflectMyTrait>(TypeId::of::<SomeStruct>())
///   .unwrap();
///
/// // Then use it on reflected data
/// let reflected: Box<dyn Reflect> = Box::new(SomeStruct);
/// let reflected_my_trait: &dyn MyTrait = my_trait.get(&*reflected).unwrap();
/// assert_eq!("Hello, World!", reflected_my_trait.print());
/// ```
///
/// [object-safe]: https://doc.rust-lang.org/reference/items/traits.html#object-safety
#[proc_macro_attribute]
pub fn reflect_trait(args: TokenStream, input: TokenStream) -> TokenStream {
    trait_reflection::reflect_trait(&args, input)
}

/// Generates a wrapper type that can be used to "derive `Reflect`" for remote types.
///
/// This works by wrapping the remote type in a generated wrapper that has the `#[repr(transparent)]` attribute.
/// This allows the two types to be safely [transmuted] back-and-forth.
///
/// # Defining the Wrapper
///
/// Before defining the wrapper type, please note that it is _required_ that all fields of the remote type are public.
/// The generated code will, at times, need to access or mutate them,
/// and we do not currently have a way to assign getters/setters to each field
/// (but this may change in the future).
///
/// The wrapper definition should match the remote type 1-to-1.
/// This includes the naming and ordering of the fields and variants.
///
/// Generics and lifetimes do _not_ need to have the same names, however, they _do_ need to follow the same order.
/// Additionally, whether generics are inlined or placed in a where clause should not matter.
///
/// Lastly, all macros and doc-comments should be placed __below__ this attribute.
/// If they are placed above, they will not be properly passed to the generated wrapper type.
///
/// # Example
///
/// Given a remote type, `RemoteType`:
///
/// ```
/// #[derive(Default)]
/// struct RemoteType<T>
/// where
///   T: Default + Clone,
/// {
///   pub foo: T,
///   pub bar: usize
/// }
/// ```
///
/// We would define our wrapper type as such:
///
/// ```ignore
/// use external_crate::RemoteType;
///
/// #[reflect_remote(RemoteType<T>)]
/// #[derive(Default)]
/// pub struct WrapperType<T: Default + Clone> {
///   pub foo: T,
///   pub bar: usize
/// }
/// ```
///
/// Apart from all the reflection trait implementations, this generates something like the following:
///
/// ```ignore
/// use external_crate::RemoteType;
///
/// #[derive(Default)]
/// #[repr(transparent)]
/// pub struct Wrapper<T: Default + Clone>(RemoteType<T>);
/// ```
///
/// # Usage as a Field
///
/// You can tell `Reflect` to use a remote type's wrapper internally on fields of a struct or enum.
/// This allows the real type to be used as usual while `Reflect` handles everything internally.
/// To do this, add the `#[reflect(remote = path::to::MyType)]` attribute to your field:
///
/// ```ignore
/// #[derive(Reflect)]
/// struct SomeStruct {
///   #[reflect(remote = RemoteTypeWrapper)]
///   data: RemoteType
/// }
/// ```
///
/// ## Safety
///
/// When using the `#[reflect(remote = path::to::MyType)]` field attribute, be sure you are defining the correct wrapper type.
/// Internally, this field will be unsafely [transmuted], and is only sound if using a wrapper generated for the remote type.
/// This also means keeping your wrapper definitions up-to-date with the remote types.
///
/// [transmuted]: std::mem::transmute
#[proc_macro_attribute]
pub fn reflect_remote(args: TokenStream, input: TokenStream) -> TokenStream {
    remote::reflect_remote(args, input)
}

/// A macro used to generate reflection trait implementations for the given type.
///
/// This is functionally the same as [deriving `Reflect`] using the `#[reflect(opaque)]` container attribute.
///
/// The only reason for this macro's existence is so that `bevy_reflect` can easily implement the reflection traits
/// on primitives and other opaque types internally.
///
/// Since this macro also implements `TypePath`, the type path must be explicit.
/// See [`impl_type_path!`] for the exact syntax.
///
/// # Examples
///
/// Types can be passed with or without registering type data:
///
/// ```ignore (bevy_reflect is not accessible from this crate)
/// impl_reflect_opaque!(my_crate::Foo);
/// impl_reflect_opaque!(my_crate::Bar(Debug, Default, Serialize, Deserialize));
/// ```
///
/// Generic types can also specify their parameters and bounds:
///
/// ```ignore (bevy_reflect is not accessible from this crate)
/// impl_reflect_opaque!(my_crate::Foo<T1, T2: Baz> where T1: Bar (Default, Serialize, Deserialize));
/// ```
///
/// Custom type paths can be specified:
///
/// ```ignore (bevy_reflect is not accessible from this crate)
/// impl_reflect_opaque!((in not_my_crate as NotFoo) Foo(Debug, Default));
/// ```
///
/// [deriving `Reflect`]: Reflect
#[proc_macro]
pub fn impl_reflect_opaque(input: TokenStream) -> TokenStream {
    let def = parse_macro_input!(input with ReflectOpaqueDef::parse_reflect);

    let default_name = &def.type_path.segments.last().unwrap().ident;
    let type_path = if def.type_path.leading_colon.is_none() && def.custom_path.is_none() {
        ReflectTypePath::Primitive(default_name)
    } else {
        ReflectTypePath::External {
            path: &def.type_path,
            custom_path: def.custom_path.map(|path| path.into_path(default_name)),
            generics: &def.generics,
        }
    };

    let meta = ReflectMeta::new(type_path, def.traits.unwrap_or_default());

    #[cfg(feature = "documentation")]
    let meta = meta.with_docs(documentation::Documentation::from_attributes(&def.attrs));

    let reflect_impls = impls::impl_opaque(&meta);
    let from_reflect_impl = from_reflect::impl_opaque(&meta);

    TokenStream::from(quote! {
        const _: () = {
            #reflect_impls
            #from_reflect_impl
        };
    })
}

/// A replacement for `#[derive(Reflect)]` to be used with foreign types which
/// the definitions of cannot be altered.
///
/// This macro is an alternative to [`impl_reflect_opaque!`] and [`impl_from_reflect_opaque!`]
/// which implement foreign types as Opaque types. Note that there is no `impl_from_reflect`,
/// as this macro will do the job of both. This macro implements them using one of the reflect
/// variant traits (`bevy_reflect::{Struct, TupleStruct, Enum}`, etc.),
/// which have greater functionality. The type being reflected must be in scope, as you cannot
/// qualify it in the macro as e.g. `bevy::prelude::Vec3`.
///
/// It is necessary to add a `#[type_path = "my_crate::foo"]` attribute to all types.
///
/// It may be necessary to add `#[reflect(Default)]` for some types, specifically non-constructible
/// foreign types. Without `Default` reflected for such types, you will usually get an arcane
/// error message and fail to compile. If the type does not implement `Default`, it may not
/// be possible to reflect without extending the macro.
///
///
/// # Example
/// Implementing `Reflect` for `bevy::prelude::Vec3` as a struct type:
/// ```ignore (bevy_reflect is not accessible from this crate)
/// use bevy::prelude::Vec3;
///
/// impl_reflect!(
///     #[reflect(PartialEq, Serialize, Deserialize, Default)]
///     #[type_path = "bevy::prelude"]
///     struct Vec3 {
///         x: f32,
///         y: f32,
///         z: f32
///     }
/// );
/// ```
#[proc_macro]
pub fn impl_reflect(input: TokenStream) -> TokenStream {
    let ast = parse_macro_input!(input as DeriveInput);
    match_reflect_impls(ast, ReflectImplSource::ImplRemoteType)
}

/// A macro used to generate a `FromReflect` trait implementation for the given type.
///
/// This is functionally the same as [deriving `FromReflect`] on a type that [derives `Reflect`] using
/// the `#[reflect(opaque)]` container attribute.
///
/// The only reason this macro exists is so that `bevy_reflect` can easily implement `FromReflect` on
/// primitives and other opaque types internally.
///
/// Please note that this macro will not work with any type that [derives `Reflect`] normally
/// or makes use of the [`impl_reflect_opaque!`] macro, as those macros also implement `FromReflect`
/// by default.
///
/// # Examples
///
/// ```ignore (bevy_reflect is not accessible from this crate)
/// impl_from_reflect_opaque!(foo<T1, T2: Baz> where T1: Bar);
/// ```
///
/// [deriving `FromReflect`]: FromReflect
/// [derives `Reflect`]: Reflect
#[proc_macro]
pub fn impl_from_reflect_opaque(input: TokenStream) -> TokenStream {
    let def = parse_macro_input!(input with ReflectOpaqueDef::parse_from_reflect);

    let default_name = &def.type_path.segments.last().unwrap().ident;
    let type_path = if def.type_path.leading_colon.is_none()
        && def.custom_path.is_none()
        && def.generics.params.is_empty()
    {
        ReflectTypePath::Primitive(default_name)
    } else {
        ReflectTypePath::External {
            path: &def.type_path,
            custom_path: def.custom_path.map(|alias| alias.into_path(default_name)),
            generics: &def.generics,
        }
    };

    let from_reflect_impl =
        from_reflect::impl_opaque(&ReflectMeta::new(type_path, def.traits.unwrap_or_default()));

    TokenStream::from(quote! {
        const _: () = {
            #from_reflect_impl
        };
    })
}

/// A replacement for [deriving `TypePath`] for use on foreign types.
///
/// Since (unlike the derive) this macro may be invoked in a different module to where the type is defined,
/// it requires an 'absolute' path definition.
///
/// Specifically, a leading `::` denoting a global path must be specified
/// or a preceding `(in my_crate::foo)` to specify the custom path must be used.
///
/// # Examples
///
/// Implementing `TypePath` on a foreign type:
/// ```ignore (bevy_reflect is not accessible from this crate)
/// impl_type_path!(::foreign_crate::foo::bar::Baz);
/// ```
///
/// On a generic type (this can also accept trait bounds):
/// ```ignore (bevy_reflect is not accessible from this crate)
/// impl_type_path!(::foreign_crate::Foo<T>);
/// impl_type_path!(::foreign_crate::Goo<T: ?Sized>);
/// ```
///
/// On a primitive (note this will not compile for a non-primitive type):
/// ```ignore (bevy_reflect is not accessible from this crate)
/// impl_type_path!(bool);
/// ```
///
/// With a custom type path:
/// ```ignore (bevy_reflect is not accessible from this crate)
/// impl_type_path!((in other_crate::foo::bar) Baz);
/// ```
///
/// With a custom type path and a custom type name:
/// ```ignore (bevy_reflect is not accessible from this crate)
/// impl_type_path!((in other_crate::foo as Baz) Bar);
/// ```
///
/// [deriving `TypePath`]: TypePath
#[proc_macro]
pub fn impl_type_path(input: TokenStream) -> TokenStream {
    let def = parse_macro_input!(input as NamedTypePathDef);

    let type_path = match def {
        NamedTypePathDef::External {
            ref path,
            custom_path,
            ref generics,
        } => {
            let default_name = &path.segments.last().unwrap().ident;

            ReflectTypePath::External {
                path,
                custom_path: custom_path.map(|path| path.into_path(default_name)),
                generics,
            }
        }
        NamedTypePathDef::Primitive(ref ident) => ReflectTypePath::Primitive(ident),
    };

    let meta = ReflectMeta::new(type_path, ContainerAttributes::default());

    let type_path_impl = impls::impl_type_path(&meta);

    TokenStream::from(quote! {
        const _: () = {
            #type_path_impl
        };
    })
}