bevy_render/mesh/primitives/dim3/
capsule.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
use crate::{
    mesh::{Indices, Mesh, MeshBuilder, Meshable},
    render_asset::RenderAssetUsages,
};
use bevy_math::{primitives::Capsule3d, Vec2, Vec3};
use wgpu::PrimitiveTopology;

/// Manner in which UV coordinates are distributed vertically.
#[derive(Clone, Copy, Debug, Default)]
pub enum CapsuleUvProfile {
    /// UV space is distributed by how much of the capsule consists of the hemispheres.
    #[default]
    Aspect,
    /// Hemispheres get UV space according to the ratio of latitudes to rings.
    Uniform,
    /// Upper third of the texture goes to the northern hemisphere, middle third to the cylinder
    /// and lower third to the southern one.
    Fixed,
}

/// A builder used for creating a [`Mesh`] with a [`Capsule3d`] shape.
#[derive(Clone, Copy, Debug)]
pub struct Capsule3dMeshBuilder {
    /// The [`Capsule3d`] shape.
    pub capsule: Capsule3d,
    /// The number of horizontal lines subdividing the cylindrical part of the capsule.
    /// The default is `0`.
    pub rings: usize,
    /// The number of vertical lines subdividing the hemispheres of the capsule.
    /// The default is `32`.
    pub longitudes: usize,
    /// The number of horizontal lines subdividing the hemispheres of the capsule.
    /// The default is `16`.
    pub latitudes: usize,
    /// The manner in which UV coordinates are distributed vertically.
    /// The default is [`CapsuleUvProfile::Aspect`].
    pub uv_profile: CapsuleUvProfile,
}

impl Default for Capsule3dMeshBuilder {
    fn default() -> Self {
        Self {
            capsule: Capsule3d::default(),
            rings: 0,
            longitudes: 32,
            latitudes: 16,
            uv_profile: CapsuleUvProfile::default(),
        }
    }
}

impl Capsule3dMeshBuilder {
    /// Creates a new [`Capsule3dMeshBuilder`] from a given radius, height, longitudes, and latitudes.
    ///
    /// Note that `height` is the distance between the centers of the hemispheres.
    /// `radius` will be added to both ends to get the real height of the mesh.
    #[inline]
    pub fn new(radius: f32, height: f32, longitudes: usize, latitudes: usize) -> Self {
        Self {
            capsule: Capsule3d::new(radius, height),
            longitudes,
            latitudes,
            ..Default::default()
        }
    }

    /// Sets the number of horizontal lines subdividing the cylindrical part of the capsule.
    #[inline]
    pub const fn rings(mut self, rings: usize) -> Self {
        self.rings = rings;
        self
    }

    /// Sets the number of vertical lines subdividing the hemispheres of the capsule.
    #[inline]
    pub const fn longitudes(mut self, longitudes: usize) -> Self {
        self.longitudes = longitudes;
        self
    }

    /// Sets the number of horizontal lines subdividing the hemispheres of the capsule.
    #[inline]
    pub const fn latitudes(mut self, latitudes: usize) -> Self {
        self.latitudes = latitudes;
        self
    }

    /// Sets the manner in which UV coordinates are distributed vertically.
    #[inline]
    pub const fn uv_profile(mut self, uv_profile: CapsuleUvProfile) -> Self {
        self.uv_profile = uv_profile;
        self
    }
}

impl MeshBuilder for Capsule3dMeshBuilder {
    fn build(&self) -> Mesh {
        // code adapted from https://behreajj.medium.com/making-a-capsule-mesh-via-script-in-five-3d-environments-c2214abf02db
        let Capsule3dMeshBuilder {
            capsule,
            rings,
            longitudes,
            latitudes,
            uv_profile,
        } = *self;
        let Capsule3d {
            radius,
            half_length,
        } = capsule;

        let calc_middle = rings > 0;
        let half_lats = latitudes / 2;
        let half_latsn1 = half_lats - 1;
        let half_latsn2 = half_lats - 2;
        let ringsp1 = rings + 1;
        let lonsp1 = longitudes + 1;
        let summit = half_length + radius;

        // Vertex index offsets.
        let vert_offset_north_hemi = longitudes;
        let vert_offset_north_equator = vert_offset_north_hemi + lonsp1 * half_latsn1;
        let vert_offset_cylinder = vert_offset_north_equator + lonsp1;
        let vert_offset_south_equator = if calc_middle {
            vert_offset_cylinder + lonsp1 * rings
        } else {
            vert_offset_cylinder
        };
        let vert_offset_south_hemi = vert_offset_south_equator + lonsp1;
        let vert_offset_south_polar = vert_offset_south_hemi + lonsp1 * half_latsn2;
        let vert_offset_south_cap = vert_offset_south_polar + lonsp1;

        // Initialize arrays.
        let vert_len = vert_offset_south_cap + longitudes;

        let mut vs: Vec<Vec3> = vec![Vec3::ZERO; vert_len];
        let mut vts: Vec<Vec2> = vec![Vec2::ZERO; vert_len];
        let mut vns: Vec<Vec3> = vec![Vec3::ZERO; vert_len];

        let to_theta = 2.0 * std::f32::consts::PI / longitudes as f32;
        let to_phi = std::f32::consts::PI / latitudes as f32;
        let to_tex_horizontal = 1.0 / longitudes as f32;
        let to_tex_vertical = 1.0 / half_lats as f32;

        let vt_aspect_ratio = match uv_profile {
            CapsuleUvProfile::Aspect => radius / (2.0 * half_length + radius + radius),
            CapsuleUvProfile::Uniform => half_lats as f32 / (ringsp1 + latitudes) as f32,
            CapsuleUvProfile::Fixed => 1.0 / 3.0,
        };
        let vt_aspect_north = 1.0 - vt_aspect_ratio;
        let vt_aspect_south = vt_aspect_ratio;

        let mut theta_cartesian: Vec<Vec2> = vec![Vec2::ZERO; longitudes];
        let mut rho_theta_cartesian: Vec<Vec2> = vec![Vec2::ZERO; longitudes];
        let mut s_texture_cache: Vec<f32> = vec![0.0; lonsp1];

        for j in 0..longitudes {
            let jf = j as f32;
            let s_texture_polar = 1.0 - ((jf + 0.5) * to_tex_horizontal);
            let theta = jf * to_theta;

            let cos_theta = theta.cos();
            let sin_theta = theta.sin();

            theta_cartesian[j] = Vec2::new(cos_theta, sin_theta);
            rho_theta_cartesian[j] = Vec2::new(radius * cos_theta, radius * sin_theta);

            // North.
            vs[j] = Vec3::new(0.0, summit, 0.0);
            vts[j] = Vec2::new(s_texture_polar, 1.0);
            vns[j] = Vec3::Y;

            // South.
            let idx = vert_offset_south_cap + j;
            vs[idx] = Vec3::new(0.0, -summit, 0.0);
            vts[idx] = Vec2::new(s_texture_polar, 0.0);
            vns[idx] = Vec3::new(0.0, -1.0, 0.0);
        }

        // Equatorial vertices.
        for (j, s_texture_cache_j) in s_texture_cache.iter_mut().enumerate().take(lonsp1) {
            let s_texture = 1.0 - j as f32 * to_tex_horizontal;
            *s_texture_cache_j = s_texture;

            // Wrap to first element upon reaching last.
            let j_mod = j % longitudes;
            let tc = theta_cartesian[j_mod];
            let rtc = rho_theta_cartesian[j_mod];

            // North equator.
            let idxn = vert_offset_north_equator + j;
            vs[idxn] = Vec3::new(rtc.x, half_length, -rtc.y);
            vts[idxn] = Vec2::new(s_texture, vt_aspect_north);
            vns[idxn] = Vec3::new(tc.x, 0.0, -tc.y);

            // South equator.
            let idxs = vert_offset_south_equator + j;
            vs[idxs] = Vec3::new(rtc.x, -half_length, -rtc.y);
            vts[idxs] = Vec2::new(s_texture, vt_aspect_south);
            vns[idxs] = Vec3::new(tc.x, 0.0, -tc.y);
        }

        // Hemisphere vertices.
        for i in 0..half_latsn1 {
            let ip1f = i as f32 + 1.0;
            let phi = ip1f * to_phi;

            // For coordinates.
            let cos_phi_south = phi.cos();
            let sin_phi_south = phi.sin();

            // Symmetrical hemispheres mean cosine and sine only needs
            // to be calculated once.
            let cos_phi_north = sin_phi_south;
            let sin_phi_north = -cos_phi_south;

            let rho_cos_phi_north = radius * cos_phi_north;
            let rho_sin_phi_north = radius * sin_phi_north;
            let z_offset_north = half_length - rho_sin_phi_north;

            let rho_cos_phi_south = radius * cos_phi_south;
            let rho_sin_phi_south = radius * sin_phi_south;
            let z_offset_sout = -half_length - rho_sin_phi_south;

            // For texture coordinates.
            let t_tex_fac = ip1f * to_tex_vertical;
            let cmpl_tex_fac = 1.0 - t_tex_fac;
            let t_tex_north = cmpl_tex_fac + vt_aspect_north * t_tex_fac;
            let t_tex_south = cmpl_tex_fac * vt_aspect_south;

            let i_lonsp1 = i * lonsp1;
            let vert_curr_lat_north = vert_offset_north_hemi + i_lonsp1;
            let vert_curr_lat_south = vert_offset_south_hemi + i_lonsp1;

            for (j, s_texture) in s_texture_cache.iter().enumerate().take(lonsp1) {
                let j_mod = j % longitudes;

                let tc = theta_cartesian[j_mod];

                // North hemisphere.
                let idxn = vert_curr_lat_north + j;
                vs[idxn] = Vec3::new(
                    rho_cos_phi_north * tc.x,
                    z_offset_north,
                    -rho_cos_phi_north * tc.y,
                );
                vts[idxn] = Vec2::new(*s_texture, t_tex_north);
                vns[idxn] = Vec3::new(cos_phi_north * tc.x, -sin_phi_north, -cos_phi_north * tc.y);

                // South hemisphere.
                let idxs = vert_curr_lat_south + j;
                vs[idxs] = Vec3::new(
                    rho_cos_phi_south * tc.x,
                    z_offset_sout,
                    -rho_cos_phi_south * tc.y,
                );
                vts[idxs] = Vec2::new(*s_texture, t_tex_south);
                vns[idxs] = Vec3::new(cos_phi_south * tc.x, -sin_phi_south, -cos_phi_south * tc.y);
            }
        }

        // Cylinder vertices.
        if calc_middle {
            // Exclude both origin and destination edges
            // (North and South equators) from the interpolation.
            let to_fac = 1.0 / ringsp1 as f32;
            let mut idx_cyl_lat = vert_offset_cylinder;

            for h in 1..ringsp1 {
                let fac = h as f32 * to_fac;
                let cmpl_fac = 1.0 - fac;
                let t_texture = cmpl_fac * vt_aspect_north + fac * vt_aspect_south;
                let z = half_length - 2.0 * half_length * fac;

                for (j, s_texture) in s_texture_cache.iter().enumerate().take(lonsp1) {
                    let j_mod = j % longitudes;
                    let tc = theta_cartesian[j_mod];
                    let rtc = rho_theta_cartesian[j_mod];

                    vs[idx_cyl_lat] = Vec3::new(rtc.x, z, -rtc.y);
                    vts[idx_cyl_lat] = Vec2::new(*s_texture, t_texture);
                    vns[idx_cyl_lat] = Vec3::new(tc.x, 0.0, -tc.y);

                    idx_cyl_lat += 1;
                }
            }
        }

        // Triangle indices.

        // Stride is 3 for polar triangles;
        // stride is 6 for two triangles forming a quad.
        let lons3 = longitudes * 3;
        let lons6 = longitudes * 6;
        let hemi_lons = half_latsn1 * lons6;

        let tri_offset_north_hemi = lons3;
        let tri_offset_cylinder = tri_offset_north_hemi + hemi_lons;
        let tri_offset_south_hemi = tri_offset_cylinder + ringsp1 * lons6;
        let tri_offset_south_cap = tri_offset_south_hemi + hemi_lons;

        let fs_len = tri_offset_south_cap + lons3;
        let mut tris: Vec<u32> = vec![0; fs_len];

        // Polar caps.
        let mut i = 0;
        let mut k = 0;
        let mut m = tri_offset_south_cap;
        while i < longitudes {
            // North.
            tris[k] = i as u32;
            tris[k + 1] = (vert_offset_north_hemi + i) as u32;
            tris[k + 2] = (vert_offset_north_hemi + i + 1) as u32;

            // South.
            tris[m] = (vert_offset_south_cap + i) as u32;
            tris[m + 1] = (vert_offset_south_polar + i + 1) as u32;
            tris[m + 2] = (vert_offset_south_polar + i) as u32;

            i += 1;
            k += 3;
            m += 3;
        }

        // Hemispheres.

        let mut i = 0;
        let mut k = tri_offset_north_hemi;
        let mut m = tri_offset_south_hemi;

        while i < half_latsn1 {
            let i_lonsp1 = i * lonsp1;

            let vert_curr_lat_north = vert_offset_north_hemi + i_lonsp1;
            let vert_next_lat_north = vert_curr_lat_north + lonsp1;

            let vert_curr_lat_south = vert_offset_south_equator + i_lonsp1;
            let vert_next_lat_south = vert_curr_lat_south + lonsp1;

            let mut j = 0;
            while j < longitudes {
                // North.
                let north00 = vert_curr_lat_north + j;
                let north01 = vert_next_lat_north + j;
                let north11 = vert_next_lat_north + j + 1;
                let north10 = vert_curr_lat_north + j + 1;

                tris[k] = north00 as u32;
                tris[k + 1] = north11 as u32;
                tris[k + 2] = north10 as u32;

                tris[k + 3] = north00 as u32;
                tris[k + 4] = north01 as u32;
                tris[k + 5] = north11 as u32;

                // South.
                let south00 = vert_curr_lat_south + j;
                let south01 = vert_next_lat_south + j;
                let south11 = vert_next_lat_south + j + 1;
                let south10 = vert_curr_lat_south + j + 1;

                tris[m] = south00 as u32;
                tris[m + 1] = south11 as u32;
                tris[m + 2] = south10 as u32;

                tris[m + 3] = south00 as u32;
                tris[m + 4] = south01 as u32;
                tris[m + 5] = south11 as u32;

                j += 1;
                k += 6;
                m += 6;
            }

            i += 1;
        }

        // Cylinder.
        let mut i = 0;
        let mut k = tri_offset_cylinder;

        while i < ringsp1 {
            let vert_curr_lat = vert_offset_north_equator + i * lonsp1;
            let vert_next_lat = vert_curr_lat + lonsp1;

            let mut j = 0;
            while j < longitudes {
                let cy00 = vert_curr_lat + j;
                let cy01 = vert_next_lat + j;
                let cy11 = vert_next_lat + j + 1;
                let cy10 = vert_curr_lat + j + 1;

                tris[k] = cy00 as u32;
                tris[k + 1] = cy11 as u32;
                tris[k + 2] = cy10 as u32;

                tris[k + 3] = cy00 as u32;
                tris[k + 4] = cy01 as u32;
                tris[k + 5] = cy11 as u32;

                j += 1;
                k += 6;
            }

            i += 1;
        }

        let vs: Vec<[f32; 3]> = vs.into_iter().map(Into::into).collect();
        let vns: Vec<[f32; 3]> = vns.into_iter().map(Into::into).collect();
        let vts: Vec<[f32; 2]> = vts.into_iter().map(Into::into).collect();

        assert_eq!(vs.len(), vert_len);
        assert_eq!(tris.len(), fs_len);

        Mesh::new(
            PrimitiveTopology::TriangleList,
            RenderAssetUsages::default(),
        )
        .with_inserted_attribute(Mesh::ATTRIBUTE_POSITION, vs)
        .with_inserted_attribute(Mesh::ATTRIBUTE_NORMAL, vns)
        .with_inserted_attribute(Mesh::ATTRIBUTE_UV_0, vts)
        .with_inserted_indices(Indices::U32(tris))
    }
}

impl Meshable for Capsule3d {
    type Output = Capsule3dMeshBuilder;

    fn mesh(&self) -> Self::Output {
        Capsule3dMeshBuilder {
            capsule: *self,
            ..Default::default()
        }
    }
}

impl From<Capsule3d> for Mesh {
    fn from(capsule: Capsule3d) -> Self {
        capsule.mesh().build()
    }
}