bevy_render/mesh/primitives/
extrusion.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
use bevy_math::{
    primitives::{Annulus, Capsule2d, Circle, Ellipse, Extrusion, Primitive2d},
    Vec2, Vec3,
};

use crate::mesh::{Indices, Mesh, VertexAttributeValues};

use super::{MeshBuilder, Meshable};

/// A type representing a segment of the perimeter of an extrudable mesh.
pub enum PerimeterSegment {
    /// This segment of the perimeter will be shaded smooth.
    ///
    /// This has the effect of rendering the segment's faces with softened edges, so it is appropriate for curved shapes.
    ///
    /// The normals for the vertices that are part of this segment will be calculated based on the positions of their neighbours.
    /// Each normal is interpolated between the normals of the two line segments connecting it with its neighbours.
    /// Closer vertices have a stronger effect on the normal than more distant ones.
    ///
    /// Since the vertices corresponding to the first and last indices do not have two neighbouring vertices, their normals must be provided manually.
    Smooth {
        /// The normal of the first vertex.
        first_normal: Vec2,
        /// The normal of the last vertex.
        last_normal: Vec2,
        /// A list of indices representing this segment of the perimeter of the mesh.
        ///
        /// The indices must be ordered such that the *outside* of the mesh is to the right
        /// when walking along the vertices of the mesh in the order provided by the indices.
        ///
        /// For geometry to be rendered, you must provide at least two indices.
        indices: Vec<u32>,
    },
    /// This segment of the perimeter will be shaded flat.
    ///
    /// This has the effect of rendering the segment's faces with hard edges.
    Flat {
        /// A list of indices representing this segment of the perimeter of the mesh.
        ///
        /// The indices must be ordered such that the *outside* of the mesh is to the right
        /// when walking along the vertices of the mesh in the order provided by indices.
        ///
        /// For geometry to be rendered, you must provide at least two indices.
        indices: Vec<u32>,
    },
}

impl PerimeterSegment {
    /// Returns the amount of vertices each 'layer' of the extrusion should include for this perimeter segment.
    ///
    /// A layer is the set of vertices sharing a common Z value or depth.
    fn vertices_per_layer(&self) -> usize {
        match self {
            PerimeterSegment::Smooth { indices, .. } => indices.len(),
            PerimeterSegment::Flat { indices } => 2 * (indices.len() - 1),
        }
    }

    /// Returns the amount of indices each 'segment' of the extrusion should include for this perimeter segment.
    ///
    /// A segment is the set of faces on the mantel of the extrusion between two layers of vertices.
    fn indices_per_segment(&self) -> usize {
        match self {
            PerimeterSegment::Smooth { indices, .. } | PerimeterSegment::Flat { indices } => {
                6 * (indices.len() - 1)
            }
        }
    }
}

/// A trait for required for implementing `Meshable` for `Extrusion<T>`.
///
/// ## Warning
///
/// By implementing this trait you guarantee that the `primitive_topology` of the mesh returned by
/// this builder is [`PrimitiveTopology::TriangleList`](wgpu::PrimitiveTopology::TriangleList)
/// and that your mesh has a [`Mesh::ATTRIBUTE_POSITION`] attribute.
pub trait Extrudable: MeshBuilder {
    /// A list of the indices each representing a part of the perimeter of the mesh.
    fn perimeter(&self) -> Vec<PerimeterSegment>;
}

impl<P> Meshable for Extrusion<P>
where
    P: Primitive2d + Meshable,
    P::Output: Extrudable,
{
    type Output = ExtrusionBuilder<P>;

    fn mesh(&self) -> Self::Output {
        ExtrusionBuilder {
            base_builder: self.base_shape.mesh(),
            half_depth: self.half_depth,
            segments: 1,
        }
    }
}

/// A builder used for creating a [`Mesh`] with an [`Extrusion`] shape.
pub struct ExtrusionBuilder<P>
where
    P: Primitive2d + Meshable,
    P::Output: Extrudable,
{
    pub base_builder: P::Output,
    pub half_depth: f32,
    pub segments: usize,
}

impl<P> ExtrusionBuilder<P>
where
    P: Primitive2d + Meshable,
    P::Output: Extrudable,
{
    /// Create a new `ExtrusionBuilder<P>` from a given `base_shape` and the full `depth` of the extrusion.
    pub fn new(base_shape: &P, depth: f32) -> Self {
        Self {
            base_builder: base_shape.mesh(),
            half_depth: depth / 2.,
            segments: 1,
        }
    }

    /// Sets the number of segments along the depth of the extrusion.
    /// Must be greater than `0` for the geometry of the mantel to be generated.
    pub fn segments(mut self, segments: usize) -> Self {
        self.segments = segments;
        self
    }
}

impl ExtrusionBuilder<Circle> {
    /// Sets the number of vertices used for the circle mesh at each end of the extrusion.
    pub fn resolution(mut self, resolution: usize) -> Self {
        self.base_builder.resolution = resolution;
        self
    }
}

impl ExtrusionBuilder<Ellipse> {
    /// Sets the number of vertices used for the ellipse mesh at each end of the extrusion.
    pub fn resolution(mut self, resolution: usize) -> Self {
        self.base_builder.resolution = resolution;
        self
    }
}

impl ExtrusionBuilder<Annulus> {
    /// Sets the number of vertices used in constructing the concentric circles of the annulus mesh at each end of the extrusion.
    pub fn resolution(mut self, resolution: usize) -> Self {
        self.base_builder.resolution = resolution;
        self
    }
}

impl ExtrusionBuilder<Capsule2d> {
    /// Sets the number of vertices used for each hemicircle at the ends of the extrusion.
    pub fn resolution(mut self, resolution: usize) -> Self {
        self.base_builder.resolution = resolution;
        self
    }
}

impl<P> MeshBuilder for ExtrusionBuilder<P>
where
    P: Primitive2d + Meshable,
    P::Output: Extrudable,
{
    fn build(&self) -> Mesh {
        // Create and move the base mesh to the front
        let mut front_face =
            self.base_builder
                .build()
                .translated_by(Vec3::new(0., 0., self.half_depth));

        // Move the uvs of the front face to be between (0., 0.) and (0.5, 0.5)
        if let Some(VertexAttributeValues::Float32x2(uvs)) =
            front_face.attribute_mut(Mesh::ATTRIBUTE_UV_0)
        {
            for uv in uvs {
                *uv = uv.map(|coord| coord * 0.5);
            }
        }

        let back_face = {
            let topology = front_face.primitive_topology();
            // Flip the normals, etc. and move mesh to the back
            let mut back_face = front_face.clone().scaled_by(Vec3::new(1., 1., -1.));

            // Move the uvs of the back face to be between (0.5, 0.) and (1., 0.5)
            if let Some(VertexAttributeValues::Float32x2(uvs)) =
                back_face.attribute_mut(Mesh::ATTRIBUTE_UV_0)
            {
                for uv in uvs {
                    *uv = [uv[0] + 0.5, uv[1]];
                }
            }

            // By swapping the first and second indices of each triangle we invert the winding order thus making the mesh visible from the other side
            if let Some(indices) = back_face.indices_mut() {
                match topology {
                    wgpu::PrimitiveTopology::TriangleList => match indices {
                        Indices::U16(indices) => {
                            indices.chunks_exact_mut(3).for_each(|arr| arr.swap(1, 0));
                        }
                        Indices::U32(indices) => {
                            indices.chunks_exact_mut(3).for_each(|arr| arr.swap(1, 0));
                        }
                    },
                    _ => {
                        panic!("Meshes used with Extrusions must have a primitive topology of `PrimitiveTopology::TriangleList`");
                    }
                };
            }
            back_face
        };

        // An extrusion of depth 0 does not need a mantel
        if self.half_depth == 0. {
            front_face.merge(&back_face);
            return front_face;
        }

        let mantel = {
            let Some(VertexAttributeValues::Float32x3(cap_verts)) =
                front_face.attribute(Mesh::ATTRIBUTE_POSITION)
            else {
                panic!("The base mesh did not have vertex positions");
            };

            debug_assert!(self.segments > 0);

            let layers = self.segments + 1;
            let layer_depth_delta = self.half_depth * 2.0 / self.segments as f32;

            let perimeter = self.base_builder.perimeter();
            let (vert_count, index_count) =
                perimeter
                    .iter()
                    .fold((0, 0), |(verts, indices), perimeter| {
                        (
                            verts + layers * perimeter.vertices_per_layer(),
                            indices + self.segments * perimeter.indices_per_segment(),
                        )
                    });
            let mut positions = Vec::with_capacity(vert_count);
            let mut normals = Vec::with_capacity(vert_count);
            let mut indices = Vec::with_capacity(index_count);
            let mut uvs = Vec::with_capacity(vert_count);

            // Compute the amount of horizontal space allocated to each segment of the perimeter.
            let uv_segment_delta = 1. / perimeter.len() as f32;
            for (i, segment) in perimeter.into_iter().enumerate() {
                // The start of the x range of the area of the current perimeter-segment.
                let uv_start = i as f32 * uv_segment_delta;

                match segment {
                    PerimeterSegment::Flat {
                        indices: segment_indices,
                    } => {
                        let uv_delta = uv_segment_delta / (segment_indices.len() - 1) as f32;
                        for i in 0..(segment_indices.len() - 1) {
                            let uv_x = uv_start + uv_delta * i as f32;
                            // Get the positions for the current and the next index.
                            let a = cap_verts[segment_indices[i] as usize];
                            let b = cap_verts[segment_indices[i + 1] as usize];

                            // Get the index of the next vertex added to the mantel.
                            let index = positions.len() as u32;

                            // Push the positions of the two indices and their equivalent points on each layer.
                            for i in 0..layers {
                                let i = i as f32;
                                let z = a[2] - layer_depth_delta * i;
                                positions.push([a[0], a[1], z]);
                                positions.push([b[0], b[1], z]);

                                // UVs for the mantel are between (0, 0.5) and (1, 1).
                                let uv_y = 0.5 + 0.5 * i / self.segments as f32;
                                uvs.push([uv_x, uv_y]);
                                uvs.push([uv_x + uv_delta, uv_y]);
                            }

                            // The normal is calculated to be the normal of the line segment connecting a and b.
                            let n = Vec3::from_array([b[1] - a[1], a[0] - b[0], 0.])
                                .normalize_or_zero()
                                .to_array();
                            normals.extend_from_slice(&vec![n; 2 * layers]);

                            // Add the indices for the vertices created above to the mesh.
                            for i in 0..self.segments as u32 {
                                let base_index = index + 2 * i;
                                indices.extend_from_slice(&[
                                    base_index,
                                    base_index + 2,
                                    base_index + 1,
                                    base_index + 1,
                                    base_index + 2,
                                    base_index + 3,
                                ]);
                            }
                        }
                    }
                    PerimeterSegment::Smooth {
                        first_normal,
                        last_normal,
                        indices: segment_indices,
                    } => {
                        let uv_delta = uv_segment_delta / (segment_indices.len() - 1) as f32;

                        // Since the indices for this segment will be added after its vertices have been added,
                        // we need to store the index of the first vertex that is part of this segment.
                        let base_index = positions.len() as u32;

                        // If there is a first vertex, we need to add it and its counterparts on each layer.
                        // The normal is provided by `segment.first_normal`.
                        if let Some(i) = segment_indices.first() {
                            let p = cap_verts[*i as usize];
                            for i in 0..layers {
                                let i = i as f32;
                                let z = p[2] - layer_depth_delta * i;
                                positions.push([p[0], p[1], z]);

                                let uv_y = 0.5 + 0.5 * i / self.segments as f32;
                                uvs.push([uv_start, uv_y]);
                            }
                            normals.extend_from_slice(&vec![
                                first_normal.extend(0.).to_array();
                                layers
                            ]);
                        }

                        // For all points inbetween the first and last vertices, we can automatically compute the normals.
                        for i in 1..(segment_indices.len() - 1) {
                            let uv_x = uv_start + uv_delta * i as f32;

                            // Get the positions for the last, current and the next index.
                            let a = cap_verts[segment_indices[i - 1] as usize];
                            let b = cap_verts[segment_indices[i] as usize];
                            let c = cap_verts[segment_indices[i + 1] as usize];

                            // Add the current vertex and its counterparts on each layer.
                            for i in 0..layers {
                                let i = i as f32;
                                let z = b[2] - layer_depth_delta * i;
                                positions.push([b[0], b[1], z]);

                                let uv_y = 0.5 + 0.5 * i / self.segments as f32;
                                uvs.push([uv_x, uv_y]);
                            }

                            // The normal for the current vertices can be calculated based on the two neighbouring vertices.
                            // The normal is interpolated between the normals of the two line segments connecting the current vertex with its neighbours.
                            // Closer vertices have a stronger effect on the normal than more distant ones.
                            let n = {
                                let ab = Vec2::from_slice(&b) - Vec2::from_slice(&a);
                                let bc = Vec2::from_slice(&c) - Vec2::from_slice(&b);
                                let n = ab.normalize_or_zero() + bc.normalize_or_zero();
                                Vec2::new(n.y, -n.x)
                                    .normalize_or_zero()
                                    .extend(0.)
                                    .to_array()
                            };
                            normals.extend_from_slice(&vec![n; layers]);
                        }

                        // If there is a last vertex, we need to add it and its counterparts on each layer.
                        // The normal is provided by `segment.last_normal`.
                        if let Some(i) = segment_indices.last() {
                            let p = cap_verts[*i as usize];
                            for i in 0..layers {
                                let i = i as f32;
                                let z = p[2] - layer_depth_delta * i;
                                positions.push([p[0], p[1], z]);

                                let uv_y = 0.5 + 0.5 * i / self.segments as f32;
                                uvs.push([uv_start + uv_segment_delta, uv_y]);
                            }
                            normals.extend_from_slice(&vec![
                                last_normal.extend(0.).to_array();
                                layers
                            ]);
                        }

                        let columns = segment_indices.len() as u32;
                        let segments = self.segments as u32;
                        let layers = segments + 1;
                        for s in 0..segments {
                            for column in 0..(columns - 1) {
                                let index = base_index + s + column * layers;
                                indices.extend_from_slice(&[
                                    index,
                                    index + 1,
                                    index + layers,
                                    index + layers,
                                    index + 1,
                                    index + layers + 1,
                                ]);
                            }
                        }
                    }
                }
            }

            Mesh::new(
                wgpu::PrimitiveTopology::TriangleList,
                front_face.asset_usage,
            )
            .with_inserted_indices(Indices::U32(indices))
            .with_inserted_attribute(Mesh::ATTRIBUTE_POSITION, positions)
            .with_inserted_attribute(Mesh::ATTRIBUTE_NORMAL, normals)
            .with_inserted_attribute(Mesh::ATTRIBUTE_UV_0, uvs)
        };

        front_face.merge(&back_face);
        front_face.merge(&mantel);
        front_face
    }
}

impl<P> From<Extrusion<P>> for Mesh
where
    P: Primitive2d + Meshable,
    P::Output: Extrudable,
{
    fn from(value: Extrusion<P>) -> Self {
        value.mesh().build()
    }
}