bevy_render/mesh/primitives/dim3/
cone.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
use bevy_math::{primitives::Cone, Vec3};
use wgpu::PrimitiveTopology;

use crate::{
    mesh::{Indices, Mesh, MeshBuilder, Meshable},
    render_asset::RenderAssetUsages,
};

/// Anchoring options for [`ConeMeshBuilder`]
#[derive(Debug, Copy, Clone, Default)]
pub enum ConeAnchor {
    #[default]
    /// Midpoint between the tip of the cone and the center of its base.
    MidPoint,
    /// The Tip of the triangle
    Tip,
    /// The center of the base circle
    Base,
}

/// A builder used for creating a [`Mesh`] with a [`Cone`] shape.
#[derive(Clone, Copy, Debug)]
pub struct ConeMeshBuilder {
    /// The [`Cone`] shape.
    pub cone: Cone,
    /// The number of vertices used for the base of the cone.
    ///
    /// The default is `32`.
    pub resolution: u32,
    /// The anchor point for the cone mesh, defaults to the midpoint between
    /// the tip of the cone and the center of its base
    pub anchor: ConeAnchor,
}

impl Default for ConeMeshBuilder {
    fn default() -> Self {
        Self {
            cone: Cone::default(),
            resolution: 32,
            anchor: ConeAnchor::default(),
        }
    }
}

impl ConeMeshBuilder {
    /// Creates a new [`ConeMeshBuilder`] from a given radius, height,
    /// and number of vertices used for the base of the cone.
    #[inline]
    pub const fn new(radius: f32, height: f32, resolution: u32) -> Self {
        Self {
            cone: Cone { radius, height },
            resolution,
            anchor: ConeAnchor::MidPoint,
        }
    }

    /// Sets the number of vertices used for the base of the cone.
    #[inline]
    pub const fn resolution(mut self, resolution: u32) -> Self {
        self.resolution = resolution;
        self
    }

    /// Sets a custom anchor point for the mesh
    #[inline]
    pub const fn anchor(mut self, anchor: ConeAnchor) -> Self {
        self.anchor = anchor;
        self
    }
}

impl MeshBuilder for ConeMeshBuilder {
    fn build(&self) -> Mesh {
        let half_height = self.cone.height / 2.0;

        // `resolution` vertices for the base, `resolution` vertices for the bottom of the lateral surface,
        // and one vertex for the tip.
        let num_vertices = self.resolution as usize * 2 + 1;
        let num_indices = self.resolution as usize * 6 - 6;

        let mut positions = Vec::with_capacity(num_vertices);
        let mut normals = Vec::with_capacity(num_vertices);
        let mut uvs = Vec::with_capacity(num_vertices);
        let mut indices = Vec::with_capacity(num_indices);

        // Tip
        positions.push([0.0, half_height, 0.0]);

        // The tip doesn't have a singular normal that works correctly.
        // We use an invalid normal here so that it becomes NaN in the fragment shader
        // and doesn't affect the overall shading. This might seem hacky, but it's one of
        // the only ways to get perfectly smooth cones without creases or other shading artefacts.
        //
        // Note that this requires that normals are not normalized in the vertex shader,
        // as that would make the entire triangle invalid and make the cone appear as black.
        normals.push([0.0, 0.0, 0.0]);

        // The UVs of the cone are in polar coordinates, so it's like projecting a circle texture from above.
        // The center of the texture is at the center of the lateral surface, at the tip of the cone.
        uvs.push([0.5, 0.5]);

        // Now we build the lateral surface, the side of the cone.

        // The vertex normals will be perpendicular to the surface.
        //
        // Here we get the slope of a normal and use it for computing
        // the multiplicative inverse of the length of a vector in the direction
        // of the normal. This allows us to normalize vertex normals efficiently.
        let normal_slope = self.cone.radius / self.cone.height;
        // Equivalent to Vec2::new(1.0, slope).length().recip()
        let normalization_factor = (1.0 + normal_slope * normal_slope).sqrt().recip();

        // How much the angle changes at each step
        let step_theta = std::f32::consts::TAU / self.resolution as f32;

        // Add vertices for the bottom of the lateral surface.
        for segment in 0..self.resolution {
            let theta = segment as f32 * step_theta;
            let (sin, cos) = theta.sin_cos();

            // The vertex normal perpendicular to the side
            let normal = Vec3::new(cos, normal_slope, sin) * normalization_factor;

            positions.push([self.cone.radius * cos, -half_height, self.cone.radius * sin]);
            normals.push(normal.to_array());
            uvs.push([0.5 + cos * 0.5, 0.5 + sin * 0.5]);
        }

        // Add indices for the lateral surface. Each triangle is formed by the tip
        // and two vertices at the base.
        for j in 1..self.resolution {
            indices.extend_from_slice(&[0, j + 1, j]);
        }

        // Close the surface with a triangle between the tip, first base vertex, and last base vertex.
        indices.extend_from_slice(&[0, 1, self.resolution]);

        // Now we build the actual base of the cone.

        let index_offset = positions.len() as u32;

        // Add base vertices.
        for i in 0..self.resolution {
            let theta = i as f32 * step_theta;
            let (sin, cos) = theta.sin_cos();

            positions.push([cos * self.cone.radius, -half_height, sin * self.cone.radius]);
            normals.push([0.0, -1.0, 0.0]);
            uvs.push([0.5 * (cos + 1.0), 1.0 - 0.5 * (sin + 1.0)]);
        }

        // Add base indices.
        for i in 1..(self.resolution - 1) {
            indices.extend_from_slice(&[index_offset, index_offset + i, index_offset + i + 1]);
        }

        // Offset the vertex positions Y axis to match the anchor
        match self.anchor {
            ConeAnchor::Tip => positions.iter_mut().for_each(|p| p[1] -= half_height),
            ConeAnchor::Base => positions.iter_mut().for_each(|p| p[1] += half_height),
            ConeAnchor::MidPoint => (),
        };

        Mesh::new(
            PrimitiveTopology::TriangleList,
            RenderAssetUsages::default(),
        )
        .with_inserted_indices(Indices::U32(indices))
        .with_inserted_attribute(Mesh::ATTRIBUTE_POSITION, positions)
        .with_inserted_attribute(Mesh::ATTRIBUTE_NORMAL, normals)
        .with_inserted_attribute(Mesh::ATTRIBUTE_UV_0, uvs)
    }
}

impl Meshable for Cone {
    type Output = ConeMeshBuilder;

    fn mesh(&self) -> Self::Output {
        ConeMeshBuilder {
            cone: *self,
            ..Default::default()
        }
    }
}

impl From<Cone> for Mesh {
    fn from(cone: Cone) -> Self {
        cone.mesh().build()
    }
}

#[cfg(test)]
mod tests {
    use bevy_math::{primitives::Cone, Vec2};

    use crate::mesh::{primitives::MeshBuilder, Mesh, Meshable, VertexAttributeValues};

    /// Rounds floats to handle floating point error in tests.
    fn round_floats<const N: usize>(points: &mut [[f32; N]]) {
        for point in points.iter_mut() {
            for coord in point.iter_mut() {
                let round = (*coord * 100.0).round() / 100.0;
                if (*coord - round).abs() < 0.00001 {
                    *coord = round;
                }
            }
        }
    }

    #[test]
    fn cone_mesh() {
        let mut mesh = Cone {
            radius: 0.5,
            height: 1.0,
        }
        .mesh()
        .resolution(4)
        .build();

        let Some(VertexAttributeValues::Float32x3(mut positions)) =
            mesh.remove_attribute(Mesh::ATTRIBUTE_POSITION)
        else {
            panic!("Expected positions f32x3");
        };
        let Some(VertexAttributeValues::Float32x3(mut normals)) =
            mesh.remove_attribute(Mesh::ATTRIBUTE_NORMAL)
        else {
            panic!("Expected normals f32x3");
        };

        round_floats(&mut positions);
        round_floats(&mut normals);

        // Vertex positions
        assert_eq!(
            [
                // Tip
                [0.0, 0.5, 0.0],
                // Lateral surface
                [0.5, -0.5, 0.0],
                [0.0, -0.5, 0.5],
                [-0.5, -0.5, 0.0],
                [0.0, -0.5, -0.5],
                // Base
                [0.5, -0.5, 0.0],
                [0.0, -0.5, 0.5],
                [-0.5, -0.5, 0.0],
                [0.0, -0.5, -0.5],
            ],
            &positions[..]
        );

        // Vertex normals
        let [x, y] = Vec2::new(0.5, -1.0).perp().normalize().to_array();
        assert_eq!(
            &[
                // Tip
                [0.0, 0.0, 0.0],
                // Lateral surface
                [x, y, 0.0],
                [0.0, y, x],
                [-x, y, 0.0],
                [0.0, y, -x],
                // Base
                [0.0, -1.0, 0.0],
                [0.0, -1.0, 0.0],
                [0.0, -1.0, 0.0],
                [0.0, -1.0, 0.0],
            ],
            &normals[..]
        );
    }
}