bevy_render/mesh/allocator.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
//! Manages mesh vertex and index buffers.
use alloc::vec::Vec;
use core::{
fmt::{self, Display, Formatter},
ops::Range,
};
use bevy_app::{App, Plugin};
use bevy_asset::AssetId;
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::{
schedule::IntoSystemConfigs as _,
system::{Res, ResMut, Resource},
world::{FromWorld, World},
};
use bevy_utils::{
hashbrown::{HashMap, HashSet},
tracing::error,
};
use offset_allocator::{Allocation, Allocator};
use wgpu::{
BufferDescriptor, BufferSize, BufferUsages, CommandEncoderDescriptor, DownlevelFlags,
COPY_BUFFER_ALIGNMENT,
};
use crate::{
mesh::{Indices, Mesh, MeshVertexBufferLayouts, RenderMesh},
render_asset::{prepare_assets, ExtractedAssets},
render_resource::Buffer,
renderer::{RenderAdapter, RenderDevice, RenderQueue},
Render, RenderApp, RenderSet,
};
/// A plugin that manages GPU memory for mesh data.
pub struct MeshAllocatorPlugin;
/// Manages the assignment of mesh data to GPU buffers.
///
/// The Bevy renderer tries to pack vertex and index data for multiple meshes
/// together so that multiple meshes can be drawn back-to-back without any
/// rebinding. This resource manages these buffers.
///
/// Within each slab, or hardware buffer, the underlying allocation algorithm is
/// [`offset-allocator`], a Rust port of Sebastian Aaltonen's hard-real-time C++
/// `OffsetAllocator`. Slabs start small and then grow as their contents fill
/// up, up to a maximum size limit. To reduce fragmentation, vertex and index
/// buffers that are too large bypass this system and receive their own buffers.
///
/// The [`MeshAllocatorSettings`] allows you to tune the behavior of the
/// allocator for better performance with your application. Most applications
/// won't need to change the settings from their default values.
#[derive(Resource)]
pub struct MeshAllocator {
/// Holds all buffers and allocators.
slabs: HashMap<SlabId, Slab>,
/// Maps a layout to the slabs that hold elements of that layout.
///
/// This is used when allocating, so that we can find the appropriate slab
/// to place an object in.
slab_layouts: HashMap<ElementLayout, Vec<SlabId>>,
/// Maps mesh asset IDs to the ID of the slabs that hold their vertex data.
mesh_id_to_vertex_slab: HashMap<AssetId<Mesh>, SlabId>,
/// Maps mesh asset IDs to the ID of the slabs that hold their index data.
mesh_id_to_index_slab: HashMap<AssetId<Mesh>, SlabId>,
/// The next slab ID to assign.
next_slab_id: SlabId,
/// Whether we can pack multiple vertex arrays into a single slab on this
/// platform.
///
/// This corresponds to [`DownlevelFlags::BASE_VERTEX`], which is unset on
/// WebGL 2. On this platform, we must give each vertex array its own
/// buffer, because we can't adjust the first vertex when we perform a draw.
general_vertex_slabs_supported: bool,
}
/// Tunable parameters that customize the behavior of the allocator.
///
/// Generally, these parameters adjust the tradeoff between memory fragmentation
/// and performance. You can adjust them as desired for your application. Most
/// applications can stick with the default values.
#[derive(Resource)]
pub struct MeshAllocatorSettings {
/// The minimum size of a slab (hardware buffer), in bytes.
///
/// The default value is 1 MiB.
pub min_slab_size: u64,
/// The maximum size of a slab (hardware buffer), in bytes.
///
/// When a slab reaches this limit, a new slab is created.
///
/// The default value is 512 MiB.
pub max_slab_size: u64,
/// The maximum size of vertex or index data that can be placed in a general
/// slab, in bytes.
///
/// If a mesh has vertex or index data that exceeds this size limit, that
/// data is placed in its own slab. This reduces fragmentation, but incurs
/// more CPU-side binding overhead when drawing the mesh.
///
/// The default value is 256 MiB.
pub large_threshold: u64,
/// The factor by which we scale a slab when growing it.
///
/// This value must be greater than 1. Higher values result in more
/// fragmentation but fewer expensive copy operations when growing the
/// buffer.
///
/// The default value is 1.5.
pub growth_factor: f64,
}
impl Default for MeshAllocatorSettings {
fn default() -> Self {
Self {
// 1 MiB
min_slab_size: 1024 * 1024,
// 512 MiB
max_slab_size: 1024 * 1024 * 512,
// 256 MiB
large_threshold: 1024 * 1024 * 256,
// 1.5× growth
growth_factor: 1.5,
}
}
}
/// The hardware buffer that mesh data lives in, as well as the range within
/// that buffer.
pub struct MeshBufferSlice<'a> {
/// The buffer that the mesh data resides in.
pub buffer: &'a Buffer,
/// The range of elements within this buffer that the mesh data resides in,
/// measured in elements.
///
/// This is not a byte range; it's an element range. For vertex data, this
/// is measured in increments of a single vertex. (Thus, if a vertex is 32
/// bytes long, then this range is in units of 32 bytes each.) For index
/// data, this is measured in increments of a single index value (2 or 4
/// bytes). Draw commands generally take their ranges in elements, not
/// bytes, so this is the most convenient unit in this case.
pub range: Range<u32>,
}
/// The index of a single slab.
#[derive(Clone, Copy, Default, PartialEq, Eq, Hash, Debug)]
#[repr(transparent)]
struct SlabId(u32);
/// Data for a single slab.
#[allow(clippy::large_enum_variant)]
enum Slab {
/// A slab that can contain multiple objects.
General(GeneralSlab),
/// A slab that contains a single object.
LargeObject(LargeObjectSlab),
}
/// A resizable slab that can contain multiple objects.
///
/// This is the normal type of slab used for objects that are below the
/// [`MeshAllocatorSettings::large_threshold`]. Slabs are divided into *slots*,
/// which are described in detail in the [`ElementLayout`] documentation.
struct GeneralSlab {
/// The [`Allocator`] that manages the objects in this slab.
allocator: Allocator,
/// The GPU buffer that backs this slab.
///
/// This may be `None` if the buffer hasn't been created yet. We delay
/// creation of buffers until allocating all the meshes for a single frame,
/// so that we don't needlessly create and resize buffers when many meshes
/// load all at once.
buffer: Option<Buffer>,
/// Allocations that are on the GPU.
///
/// The range is in slots.
resident_allocations: HashMap<AssetId<Mesh>, SlabAllocation>,
/// Allocations that are waiting to be uploaded to the GPU.
///
/// The range is in slots.
pending_allocations: HashMap<AssetId<Mesh>, SlabAllocation>,
/// The layout of a single element (vertex or index).
element_layout: ElementLayout,
/// The size of this slab in slots.
slot_capacity: u32,
}
/// A slab that contains a single object.
///
/// Typically, this is for objects that exceed the
/// [`MeshAllocatorSettings::large_threshold`]. This is also for objects that
/// would ordinarily receive their own slab but can't because of platform
/// limitations, most notably vertex arrays on WebGL 2.
struct LargeObjectSlab {
/// The GPU buffer that backs this slab.
///
/// This may be `None` if the buffer hasn't been created yet.
buffer: Option<Buffer>,
/// The layout of a single element (vertex or index).
element_layout: ElementLayout,
}
/// The type of element that a slab can store.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
enum ElementClass {
/// Data for a vertex.
Vertex,
/// A vertex index.
Index,
}
/// Information about the size of individual elements (vertices or indices)
/// within a slab.
///
/// Slab objects are allocated in units of *slots*. Usually, each element takes
/// up one slot, and so elements and slots are equivalent. Occasionally,
/// however, a slot may consist of 2 or even 4 elements. This occurs when the
/// size of an element isn't divisible by [`COPY_BUFFER_ALIGNMENT`]. When we
/// resize buffers, we perform GPU-to-GPU copies to shuffle the existing
/// elements into their new positions, and such copies must be on
/// [`COPY_BUFFER_ALIGNMENT`] boundaries. Slots solve this problem by
/// guaranteeing that the size of an allocation quantum is divisible by both the
/// size of an element and [`COPY_BUFFER_ALIGNMENT`], so we can relocate it
/// freely.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
struct ElementLayout {
/// Either a vertex or an index.
class: ElementClass,
/// The size in bytes of a single element (vertex or index).
size: u64,
/// The number of elements that make up a single slot.
///
/// Usually, this is 1, but it can be different if [`ElementLayout::size`]
/// isn't divisible by 4. See the comment in [`ElementLayout`] for more
/// details.
elements_per_slot: u32,
}
/// The location of an allocation and the slab it's contained in.
struct MeshAllocation {
/// The ID of the slab.
slab_id: SlabId,
/// Holds the actual allocation.
slab_allocation: SlabAllocation,
}
/// An allocation within a slab.
#[derive(Clone)]
struct SlabAllocation {
/// The actual [`Allocator`] handle, needed to free the allocation.
allocation: Allocation,
/// The number of slots that this allocation takes up.
slot_count: u32,
}
/// Holds information about all slabs scheduled to be allocated or reallocated.
#[derive(Default, Deref, DerefMut)]
struct SlabsToReallocate(HashMap<SlabId, SlabToReallocate>);
/// Holds information about a slab that's scheduled to be allocated or
/// reallocated.
#[derive(Default)]
struct SlabToReallocate {
/// Maps all allocations that need to be relocated to their positions within
/// the *new* slab.
allocations_to_copy: HashMap<AssetId<Mesh>, SlabAllocation>,
}
impl Display for SlabId {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
impl Plugin for MeshAllocatorPlugin {
fn build(&self, app: &mut App) {
let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
return;
};
render_app
.init_resource::<MeshAllocatorSettings>()
.add_systems(
Render,
allocate_and_free_meshes
.in_set(RenderSet::PrepareAssets)
.before(prepare_assets::<RenderMesh>),
);
}
fn finish(&self, app: &mut App) {
let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
return;
};
// The `RenderAdapter` isn't available until now, so we can't do this in
// [`Plugin::build`].
render_app.init_resource::<MeshAllocator>();
}
}
impl FromWorld for MeshAllocator {
fn from_world(world: &mut World) -> Self {
// Note whether we're on WebGL 2. In this case, we must give every
// vertex array its own slab.
let render_adapter = world.resource::<RenderAdapter>();
let general_vertex_slabs_supported = render_adapter
.get_downlevel_capabilities()
.flags
.contains(DownlevelFlags::BASE_VERTEX);
Self {
slabs: HashMap::new(),
slab_layouts: HashMap::new(),
mesh_id_to_vertex_slab: HashMap::new(),
mesh_id_to_index_slab: HashMap::new(),
next_slab_id: SlabId(0),
general_vertex_slabs_supported,
}
}
}
/// A system that processes newly-extracted or newly-removed meshes and writes
/// their data into buffers or frees their data as appropriate.
pub fn allocate_and_free_meshes(
mut mesh_allocator: ResMut<MeshAllocator>,
mesh_allocator_settings: Res<MeshAllocatorSettings>,
extracted_meshes: Res<ExtractedAssets<RenderMesh>>,
mut mesh_vertex_buffer_layouts: ResMut<MeshVertexBufferLayouts>,
render_device: Res<RenderDevice>,
render_queue: Res<RenderQueue>,
) {
// Process newly-added meshes.
mesh_allocator.allocate_meshes(
&mesh_allocator_settings,
&extracted_meshes,
&mut mesh_vertex_buffer_layouts,
&render_device,
&render_queue,
);
// Process removed meshes.
mesh_allocator.free_meshes(&extracted_meshes);
}
impl MeshAllocator {
/// Returns the buffer and range within that buffer of the vertex data for
/// the mesh with the given ID.
///
/// If the mesh wasn't allocated, returns None.
pub fn mesh_vertex_slice(&self, mesh_id: &AssetId<Mesh>) -> Option<MeshBufferSlice> {
self.mesh_slice_in_slab(mesh_id, *self.mesh_id_to_vertex_slab.get(mesh_id)?)
}
/// Returns the buffer and range within that buffer of the index data for
/// the mesh with the given ID.
///
/// If the mesh has no index data or wasn't allocated, returns None.
pub fn mesh_index_slice(&self, mesh_id: &AssetId<Mesh>) -> Option<MeshBufferSlice> {
self.mesh_slice_in_slab(mesh_id, *self.mesh_id_to_index_slab.get(mesh_id)?)
}
/// Given a slab and a mesh with data located with it, returns the buffer
/// and range of that mesh data within the slab.
fn mesh_slice_in_slab(
&self,
mesh_id: &AssetId<Mesh>,
slab_id: SlabId,
) -> Option<MeshBufferSlice> {
match self.slabs.get(&slab_id)? {
Slab::General(ref general_slab) => {
let slab_allocation = general_slab.resident_allocations.get(mesh_id)?;
Some(MeshBufferSlice {
buffer: general_slab.buffer.as_ref()?,
range: (slab_allocation.allocation.offset
* general_slab.element_layout.elements_per_slot)
..((slab_allocation.allocation.offset + slab_allocation.slot_count)
* general_slab.element_layout.elements_per_slot),
})
}
Slab::LargeObject(ref large_object_slab) => {
let buffer = large_object_slab.buffer.as_ref()?;
Some(MeshBufferSlice {
buffer,
range: 0..((buffer.size() / large_object_slab.element_layout.size) as u32),
})
}
}
}
/// Processes newly-loaded meshes, allocating room in the slabs for their
/// mesh data and performing upload operations as appropriate.
fn allocate_meshes(
&mut self,
mesh_allocator_settings: &MeshAllocatorSettings,
extracted_meshes: &ExtractedAssets<RenderMesh>,
mesh_vertex_buffer_layouts: &mut MeshVertexBufferLayouts,
render_device: &RenderDevice,
render_queue: &RenderQueue,
) {
let mut slabs_to_grow = SlabsToReallocate::default();
// Allocate.
for (mesh_id, mesh) in &extracted_meshes.extracted {
// Allocate vertex data. Note that we can only pack mesh vertex data
// together if the platform supports it.
let vertex_element_layout = ElementLayout::vertex(mesh_vertex_buffer_layouts, mesh);
if self.general_vertex_slabs_supported {
self.allocate(
mesh_id,
mesh.get_vertex_buffer_size() as u64,
vertex_element_layout,
&mut slabs_to_grow,
mesh_allocator_settings,
);
} else {
self.allocate_large(mesh_id, vertex_element_layout);
}
// Allocate index data.
if let (Some(index_buffer_data), Some(index_element_layout)) =
(mesh.get_index_buffer_bytes(), ElementLayout::index(mesh))
{
self.allocate(
mesh_id,
index_buffer_data.len() as u64,
index_element_layout,
&mut slabs_to_grow,
mesh_allocator_settings,
);
}
}
// Perform growth.
for (slab_id, slab_to_grow) in slabs_to_grow.0 {
self.reallocate_slab(render_device, render_queue, slab_id, slab_to_grow);
}
// Copy new mesh data in.
for (mesh_id, mesh) in &extracted_meshes.extracted {
self.copy_mesh_vertex_data(mesh_id, mesh, render_device, render_queue);
self.copy_mesh_index_data(mesh_id, mesh, render_device, render_queue);
}
}
/// Copies vertex array data from a mesh into the appropriate spot in the
/// slab.
fn copy_mesh_vertex_data(
&mut self,
mesh_id: &AssetId<Mesh>,
mesh: &Mesh,
render_device: &RenderDevice,
render_queue: &RenderQueue,
) {
let Some(&slab_id) = self.mesh_id_to_vertex_slab.get(mesh_id) else {
return;
};
// Call the generic function.
self.copy_element_data(
mesh_id,
mesh.get_vertex_buffer_size(),
|slice| mesh.write_packed_vertex_buffer_data(slice),
BufferUsages::VERTEX,
slab_id,
render_device,
render_queue,
);
}
/// Copies index array data from a mesh into the appropriate spot in the
/// slab.
fn copy_mesh_index_data(
&mut self,
mesh_id: &AssetId<Mesh>,
mesh: &Mesh,
render_device: &RenderDevice,
render_queue: &RenderQueue,
) {
let Some(&slab_id) = self.mesh_id_to_index_slab.get(mesh_id) else {
return;
};
let Some(index_data) = mesh.get_index_buffer_bytes() else {
return;
};
// Call the generic function.
self.copy_element_data(
mesh_id,
index_data.len(),
|slice| slice.copy_from_slice(index_data),
BufferUsages::INDEX,
slab_id,
render_device,
render_queue,
);
}
/// A generic function that copies either vertex or index data into a slab.
#[allow(clippy::too_many_arguments)]
fn copy_element_data(
&mut self,
mesh_id: &AssetId<Mesh>,
len: usize,
fill_data: impl Fn(&mut [u8]),
buffer_usages: BufferUsages,
slab_id: SlabId,
render_device: &RenderDevice,
render_queue: &RenderQueue,
) {
let Some(slab) = self.slabs.get_mut(&slab_id) else {
return;
};
match *slab {
Slab::General(ref mut general_slab) => {
let (Some(ref buffer), Some(allocated_range)) = (
&general_slab.buffer,
general_slab.pending_allocations.remove(mesh_id),
) else {
return;
};
let slot_size = general_slab.element_layout.slot_size();
// round up size to a multiple of the slot size to satisfy wgpu alignment requirements
if let Some(size) = BufferSize::new((len as u64).next_multiple_of(slot_size)) {
// Write the data in.
if let Some(mut buffer) = render_queue.write_buffer_with(
buffer,
allocated_range.allocation.offset as u64 * slot_size,
size,
) {
let slice = &mut buffer.as_mut()[..len];
fill_data(slice);
}
}
// Mark the allocation as resident.
general_slab
.resident_allocations
.insert(*mesh_id, allocated_range);
}
Slab::LargeObject(ref mut large_object_slab) => {
debug_assert!(large_object_slab.buffer.is_none());
// Create the buffer and its data in one go.
let buffer = render_device.create_buffer(&BufferDescriptor {
label: Some(&format!(
"large mesh slab {} ({}buffer)",
slab_id,
buffer_usages_to_str(buffer_usages)
)),
size: len as u64,
usage: buffer_usages | BufferUsages::COPY_DST,
mapped_at_creation: true,
});
{
let slice = &mut buffer.slice(..).get_mapped_range_mut()[..len];
fill_data(slice);
}
buffer.unmap();
large_object_slab.buffer = Some(buffer);
}
}
}
fn free_meshes(&mut self, extracted_meshes: &ExtractedAssets<RenderMesh>) {
let mut empty_slabs = HashSet::new();
for mesh_id in &extracted_meshes.removed {
if let Some(slab_id) = self.mesh_id_to_vertex_slab.remove(mesh_id) {
self.free_allocation_in_slab(mesh_id, slab_id, &mut empty_slabs);
}
if let Some(slab_id) = self.mesh_id_to_index_slab.remove(mesh_id) {
self.free_allocation_in_slab(mesh_id, slab_id, &mut empty_slabs);
}
}
for empty_slab in empty_slabs {
self.slab_layouts.values_mut().for_each(|slab_ids| {
let idx = slab_ids.iter().position(|&slab_id| slab_id == empty_slab);
if let Some(idx) = idx {
slab_ids.remove(idx);
}
});
self.slabs.remove(&empty_slab);
}
}
/// Given a slab and the ID of a mesh containing data in it, marks the
/// allocation as free.
///
/// If this results in the slab becoming empty, this function adds the slab
/// to the `empty_slabs` set.
fn free_allocation_in_slab(
&mut self,
mesh_id: &AssetId<Mesh>,
slab_id: SlabId,
empty_slabs: &mut HashSet<SlabId>,
) {
let Some(slab) = self.slabs.get_mut(&slab_id) else {
return;
};
match *slab {
Slab::General(ref mut general_slab) => {
let Some(slab_allocation) = general_slab
.resident_allocations
.remove(mesh_id)
.or_else(|| general_slab.pending_allocations.remove(mesh_id))
else {
return;
};
general_slab.allocator.free(slab_allocation.allocation);
if general_slab.is_empty() {
empty_slabs.insert(slab_id);
}
}
Slab::LargeObject(_) => {
empty_slabs.insert(slab_id);
}
}
}
/// Allocates space for mesh data with the given byte size and layout in the
/// appropriate slab, creating that slab if necessary.
fn allocate(
&mut self,
mesh_id: &AssetId<Mesh>,
data_byte_len: u64,
layout: ElementLayout,
slabs_to_grow: &mut SlabsToReallocate,
settings: &MeshAllocatorSettings,
) {
let data_element_count = data_byte_len.div_ceil(layout.size) as u32;
let data_slot_count = data_element_count.div_ceil(layout.elements_per_slot);
// If the mesh data is too large for a slab, give it a slab of its own.
if data_slot_count as u64 * layout.slot_size()
>= settings.large_threshold.min(settings.max_slab_size)
{
self.allocate_large(mesh_id, layout);
} else {
self.allocate_general(mesh_id, data_slot_count, layout, slabs_to_grow, settings);
}
}
/// Allocates space for mesh data with the given slot size and layout in the
/// appropriate general slab.
fn allocate_general(
&mut self,
mesh_id: &AssetId<Mesh>,
data_slot_count: u32,
layout: ElementLayout,
slabs_to_grow: &mut SlabsToReallocate,
settings: &MeshAllocatorSettings,
) {
let candidate_slabs = self.slab_layouts.entry(layout).or_default();
// Loop through the slabs that accept elements of the appropriate type
// and try to allocate the mesh inside them. We go with the first one
// that succeeds.
let mut mesh_allocation = None;
'slab: for &slab_id in &*candidate_slabs {
loop {
let Some(Slab::General(ref mut slab)) = self.slabs.get_mut(&slab_id) else {
unreachable!("Slab not found")
};
if let Some(allocation) = slab.allocator.allocate(data_slot_count) {
mesh_allocation = Some(MeshAllocation {
slab_id,
slab_allocation: SlabAllocation {
allocation,
slot_count: data_slot_count,
},
});
break 'slab;
}
// Try to grow the slab. If this fails, the slab is full; go on
// to the next slab.
match slab.try_grow(settings) {
Ok(new_mesh_allocation_records) => {
slabs_to_grow.insert(slab_id, new_mesh_allocation_records);
}
Err(()) => continue 'slab,
}
}
}
// If we still have no allocation, make a new slab.
if mesh_allocation.is_none() {
let new_slab_id = self.next_slab_id;
self.next_slab_id.0 += 1;
let new_slab = GeneralSlab::new(
new_slab_id,
&mut mesh_allocation,
settings,
layout,
data_slot_count,
);
self.slabs.insert(new_slab_id, Slab::General(new_slab));
candidate_slabs.push(new_slab_id);
slabs_to_grow.insert(new_slab_id, SlabToReallocate::default());
}
let mesh_allocation = mesh_allocation.expect("Should have been able to allocate");
// Mark the allocation as pending. Don't copy it in just yet; further
// meshes loaded this frame may result in its final allocation location
// changing.
if let Some(Slab::General(ref mut general_slab)) =
self.slabs.get_mut(&mesh_allocation.slab_id)
{
general_slab
.pending_allocations
.insert(*mesh_id, mesh_allocation.slab_allocation);
};
self.record_allocation(mesh_id, mesh_allocation.slab_id, layout.class);
}
/// Allocates an object into its own dedicated slab.
fn allocate_large(&mut self, mesh_id: &AssetId<Mesh>, layout: ElementLayout) {
let new_slab_id = self.next_slab_id;
self.next_slab_id.0 += 1;
self.record_allocation(mesh_id, new_slab_id, layout.class);
self.slabs.insert(
new_slab_id,
Slab::LargeObject(LargeObjectSlab {
buffer: None,
element_layout: layout,
}),
);
}
/// Reallocates a slab that needs to be resized, or allocates a new slab.
///
/// This performs the actual growth operation that [`GeneralSlab::try_grow`]
/// scheduled. We do the growth in two phases so that, if a slab grows
/// multiple times in the same frame, only one new buffer is reallocated,
/// rather than reallocating the buffer multiple times.
fn reallocate_slab(
&mut self,
render_device: &RenderDevice,
render_queue: &RenderQueue,
slab_id: SlabId,
slab_to_grow: SlabToReallocate,
) {
let Some(Slab::General(slab)) = self.slabs.get_mut(&slab_id) else {
error!("Couldn't find slab {:?} to grow", slab_id);
return;
};
let old_buffer = slab.buffer.take();
let mut buffer_usages = BufferUsages::COPY_SRC | BufferUsages::COPY_DST;
match slab.element_layout.class {
ElementClass::Vertex => buffer_usages |= BufferUsages::VERTEX,
ElementClass::Index => buffer_usages |= BufferUsages::INDEX,
};
// Create the buffer.
let new_buffer = render_device.create_buffer(&BufferDescriptor {
label: Some(&format!(
"general mesh slab {} ({}buffer)",
slab_id,
buffer_usages_to_str(buffer_usages)
)),
size: slab.slot_capacity as u64 * slab.element_layout.slot_size(),
usage: buffer_usages,
mapped_at_creation: false,
});
slab.buffer = Some(new_buffer.clone());
// In order to do buffer copies, we need a command encoder.
let mut encoder = render_device.create_command_encoder(&CommandEncoderDescriptor {
label: Some("slab resize encoder"),
});
// If we have no objects to copy over, we're done.
let Some(old_buffer) = old_buffer else {
return;
};
for (mesh_id, src_slab_allocation) in &mut slab.resident_allocations {
let Some(dest_slab_allocation) = slab_to_grow.allocations_to_copy.get(mesh_id) else {
continue;
};
encoder.copy_buffer_to_buffer(
&old_buffer,
src_slab_allocation.allocation.offset as u64 * slab.element_layout.slot_size(),
&new_buffer,
dest_slab_allocation.allocation.offset as u64 * slab.element_layout.slot_size(),
dest_slab_allocation.slot_count as u64 * slab.element_layout.slot_size(),
);
// Now that we've done the copy, we can update the allocation record.
*src_slab_allocation = dest_slab_allocation.clone();
}
let command_buffer = encoder.finish();
render_queue.submit([command_buffer]);
}
/// Records the location of the given newly-allocated mesh data in the
/// [`Self::mesh_id_to_vertex_slab`] or [`Self::mesh_id_to_index_slab`]
/// tables as appropriate.
fn record_allocation(
&mut self,
mesh_id: &AssetId<Mesh>,
slab_id: SlabId,
element_class: ElementClass,
) {
match element_class {
ElementClass::Vertex => {
self.mesh_id_to_vertex_slab.insert(*mesh_id, slab_id);
}
ElementClass::Index => {
self.mesh_id_to_index_slab.insert(*mesh_id, slab_id);
}
}
}
}
impl GeneralSlab {
/// Creates a new growable slab big enough to hold an single element of
/// `data_slot_count` size with the given `layout`.
fn new(
new_slab_id: SlabId,
mesh_allocation: &mut Option<MeshAllocation>,
settings: &MeshAllocatorSettings,
layout: ElementLayout,
data_slot_count: u32,
) -> GeneralSlab {
let slab_slot_capacity = (settings.min_slab_size.div_ceil(layout.slot_size()) as u32)
.max(offset_allocator::ext::min_allocator_size(data_slot_count));
let mut new_slab = GeneralSlab {
allocator: Allocator::new(slab_slot_capacity),
buffer: None,
resident_allocations: HashMap::new(),
pending_allocations: HashMap::new(),
element_layout: layout,
slot_capacity: slab_slot_capacity,
};
// This should never fail.
if let Some(allocation) = new_slab.allocator.allocate(data_slot_count) {
*mesh_allocation = Some(MeshAllocation {
slab_id: new_slab_id,
slab_allocation: SlabAllocation {
slot_count: data_slot_count,
allocation,
},
});
}
new_slab
}
/// Attempts to grow a slab that's just run out of space.
///
/// Returns a structure the allocations that need to be relocated if the
/// growth succeeded. If the slab is full, returns `Err`.
fn try_grow(&mut self, settings: &MeshAllocatorSettings) -> Result<SlabToReallocate, ()> {
// In extremely rare cases due to allocator fragmentation, it may happen
// that we fail to re-insert every object that was in the slab after
// growing it. Even though this will likely never happen, we use this
// loop to handle this unlikely event properly if it does.
'grow: loop {
let new_slab_slot_capacity = ((self.slot_capacity as f64 * settings.growth_factor)
.ceil() as u32)
.min((settings.max_slab_size / self.element_layout.slot_size()) as u32);
if new_slab_slot_capacity == self.slot_capacity {
// The slab is full.
return Err(());
}
// Grow the slab.
self.allocator = Allocator::new(new_slab_slot_capacity);
self.slot_capacity = new_slab_slot_capacity;
let mut slab_to_grow = SlabToReallocate::default();
// Place every resident allocation that was in the old slab in the
// new slab.
for (allocated_mesh_id, old_allocation_range) in &self.resident_allocations {
let allocation_size = old_allocation_range.slot_count;
match self.allocator.allocate(allocation_size) {
Some(allocation) => {
slab_to_grow.allocations_to_copy.insert(
*allocated_mesh_id,
SlabAllocation {
allocation,
slot_count: allocation_size,
},
);
}
None => {
// We failed to insert one of the allocations that we
// had before.
continue 'grow;
}
}
}
// Move every allocation that was pending in the old slab to the new
// slab.
for slab_allocation in self.pending_allocations.values_mut() {
let allocation_size = slab_allocation.slot_count;
match self.allocator.allocate(allocation_size) {
Some(allocation) => slab_allocation.allocation = allocation,
None => {
// We failed to insert one of the allocations that we
// had before.
continue 'grow;
}
}
}
return Ok(slab_to_grow);
}
}
}
impl ElementLayout {
/// Creates an [`ElementLayout`] for mesh data of the given class (vertex or
/// index) with the given byte size.
fn new(class: ElementClass, size: u64) -> ElementLayout {
ElementLayout {
class,
size,
// Make sure that slot boundaries begin and end on
// `COPY_BUFFER_ALIGNMENT`-byte (4-byte) boundaries.
elements_per_slot: (COPY_BUFFER_ALIGNMENT / gcd(size, COPY_BUFFER_ALIGNMENT)) as u32,
}
}
fn slot_size(&self) -> u64 {
self.size * self.elements_per_slot as u64
}
/// Creates the appropriate [`ElementLayout`] for the given mesh's vertex
/// data.
fn vertex(
mesh_vertex_buffer_layouts: &mut MeshVertexBufferLayouts,
mesh: &Mesh,
) -> ElementLayout {
let mesh_vertex_buffer_layout =
mesh.get_mesh_vertex_buffer_layout(mesh_vertex_buffer_layouts);
ElementLayout::new(
ElementClass::Vertex,
mesh_vertex_buffer_layout.0.layout().array_stride,
)
}
/// Creates the appropriate [`ElementLayout`] for the given mesh's index
/// data.
fn index(mesh: &Mesh) -> Option<ElementLayout> {
let size = match mesh.indices()? {
Indices::U16(_) => 2,
Indices::U32(_) => 4,
};
Some(ElementLayout::new(ElementClass::Index, size))
}
}
impl GeneralSlab {
/// Returns true if this slab is empty.
fn is_empty(&self) -> bool {
self.resident_allocations.is_empty() && self.pending_allocations.is_empty()
}
}
/// Returns the greatest common divisor of the two numbers.
///
/// <https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations>
fn gcd(mut a: u64, mut b: u64) -> u64 {
while b != 0 {
let t = b;
b = a % b;
a = t;
}
a
}
/// Returns a string describing the given buffer usages.
fn buffer_usages_to_str(buffer_usages: BufferUsages) -> &'static str {
if buffer_usages.contains(BufferUsages::VERTEX) {
"vertex "
} else if buffer_usages.contains(BufferUsages::INDEX) {
"index "
} else {
""
}
}